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Abstract 
Based on the statistical characteristics analysis of random noise power and autocorrelation func-
tion, this paper proposes a de-noising method for track state detection signal by using Empirical 
Mode Decomposition (EMD). This method is used to noise reduction refactoring for the first In-
trinsic Mode Function (IMF) component in accordance with the “random sort-accumulation-aver- 
age-refactoring" order. Signal autocorrelation function characteristics are used to determine the 
cut-off point of the dominant mode. This method was applied to test signals and the actual inertial 
unit signals; the experimental results show that the method can effectively remove the noise and 
better meet the precision requirement. 
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1. Introduction 
Tracks are the infrastructure to train safe operation due to the uneven elasticity of track structure and rail base 
can cause rail line long wave irregularities [1] [2]. Inertia method is the main technical route in track detection 
[3]-[6]. Using strapdown inertial technology test track long-wave rough chronological, due to the inertia unit 
acceleration signal collected contain more low frequency noise, easy to cause integrator saturation, so we must 
do de-noising processing first before the integral on acceleration signal.  

The complex signal can be decomposed into level signals step by step (i.e., to smooth the signal processing) 
based on the empirical mode decomposition according to different time scales and get a series of intrinsic mode 
function characteristics of different scales. Each IMF component contains a signal from low frequency to high 
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frequency of different ingredients and each frequency component that is included in the frequency changes over 
the signal itself [7] [8]. So the EMD can be thought of as a space-time filtering process based on signal extre-
mum characteristic scale. This property is used in signal filtering analysis and noise reduction processing. In this 
paper, through the statistical characteristics analysis of random noise power and autocorrelation function, we put 
forward the EMD de-noising method based on noise statistical characteristics. Experimental results show that 
the method can effectively suppress noise and improve the track irregularity detection accuracy. 

2. The Principle of Inertial Reference Method Detection 
Inertial reference method [9] [10] measuring system is in the moving car, speed meter and gyroscope is used to 
establish an inertial reference benchmark, through the measurements of these two kinds of inertial components 
analytical method to get a benchmark, and reuse displacement sensor or image sensor measurement orbit rela-
tive position relative to the benchmark, and get the relative position at the top of the rail in the inertial coordinate 
system. 

As shown in Figure 1, under the same datum point, according to the basic principle of strap down inertial na-
vigation system [11] [12], using the angular velocity signal output by gyroscope, real-time updating the attitude 
matrix of the carrier, through the attitude matrix we can transform the acceleration signal output from accelero-
meter into the geographical coordinate system, and can get the trajectory curve of three axis x, y, z in geographic 
coordinate system after two integral operation for acceleration signal. The curve of x, y, z respectively represents 
projection parameters of rail lines in the vertical plane and horizontal plane and vertical plane, further combined 
with results of the cross section measurement system, ultimately get all the irregularity parameters we need [13] 
[14]. Through comparing the different results to acquire the deviation, the deformation can be calculated quanti-
tatively, so that the workers can repair the serious abrasion timely. Moreover, during the actual measurement, 
what’s mainly concerned is the rail deformation of vertical and level plane, meaning the irregularity value of 
height and direction. 

3. Empirical Mode Decomposition Algorithm 
The basic method of empirical mode decomposition: Through continuous screening, the complex signal is de-
composed into several intrinsic mode functions IMF component which are arranged from high to low frequency 
and the residual term, as shown in Equation (1), the concrete process can be referred to [15]. 

( ) ( ) ( )
1

n

i n
i

x t IMF t r t
=

= +∑                                  (1) 

nr  is residue component, representing average trend of the signal. And each IMF component ( )1IMF t , 
( ) ( )2 , nIMF t IMF t�  respectively contains different frequency signal components from high to low. 

After decomposition, each intrinsic mode function (IMF) must be met two conditions following: 1) Through- 
out the time sequence, the number of passing zero is equal to the number of the pole or at best, a difference; 2) 
At any point, the mean value composed of local maximum value upper envelope and lower local minima enve- 
lope must be zero. 
 

 
Figure 1. The image of motion trajectory.                                
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After EMD decomposition we can get finite IMF: Among them, the big order corresponding to the low fre-
quency component signals, is generally thought that little impact noise in the low frequency components; Small 
order corresponds to the high frequency component signal, often assume that contains a sharp part of the signal 
and noise [16] [17]. The main idea of using EMD method to deal with the noise is that main energy of most pol-
luted signals is concentrated in low frequency band, the farther the high frequencies, it contains the less energy, 
so we can reconstruct signal partly by using several IMF in low frequency, namely: 

( ) ( )1
N

ii Kx t IMF t
= +

= ∑�                                   (2) 

4. An EMD De-Noising Method Based on the Statistical Characteristic 
4.1. Random Noise Power Statistical Properties 
For the length of N discrete signal ( )x n , the power calculation formula is: 

( )2

1

1 N

x i
i

P x n
N =

= ∑                                      (3) 

If keep the amplitude of original signal x (n) each element constant, to disrupt its location in order to get x’ 
(n), x (n) and x’ (n) can be determined power equal, namely, x xP P ′= , the signal power stays the same after a 
random sequence. 

The following research is the changing rule of the noise power through random noise ( )n t  after the “random 
sort-accumulative-average”. Stochastic scheduling random noise ( )n t  which sampling points is 2048 , totally 
25 times repeated, after the i time random sort we can get the new noise ( )in t , superimpose ( )in t  and the 
noise ( )in t  which is get from random sequence of i-1 before, can obtain a new noise component: 

( ) ( )

1

i

j
j i
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n t n t
n

i
=

+
′ =

+

∑
                                    (4) 

Computing the power of ( )in t′  by Equation (3), then we can get a power―sort frequency curve, as shown in 
Figure 2. In Figure 2, the power nP ′  gradually reduced with the increase of number of sorting number i after 
the “random sort-accumulation-average”; when sorting number i increased to a certain degree, the attenuation 
speed of power nP ′  became slow; when i tend to be infinite, nP ′  will be close to zero. 

Inspired by the above experiments, we let the imf1, imf2, imf3 component which is obtained after the EMD 
decomposition of the random noise ( )n t  “random sort-accumulative-average” and compute power, the power- 
sort frequency curve respectively as shown in Figures 3(a)-(c).  

Experimental results show that the first IMF component of random noise after EMD decomposition remains 
the approximate random features, for the first IMF component namely the imf1, in accordance with the “random 
sort-average accumulative” the new noise power decreases with the increase of number of random sequence. 
 

 
Figure 2. Noise power-sort frequency curve.                 
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(a)                                        (b) 

 
(c) 

Figure 3. Noise IMF component power-sort frequency curve.                                           

4.2. The Statistical Feature of Random Noise Autocorrelation Function 
The autocorrelation function of random signal is an average measure of the signal time domain features, reflect-
ing the signal related degree at two different times t1, t2. Random signal ( )x t  autocorrelation function is de-
fined as: 

( ) ( ) ( )1 2 1 2,xR t t E x t x t=                                    (5) 

The autocorrelation function of random noise ( )n t  and general signal ( )x t  can be calculated respectively 
according to the Equation (5), function curve as shown in Figure 4 and Figure 5, respectively. 

( )
( )0

x

x

R
Rτ

τ
ρ =                                       (6) 

where 1 2t tτ = − , represent time difference. 
The Figure 4 and Figure 5 show that although the normalized autocorrelation function of random noise 
( )n t  and ( )x t  can get maximum value in zero, but outside the zero point is different; For random noise 
( )n t , because of its weak correlation and randomness in every moment, so its maximum of autocorrelation 

function can get at zero, autocorrelation function at other points attenuation quickly to small features; For the 
general signal ( )x t , its autocorrelation function does not have such features. Using this feature can determine the 
cut-off point in the signal-to-noise ratio (SNR) dominant mode. 

4.3. The EMD De-Noising Algorithm Based on Noise Statistical Properties 
According to the statistical characteristics analysis of random noise power, autocorrelation function [18], put 
forward “the EMD de-noising algorithm based on noise statistical characteristics” and use “sort-accumulation- 
average-refactoring” order to suppress the noise. Specific steps are as follows: 
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(a) 

 
(b) 

Figure 4. Noise and normalized autocorrelation function.                 
 

 
(a) 

 
(b) 

Figure 5. Signal x (t) and normalized autocorrelation function.   
 

Step 1: the EMD decomposition on noise signal ( )y t , get N intrinsic mode components IMF, and let the last 
trend item quantity decomposed for the first N IMF; 

Step 2: remember ( ) ( )1n t imf t= , ( ) ( )
2

N

i
i

x t imf t
=

= ∑ , ( ) ( )cumulaten t n t= ;  

Step 3: stochastic scheduling ( )n t and get a new component ( )1n t , namely ( ) ( ) ( )cumulate cumulate 1n t n t n t= + ; 
Step 4: repeat Step 3 R times, calculate the average of accumulation to get a new noise dominant mode 

( ) ( )cumulate

1R

n t
n t

R
=

+
 which power is weaken;  

Step 5: get a new noise signal ( ) ( ) ( )1 Ry t n t x t′ = +  which signal-to-noise ratio is improved after the refac-
toring of ( )Rn t  and ( )x t ; 

Step 6: ( )1y t′  should be considered the original pollution signal repeat Steps 1 - 5 S times, get further sup-
pressive noise signal ( )2y t′ ; 

Step 7: EMD decomposition on ( )2y t′  first, then calculate the autocorrelation function of the N IMF com-
ponent, based on the characteristics of the autocorrelation function graphic judge the cutoff point K of noise do-
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minant mode and the signal dominated mode; 
Step 8: global threshold selection method on the noise dominant mode component ( ) ( )1 ~ Kimf t imf t  to deal 

with the noise, namely: 

( ) ( )( )( ) ( )
( )

sgn ,

0 ,

i i i i i
i

i i

imf j imf j T imf j T
imf

imf j T

 − >′= 
≤

 

where 2 lni iT Lσ=  is the threshold value of the ith component ( )iimf t , L is the length of signal, iσ  is the 

standard deviation of ( )iimf t , namely ( ) ( )( )
2

1

1 L

i i i
j

imf j imf t
L

σ
=

= −∑ ; 

Step 9: refactoring on ( ) ( )1 ~ Kimf t imf t′ ′  and ( ) ( )1 ~K Nimf t imf t+ , then we can get de-nosing signal ( )y t′ . 

5. Experimental Verification 
5.1. Analog Signal 
Using the method to deal with the noise of ( )1x t  and ( )2x t  which contains Gaussian white noise in different 
SNR, among them, ( )1x t , ( )2x t  results from the superposition of gauss white noise of signal  

( ) π2sin 20π
4

f t t = + 
 

, 

SNR of ( )1x t  is 8 dB, SNR of ( )2x t  is −3dB, as shown in Figure 6(a) and Figure 6(b). To the EMD de-
composition of ( )1x t  and ( )2x t , “random sort-accumulation-average” on the first imf component for R times, 
with the rest of the imf component refactoring again, continue to repeat S times ( ( )1 : 45, 3x t R S= = ;

( )2 : 45, 3x t R S= = ), then can get signal ( )1x t′ , ( )2x t′  which SNR is improved, as shown in Figure 7(a) and 
Figure 7(b). 

Continue to the EMD decomposition on ( )1x t′ , ( )2x t′ , and calculate the autocorrelation function of each imf 
component, as shown in Figure 8(a) and Figure 8(b). The random noise autocorrelation function statistical 
properties is used to select the SNR cut-off point 1 5K = , global threshold selection method on ( ) ( )1 5~imf t imf t  
to deal with the noise and get ( ) ( )1 5~imf t imf t′ ′ , refactoring on ( ) ( )1 5~imf t imf t′ ′  and ( )6imf t  to get signal

( )1X t′ , as shown in Figure 9(a); In the same way, select SNR cut-off point 2 5K = , refactoring and get signal
( )2X t′ , as shown in Figure 9(b). The difference between ( )2X t′  at both ends in Figure 9(b) and the original 

signal ( )2X t  is caused by the inherent defects―endpoint effect of the EMD decomposition algorithm. 
 

 
(a) 

 
(b) 

Figure 6. Noisy signals.                                   
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(a) 

 
(b) 

Figure 7. De-nosing results of test signals.                    
 

 
(a)                                              (b) 

Figure 8. Each imf component of normalized autocorrelation function of ( )1x t′  and ( )2x t′ .                                
 

Through the simulation experiments analysis: under the condition of low signal noise ratio (SNR), the EMD 
de-noising algorithm based on random noise statistical characteristics still can obtain good de-noising effect. 

5.2. The Experiment Results Analysis 
Experiment system uses XW-IMU5250 tiny mechanical inertial device of Beijing StarNeto Technology Devel-
opment Co., Ltd. In the experiments for loading of the inertial measurement unit testing the car through an ana-
log line segments, and then collect the inertial measurement unit acceleration along x, y, z axis among the car 
movement. First of all, using the average filtering method to eliminate the acceleration signal contained in the 
direct current; this method is applied to the actual inertial unit signal noise processing then. The waveform and 
spectrum diagram of de-noising before and after as shown in Figures 10-12. 

Integral operation on x, y, z axis acceleration signal after de-noising, and through the attitude matrix trans-
forms the movement information of vehicle coordinates to geographic coordinates, and get the car’s trajectory, 
the experimental results and the actual test vehicle by rail sections as shown in Figure 13, error range within 
±0.5 mm. 
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(a) 

 
(b) 

Figure 9. De-nosing result of the proposed method.            
 

 
(a) 

 
(b) 

Figure 10. The waveform and spectrum diagram of de-noising 
before and after of x axis acceleration signal.                 

6. Conclusion 
In this paper, by using the random noise power, autocorrelation function statistical characteristics, a kind of 
suitable for low SNR signal de-noising method is put forward. The method can get the first component of the 
IMF after EMD decomposition on noise signal, in accordance with the “random sort-accumulation-average- 
reconstruction” order. We can get a reconstruction signal whose noise power is significantly weaken and signal 
power constant firstly, and then do EMD decomposition again for the reconstructed signal, and determine the 
cut-off point of signal-to-noise dominant mode by using signal autocorrelation function characteristics, realize 
the final de-noising signal reconstruction. Test results show that in low signal noise ratio (SNR) the method for 
de-noising effect is obvious. At the same time, good performance of inertial measurement unit in the treatment 
of orbital state detection signal provides a new thought for the future of inertial measurement unit signal processing. 
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(a)                                                     (b) 

Figure 11. The waveform and spectrum diagram of de-noising before and after of y axis acceleration signal.               
 

 
(a)                                              (b) 

Figure 12. The waveform and spectrum diagram of de-noising before and after of z axis acceleration signal.                 
 

 
(a)                                                      (b) 

Figure 13. Experimental platform orbit and space displacement curve after two integrals.                                
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