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Abstract 
Copper oxides and its salts are now widely used as pesticides to control fungal and bacterial dis-
eases of field crops. Copper toxicity is often a major contributor of human health problems caused 
through accumulation of excess copper ions in various organs via drinking water, fruits and vege-
tables. So, detection and estimation of cupric ions in biological organs, drinking water, fruits and 
vegetables are extremely important. Recently, a fluorescence based sensor using coumarin dye 
(high quantum yield) has been proposed to detect micro-molar Cu++ ion in biological organs. But 
major problem with coumarin dye is that it is insoluble in water and undergoes dye-dye aggrega-
tion in organic solvents. We proposed here a synthetic scheme of preparation of graphene oxide 
conjugated coumarin dye derivative which would be water dispersible and expected to be an ideal 
candidate for Cu2+ ion estimation in biological organs and drinking water. 
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1. Introduction 
Copper salts are extensively used as pesticides (i.e. fungicide/bactericides) to control fungal and bacterial dis-
eases of field crops [1]. Global annual production of metallic copper and copper compounds reached 13.6 mil-
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lion metric tons in 1979 [2] and it is projected that Cu production will continue to increase in the future. Cu is 
naturally found in uncontaminated water sediment at a background concentration level ranging from 0.8 to 50 
μg∙g−1 (on a sediment dry weight basis) [3] whereas Cu level in uncontaminated soil is estimated to be ~30 
μg∙g−1 [4]. Aggressive use of Cu pesticides in agricultural industry is responsible for the accumulation of Cu in 
soil. There is an increasing concern that soil bound Cu might leach out from the agricultural fields and contami-
nate nearby water bodies such as rivers and lakes, adversely affecting the lives of aquatic vertebrates such as fish 
and invertebrates organisms. It is evident that continuous release of Cu to the environment through human activ-
ity will only increase the Cu level in drinking water and it could potentially exceed the EPA-set drinking water 
Cu limit (currently the limit is 1.3 ppm).  

Copper is an essential trace element present in animal and plant tissue. However, overdose of Cu++ ion is toxic 
and harmful to human and plant species. The average concentration of copper in human blood is estimated to be 
in the range 15.7 - 23.6 µM. Cu bioaccumulation and its imbalance however can cause serious health problem. 
A number of organ damages including stomach, kidney, liver, and brain have been related to Cu imbalance. It is 
reported that brain metabolism process is regulated by Cu [5] [6]. A number of neurodegenerative diseases in-
cluding Alzheimer are linked to disturbance in Cu mediated metabolism processes [5] [6]. Other diseases such 
as Aceruloplasminemia [7], Wilson’s and Menki’s syndrome has been also related to Cu imbalance. 

There is certainly a strong need to develop sensitive probe for the detection of trace level of Cu in biological 
and environmental samples. Some of important applications of the proposed probe in the environment would in-
clude monitoring of i) residual Cu pesticides in the plant surface (leaves and stems and fruits), ii) agricultural 
soil samples and iii) Cu level in contaminated water.  

1.1. Current Cu Ions Detection Techniques 
Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma (ICP-Absorption/Emission) Spectroscopy 
and electrochemical sensing techniques are currently used for measuring Cu2+ concentration in solution in the 
nanomolar to micromole range [8]-[11]. These techniques are expensive to run and extremely tedious. Sample 
preparation process is complex and time-consuming. Moreover, it is challenging to reliably detect ultra-low 
concentration of Cu ions in the picomolar to sub-nanomolar range using these techniques in presence of other 
interfering ions and dissolved molecules. Fluorescence based sensing probes have the potential to address some 
of the above challenges. Because of high sensitivity of fluorescence technique, it should be possible to detect ul-
tra-low concentration of Cu ions in solution. To minimize interference, it is possible to design Cu ion selective 
fluorescence probes. It is also possible to increase signal-to-noise ratio by designing activatable sensing probes. 
Since this is an optical based technique, fabrication of a field-deployable sensor device could be possible.  

Several studies have reported detection of Cu2+ in micro molar concentration in biological systems using 
fluorescent dyes [12]-[25] and fluorescent proteins [26] [27]. Weida Wang et al. used a fluorescent dye (2,4,6- 
trihydroxyphenylsquaraine) [20] as sensing probe to detect Cu ions. Despite a very complex synthesis strategy, 
cellular cytotoxicity was the primary limitation. In another study, 1,2,4-triazole was used as Cu ion sensing 
probe [28], however low stability of the probe was an issue. A similar probe based on Rhodamine dye tagged 
quinaldinet was developed by Zhang et al. [29]. This probe was able to detect Cu ions within about 10 - 15 min-
utes; however a large amount of the dye (~5:1 dye to Cu ratio) was required for reliable measurements. Fluores-
cent proteins, red-emitting HcRed and green-emitting GFP, mutated to have Cu binding sites were shown to ef-
fectively recognize Cu ions in biological fluids [26] [27]. Upon binding to 100 µm Cu ions, almost 100% fluo-
rescence quenching was observed. The drawback of this sensing strategy is associated with the stability of the 
proteins. HcRed was shown to perform better at low temperature [27]. Recently, a coumarin dye based fluores-
cence probe has been reported [30] that exhibits high selectivity towards Cu2+ ions. Fluorescence quenching is 
observed when Cu2+ ions bind to green-emitting (450 nm emission) coumarin dye derivative. The sensitivity of 
the detection was directly proportional to dye concentration. The probe works well in the pH range between 4 
and 10 which is desired pH range for biological applications. When excess dye was used to boost the signal-to- 
noise ratio, self-quenching of the coumarin dye was observed dye to the formation of J-aggregation [30].  

In this paper, we would propose to design synthetic scheme of coumarin conjugated Graphene Oxide (GO) 
nanomaterial. This design will take advantage of the high selectivity of the coumarin derivative towards Cu2+ 
ions as reported in the literature [30] and minimize the self-quenching problem. This is a feasible strategy as the 
coumarin dye will be covalently attached to GO surface and this attachment will hinder the formation of 
J-aggregation of coumarin dye molecules. The use of GO to prevent such J-aggregation has been reported in the 
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literature [31] [32].  

1.2. Graphene—A 2D Robust Substrate Having Enormously Large Surface Area 
During the recent time Graphene, GO and nanomaterial research has gained a tremendous momentum because 
of their potential applications in material science [33] [34]. Graphene has a two-dimensional (one atom thick) 
crystals of SP2 bonded carbon atoms densely packed in a honey comb crystalline lattice. The C-C bond length of 
graphene is 0.142 nm and Graphene sheets are stuck to form graphite with inter planner spacing of 0.335 nm. It 
possesses some unique properties such as high surface area (2620 m2/g), high electronic conductivity (electron 
mobility 20,000 cm/second under unit potential gradient) low resistivity (specific resistance) 10−6 Oh-cm) high 
mechanical and chemical stability [35]. 

Calculation based on ab initio shows that Graphene is thermodynamically unstable if it contains less than 
6000 atoms (by Shenderovaab et al.) [36]. Graphene is a hydrophobic material and it has no binding sites avail-
able for ions. Graphene is chemically converted to GO (via oxidation)/GO derivatives for increasing its hydro-
phillicity by introducing suitable functional groups. GO can be dispersed in aqueous solution and they carry hy-
droxyls, acids and epoxy groups on the surface [37]. Functional groups on the GO surface can be further modi-
fied to attach suitable ligands [37]. In general, GO is considered as a biocompatible material. However, there are 
reports showing cytotoxic effect of GO to human fibroblast cells above 50 µg/mL concentration [38].  

2. Experimental Scheme 
2.1. Synthetic Strategy 
The basic idea is to attach GO, a high surface area substrate material to the Cu ion selective fluorescent dye 
(such as coumarin, scheme shown in Figure 1). For such attachment, Cu ion selective coumarin dye derivative 
(as reported in the literature [30]; Figure 2) will be further modified to obtain a terminal primary amine group.  
 

 
Figure 1. Pictorial representation of the scheme.                                    
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Figure 2. Schematic representation of the Cu2+ ion selective coumarin dye 
showing the active Cu2+ ion binding site.                                   

 
The amine functionalized coumarin dye will be covalently attached to GO surface through epoxy ring opening 
reaction, forming the GOCD. Since the coumarin dye molecules are covalently attached to the GO substrate, it is 
anticipated that dye-dye interaction (J-aggregation) will be minimized. This is important for boosting the sensi-
tivity for the Cu2+ ion detection in the nanomolar range. Moreover, the proposed GOCD is a new hybrid material. 
It would be interesting to explore the photophysical properties of the GOCD.  

2.2. Schematic Representation of Overall Synthetic Strategy  
 

 
Figure 3. The proposed synthesis scheme of GOCD (compound #8).                                           

2.3. Synthesis of Graphene-Oxide Coumarin Conjugate (GOCD) 
The proposed GOCD will involve a multi-step synthesis process.  

Step 1 is the preparation of the GO from graphite flakes following Hummar [39] method. This method uses 
chemical and sonication techniques to exfoliate GO from purified natural graphite. The resulting exfoliated GO 
form colloidal suspension of individual GO sheet in water. Then following the procedure of Wang et al. [40], 
pH assisted selective sedimentation will be done to separate GO of different size range.  

Step 2 is the synthesis of primary amine functionalized Cu2+ ion selective coumarin dye (compound #4, see 
Figure 3). An amine containing precursor, methyl 4-amino-2-hydroxybenzoate (compound #1, Sigma-Aldrich; 
catalogue #PH001949) will be reacted with the protected az-ir-idine to make compound #2. This addition reac-
tion involves nucleophilic ring opening of az-ir-idine by the NH2 group of the compound #1 under mild acidic 
reaction condition to control reaction rate. Compound #3 (a cyclic ester) will be then prepared by treating the 
compound #2 with acetonitrile in presence of SmI2 catalyst. Using LiAlH4, selective reduction reaction will be 

O ON

N
H

O
N

Cu2+

O ON

NH

O

N
2+Cu



S. Basumallick 
 

 
49 

carried out to convert the compound #3 to the corresponding aldehyde (compound #4). Similar synthetic route 
has been reported in the literature where Diethylamino-2-hydroxy-benzaldehyde was used as the precursor 
starting material [30] instead of compound #1 and therefore this proposed synthesis step is feasible. 

Step 3 is the GO conjugation with the compound #4 (Figure 3), forming compound #5. The GO which is 
produced via Hammer method is intrinsically acidic and it has surface epoxy groups. It is expected that the 
compound #4 will readily react with the epoxy containing GO when combined together. The terminal amine 
group of the compound #4 will take part in the epoxy ring opening reaction. Similar epoxy ring opening reac-
tions involving primary amine containing molecules and the GO have been reported in the literature [37] [41] 
[42].  

Step 4 is a simple acid catalyzed Michael type addition reaction between the dimethyl malonate and the com-
pound #5, forming the compound #6. Then the compound #6 will be converted to the compound #7 in acidic 
condition where GO is expected to serve as a catalyst. This proposed synthesis step is based on a recent research 
reported by the Bielawski group [43]. Their findings confirmed that GO served as a catalyst in auto tandem oxi-
dation-aldol condensation reaction [43]. Similar catalytic/carbocatalyst [44] activity is expected in the proposed 
condensation and hydride elimination step.  

Step 5 is the final step where the compound #7 will be converted to the compound #8 (the proposed GOCD). 
In this step, 2-aminomethyl pyridine addition and condensation reaction catalyzed by GO will be carried out in 
acidic reaction condition. 

3. Conclusion 
Synthetic steps proposed for synthesis of GOCD are conventional and uses of GO as catalyst are also well re-
ported. Fluorescence of coumarin in GO-coumarin derivative (GOCD) will quench upon binding with Cu ions 
similar to its quenching of coumarin derivative as studied previously. Presence of GO in GOCD will not affect 
the strong fluorescence emission of coumarin derivative as GO is reported to exhibit a weak fluorescence prop-
erty and it is covalently boded to CD. GOCD should exhibit two distinct absorption bands characteristic to GO 
(200 - 450 nm absorption) and the coumarin dye (430 nm). Based on the literature reports, it is evident that the 
absorption band position of GO largely depends a number of factors including particle size, pH and the degree 
of oxidation [45] [46]. GO usually emits in the range 400 - 700 nm [46]-[48]. Depending on the pH, GO particle 
size [45] and extent of GO oxidation, emission of GO could vary anywhere between the 370 - 650 nm [45] [46]. 
Since GO is water soluble, GOCD will also be water dispersible and minimize dye-dye aggregation. Thus, 
GOCD will be an ideal fluorescence sensor for estimation of nanomolar concentration of cupric ion in aqueous 
solutions and biological organs. 
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