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ABSTRACT 
In this paper, we propose a new architecture that combines prediction and decision-making in the form of a hybrid 
framework aimed at providing clinicians with transparent and accurate maps, or charts, to guide and to support treat-
ment decisions, and to interrogate the clinical patients’ course as it develops. These maps should be patient-specific, 
with options displayed of possible treatment pathways. They would suggest the optimal care pathways, and the shortest 
routes to the most efficient care, by predicting clinical progress, testing the ensuing suggestions against the developing 
clinical state and patient condition, and suggesting new options as necessary. These maps should also mine an extensive 
database of accumulated patient data, modelled diseases, and modelled patient-responses based on expert-derived rules. 
These individualized hierarchical targets, which are implemented in order to prevent life-threatening illnesses, will also 
have to “adapt” to the patient’s altering clinical condition. Therapies that support one system can destabilize others and 
selecting which specific support to prioritize is an uncertain process, the prioritization of which can vary between clini-
cal experts. Whilst clinical therapeutic decisions can be made with some degree of anticipation of the “likely” outcome 
(based on the experts’ opinion and judgment), treatment is essentially rooted in the present, and is dependent on ana-
lyzing the current clinical condition and available data. The recursive learning approach presented in this paper, allows 
decision rules to predict the possible future course, and reflects back derived information from such projections to the 
present time and thus support proactive clinical care rather than reactive clinical care. The proposed framework for such 
a patient map supports and enables an optimized choice from available options and also ensures that decisions are based 
on both the available evidence and a database of best clinical practice. Preliminary results are encouraging and it is 
hoped to validate the approach clinically in the near future. 
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1. Introduction 
Preliminary studies on physiological patient state classi-
fication and patient map elaboration consists of: a) col-
lecting patients’ data from each subsystem, such as the 
heart, the lungs, the renal system, etc.; b) the Laboratory 
results; c) and medications. Such clinical information 
allows the identification of the current patient state, but 
does not provide information about the future patient 
state. [1,2] are study examples that consider the set of 
vital parameters from the cardio-vascular system (CVS) 
and respiratory system. For the respiratory and gas ex-
change systems there are many different models devel-
oped to deal with gas exchange in the lungs [3,4]. Hence, 
other approaches have been developed as simulators to 
describe the ventilation and the gas exchange interactions 
[5,6]. For a lumped system of arterial, tissue, venous and 
pulmonary compartments, the SOPAVent (Simulation of  

Patient under Artificial Ventilation) model has also been 
developed to simulate the exchange of O2 and CO2 in the 
lungs and tissues together with their transport through the 
circulatory system [7,8]. Further improvements of the 
original, SOPAVent model, have also been included to 
develop a none-invasive model structure as well as a 
continuously updated model to improve patient-specific 
model performance and improve the prediction accuracy. 
A more recent study [9] combined a model of respiratory 
mechanics, a model of the human lung absolute resistiv-
ity and a 2-D finite-element mesh of the thorax to simu-
late EIT image reconstruction during mechanical ventila-
tion. 

The goals for treating critically-ill patients in Intensive 
Care Units are, of necessity, patient specific. A Clinical 
Decision Support System to optimize a patient’s care 
would ideally have the following features: 1) function as 
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a ‘virtual Star Chamber’ pooling all available expertise 
of the clinical staff in that Unit; 2) use this wealth of 
knowledge to derive current treatment for an individual 
patient via data bases which can ideally be interrogated; 
3) use data-mining tools to categorize the current patient 
condition; 4) integrate current treatment protocols into 
real-time care; 5) exploit a predictive function to model 
and thus predict the clinical course of the patient into the 
future resulting from this care; 6) Test, “off-line”, the 
consequences of the current treatment actions; 7) Finally, 
interrogate the generated data from the patient to check 
conformity with the predicted outcome 

In the Intensive Care environment, clinical decisions 
are made to maintain patients’ physiological parameters 
within acceptable (safe) ranges whilst treating or improv- 
ing the underlying illness. Clinicians rely on their know-
ledge and experience to plan appropriate therapy rules. 
These are applied to the developing clinical condition 
and the outcomes revisited and alterations considered for 
implementation. 

Selecting the most appropriate treatment package from 
differing options raises the possibility of potentially di-
verging and conflicting clinical decisions, or therapy 
rules, and that selecting one path will engender a devel-
oping and necessarily diverging clinical course for that 
patient. This dilemma requires that the choices should be 
clearly identified and that any model-based method must 
be able to predict future consequences for each choice. 
However, clinical decisions entail a degree of uncertainty 
and do not have a clearly mapped outcome for the con-
sequences. If a clinician has a patient with a diagnosis 
“D”, the therapeutic choices can be T1, T2, or T3. Ther-
apy “T1” may induce a complication and cause the pa-
tient to deteriorate. Therapeutic decision “T2” may im-
prove the state of the patient, or may not change it. “T3” 
may treat the diagnosis D, but entail collateral damage in 
other organs. Thus the clinician faces considerable un-
certainty. A map detailing clear future outcomes in all 
possibilities for patients’ anticipated clinical recovery 
paths will be useful undoubtedly. 

The decision-support map would provide clinicians 
predicted pathways for multiple possible patient- states, 
until the patient enters a final state of stability with nor-
malized values for all monitored physiological parame-
ters. This stable state would in effect represent, in terms 
of dynamic systems, the so called equilibrium state. 

In the framework proposed in this paper, each gener-
ated node of the path displays two types of information. 
The first describes the current values of physiological 
parameters as concept variables, and the second de-
scribes the drug that causes these concept variables to 
evolve according a certain trend. The physiological pa-
rameters are calculated by reflecting the connective inte-
ractions of the variables within each node and between 

the nodes, which thus functions as part of a dynamical 
biological system. Thus, the interaction between clinical 
concepts should keep a stable equilibrium within time or 
continuous until reach the equilibrium cycle, depending 
on the initial patient state and the expert knowledge da-
ta-base. 

The displayed options of possible treatment pathways 
support a clinical proactive decision making. This model 
has two principle components: the first component is the 
State Transition Predictor (STP), and the second is the 
Patient Paths Network (PPN). The first component is an 
expert knowledge data-base of the basic clinical rules for 
different possible patient states based on a number of 
clinical concepts to be observed. The number of clinical 
concepts is determined by a possibility that a clinical 
outcome would in effect take place. The remainder of 
this paper will be organized as follows: Section 2 will 
detail the “recursive” concept as well as the associated 
algorithms of the physiological patient map. Section 3 
will explain how the cause-effect relationship within pa-
tient physiological parameters can be represented via a 
fuzzy cognitive map. Finally, conclusions relating to the 
proposed study together with future research directions 
will be given in Section 4. 

2. Physiological Patient Map 
In order to populate the physiological patient map, we 
reconceptualise clinical conditions from general terms 
such as “critical”, “stable” “mild”, etc.; via fuzzy linguis-
tic terms describing the values of the physiological pa-
rameters. Each parameter is described in one of three 
fuzzy linguistic terms: Low (L), Medium (M), and High 
(H). For m clinical concepts (i.e. physiological parame-
ters), the nodes (i.e. states) of patient paths are expressed 
as follows: 

Let us consider a vector of m variables: 

( ){ },1 ,,?k k k my t y y                   (1) 

( )
{ }
, 1, Fuzzy Linguistic Terms

, , , : state index
k i my

L M H k
=

∈
 

We argue here that there are two components (Mod-
ules) of our Physiological patient map: state transition 
predictor (STP) and patient path network (PPN), see 
“Figure 1”. The next sections will expand on these two 
modules: 

2.1. State Transition Predictor (STP) 
The STP has two inputs, the first input is represented by 
clinical concepts, ( )ky t , and the second input is repre- 
sented by drugs, i.e. 

( ) { },1 ,, , : drug vector dimensionk k k nx t x x n= 

 (2)
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The outputs are the new clinical concepts formulated 
also via fuzzy linguistic terms based on the previous two 
vector inputs x(t) and y(t). Hence, the output vector will 
be as follows: 

( ) ( )( )( 1) ,k k kY t F x t y t+ = .           (3) 

Thus the input matrix ( ) ( ),x t y t ′ ′
  

 generates a new  

output vector as follows: 
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            (4) 

The dimension, Mj, of the victor ( )1kY t +  depends 
on the state index, k. The state transition predictor (STP) 
represents our data-base of expert knowledge. 

2.2. Patient Path Network (PPN) 
This module has the specific task of memorising all the 
predicted states from the initial recorded state until the 
final predicted stable state and builds the network of all 
the generated states. Furthermore, the simulation run of 
this module is completed to extract all possible outcome 
paths that the patient clinical state may follow, “Figure 
2”. 

The nodes of each path indicate the physiological pa-
rameter values in fuzzy linguistic terms and the drugs 
that should be administrated in order to reach the next 
transition state. Here we consider the recording of only 
four physiological parameters; (in an intensive care en-
vironment of a patient with cardio-respiratory system 
failure): Cardiac Output (CO) is low (L), Mean Arterial 
Pressure (MAP) is low (L), mean airway pressure (PaO2) 

 

 
Figure 1. Fuzzy linguistic terms; Low, Medium, and High; of the four physiological parameters (clinical concepts) CO, MAP, 
PaO2, and CVP. The x-axis represents real values of these parameters. 
 

 
Figure 2. Physiological patient map (PPM). There are two modules.  
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is low (L), and Central Venous Pressure (CVP) is high 
(H). Thus the recorded patient initial state was indicated 
in the model (see “Figure 3”) as [LLLH]. The physio-
logical patient map model in this case will generate the 
successive possible states of this patient in the form of 
paths network. The procedure is only stopped under two 
conditions: the first is when all the newly created states 
(nodes) reach the stable state [MMMM] or [HMMM], 
the second condition relates to when the newly state 
(node) has already been created, similarly to the case 
illustrated by “Figure 3”, i.e. the state [MMMH]. 

Patient paths (trajectories) network nodes indicate the 
physiological parameter values in fuzzy linguistic terms 
and the drug input that should be administrated to reach 
the next transition state. There are five types of drugs 
used by the model to generate this paths-based network; 
N: noradrenaline, D: dobutamine, G: GTN, F: fluid, O: 
oxygen, and F: Fluid. These drugs are described also via 
two fuzzy linguistic terms: “p: positive” to increase the 
drug, and “l: less” to decrease the drug dosage. From the 
top-node of the initial recorded patient state, the model 
progresses recursively creating successor nodes and 
paths until reaching the equilibrium state of each patient 
path. 

In the particular (realistic) example of “Figure 3”, the 
patient map includes 12 possible physiological patient 
paths generated with this model. Section 3 will expand 
on the physiological parameters evolution within a spe-
cific path, in order to explain the successive nodes 
created from the model and their convergence to the sta- 

ble state (equilibrium). 

3. Physiological Parameters Evolution in 
Cognitive Map 

The cause-effect relationship within the patient physio-
logical parameters is represented as a fuzzy cognitive 
map [10]. We argue that this graphical representation 
may be the ideal tool for reasoning with uncertainty. 

The path nodes include “9” concepts; four “4” of which 
are causal concepts representing the patient physiological 
parameters. These concepts are, as is the case of in any 
dynamic system, in permanent interactions within cause- 
effect relationships. The valuations of these cause-effect 
relationships; from the experts; are carried-out indirectly 
through the drug concept values. The five “5” other con-
cepts are drugs; their edges are directed only in one di-
rection onto the physiological parameters, as illustrated 
in “Figure 4”. These are the main considered variables 
for building the physiological patient map. 

The predicted evolution of physiological parameters 
infers different possible patient trajectories in a clear 
physiological map. The illustration of one trajectory from 
the trajectories map of “Figure 4” can help to get to grips 
with the mechanism used by predicted clinical concepts 
interactions to build the successive future patient out-
comes, as shown in “Figure 5”. The model operates ite-
ratively, because at each time interval the new concept 
node values are predicted using the previous node con-
cept values. 

 

 
Figure 3. Network of physiological parameters and different possible patient paths prediction.  



A. ZEGHBIB  ET  AL. 

Copyright © 2013 SciRes.                                                                                 ENG 

588 

 

 
Figure 4. Fuzzy cognitive map, within each node of the pa-
tient path, for the cause-effect relationship of patient physi-
ological parameters and drugs. The drugs have unideric-
tional effects. Drug types used in this study are; N: nora-
drenaline, D: dobutamine, G: GTN, F: fluid, O2: oxygen, 
and F: Fluid. The map here uses node shapes relating to the 
concept type. Drug concepts are circles, physiological pa-
rameters are elipses. 
 

 
Figure 5. Patient path evolution from the physiological map. 
This path has seven “7” physiological states (nodes). The 
initial state is [LLLH] and the outcome state is [HMMM], 
which is the final patient stable state. We observe the con-
tinous physiological parameters evolution in the same time, 
parallel way, until the system reaches its equilibrium state. 
 

The path chosen from the map of “Figure 3” includes 
seven “7” physiological states (nodes), the initial state 
being [LLLH] and the outcome state [HMMM] being the 
final predicted patient stable state. In this path all physi-
ological variables change continuously until the system 
reaches its equilibrium state. The convergence of a phy-
siological dynamic system towards a stable state is only 
possible because of the available expert knowledge re-
lating to the biological system behaviour. However, these 
paths can also diverge and it may be possible that they 
will never reach the “equilibrium” state. 

4. Conclusion 
The proposed physiological patient map model as de-
tailed in this study has many advantages for the clinicians 
to deal with patients in intensive care unit. Usually, clin-

ical decisions are based on clinical assessment and sub-
jective judgment of clinicians. The clinicians’ judgments 
are only reactive actions because the usual existent sys-
tems of assessment cannot provide the possible outcome 
set of the future scenarios of physiological patient states. 
This model provides the clinicians transparent map, based 
on their expert-knowledge, of future patient paths that 
will be conveyed back to the current planning context in 
order to support proactive clinical actions rather than just 
reactive actions. This map allows, in terms of profes-
sional accountability, a real choice of the best decision 
and also ensures that decisions are based on available 
evidence. However as this model is based on the fuzzy 
sets of clinical concepts, the increase of recorded physi-
ological parameters and drugs will make the physiologi-
cal patient map more complex and also raises the patient 
paths number but it is believed that as long as the map 
itself is systematically built, accuracy and most impor-
tantly transparency will still be conserved. Immediate 
future plans will include validation of this map concept 
on a simulated patient platform, but our “not so imme-
diate” research plan will include two vectors: the first 
one is to introduce variations of the physiological para-
meters to test the generalization properties of the overall 
framework as to its quality of control and to path con-
vergence; the second will provide this model with new 
tools using probability and possibility theories both for 
control and path selection. Both data and knowledge fu-
sion, especially in the case of information conflicts, will 
also be a pertinent issue to resolve. 
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