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Abstract 
There has been a considerable recent attention in modeling over dispersed binomial data occur-
ring in toxicology, biology, clinical medicine, epidemiology and other similar fields using a class of 
Binomial mixture distribution such as Beta Binomial distribution (BB) and Kumaraswamy-Bi- 
nomial distribution (KB). A new three-parameter binomial mixture distribution namely, McDo-
nald Generalized Beta Binomial (McGBB) distribution has been developed which is superior to KB 
and BB since studies have shown that it gives a better fit than the KB and BB distribution on both 
real life data set and on the extended simulation study in handling over dispersed binomial data. 
The dispersion parameter will be treated as nuisance in the analysis of proportions since our in-
terest is in the parameters of McGBB distribution. In this paper, we consider estimation of para-
meters of this MCGBB model using Quasi-likelihood (QL) and Quadratic estimating functions 
(QEEs) with dispersion. By varying the coefficients of the QEE’s we obtain four sets of estimating 
equations which in turn yield four sets of estimates. We compare small sample relative efficiencies 
of the estimates based on QEEs and quasi-likelihood with the maximum likelihood estimates. The 
comparison is performed using real life data sets arising from alcohol consumption practices and 
simulated data. These comparisons show that estimates based on optimal QEEs and QL are highly 
efficient and are the best among all estimates investigated. 
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1. Introduction 
Estimating functions have for sometimes been a key concept and subject of inquiry in research and it is known 
to be the most general method of estimation. The basis of this method is a set of simultaneous equations involv-
ing both the data and the unknown model parameters. To obtain an estimator, the estimating function is equated 
to zero and then solve the resulting equation with respect to the parameter in order to obtain parameter estimate. 
Estimating equations are not quite intensive in computation unlike MLEs. Moreover, the MLE estimators are 
based on the assumption that the distribution is known, however an estimating equation is free of such assump-
tions. The usual procedure is to take a parametric model, such as, the McDonald Generalized beta-binomial 
model to allow over as well as under dispersion and obtain maximum likelihood estimates of the parameters 
McDonald Generalized Beta Binomial (McGBB) distribution is a three-parameter distribution which is superior 
to KB in handling over dispersed binomial data. This procedure may produce inefficient or biased estimates 
when the parametric model does not fit the data well. Alternatively, more robust estimates, such as moment es-
timates, quasi-likelihood estimates (Breslow, 1990 [1]; Moore and Tsiatis, 1991 [2]), extended quasi-likelihood 
estimates (Nelder and Pregibon, 1987 [3]), the Gaussian likelihood estimates (Whittle, 1961 [4]; Crowder, 1985 
[5]), estimates based on the pseudo-likelihood estimating equations of Davidian and Carrol (1987) [6] and esti-
mates based on quadratic estimating functions of Crowder (1987) [7] and Godambe and Thompson (1989) [8] 
can be considered. In this paper we consider estimating the parameters of McDonald Generalized Beta Binomial 
by the quadratic estimating equations (QEE’s) of Crowder (1987) [7] and Godambe and Thompson (1989) [8] 
and compared the small sample efficiency and bias properties of these estimates with the maximum likelihood 
estimates. By varying the coefficients of the QEE’s we obtain four sets of estimating equations. We compare the 
small sample efficiency of the five sets of estimates obtained by the QEE’s and the quasi-likelihood estimates 
with the maximum likelihood estimates. We compare estimated relative efficiencies of the estimates for two sets 
of real life data arising from alcohol consumption practices and simulation study. Estimation of the parameters 
by the six methods is discussed in Section 3. In Section 4 we compare small sample relative efficiencies. This 
study shows that if interest is on the point parameters then the GL is the method of choice followed by QL. 

2. McDonald Generalized Beta-Binomial Distribution of the First Kind 
Let p  be a random variable following McDonald’s Generalized Beta-Binomial Distribution of the first kind 
(McDonald, 1984 [9]; McDonald and Xu, 1995 [10]) with three parameters, α , β  and γ . The probability 
density function of p  is then given by 

( ) ( ) ( ) 11
GB1 ; , , 1 ;     0 1  and  ,  ,  0.

,
f p p p p

B
βαγ γα β γ α β γ

α β
γ −−= − ≤ ≤ >            (1) 

The thr  moment of the McDonald Generalized Beta-Binomial Distribution of the first kind is given by 

( ) ( )
( )

,
.

,
r B r

E P
B r
α β γ
α γ
+

=                                 (2) 

McDonald Generalized Beta Binomial Distribution 
A random variable Y  is said to have McDonald Generated Beta Binomial (McGBB) Distribution with para-
meter α , β  and γ  if and only if it satisfies the following stochastic representation. Y p  ~ Bin ( ),n p   
and p  ~ GB1 ( ),  ,  α β γ , where α , β  and γ  are positive real numbers. This distribution was denoted as, 

Y  ~ McGBB ( ),  ,  ,  n α β γ . 
In general, a Binomial mixture is obtained through an integration approach. Suppose Y  follows a binomial 

distribution given by Bin ( ),n p  and Y p  ~ Bin ( ),n p . Unconditional PMF of the Y  can be obtained by 
evaluating the integral 

( ) ( )\ dy Y p pP y P f p p= Θ∫                               (3) 

where 0,1, ,y n=   and Θ  is the parameter space of the mixing distribution. 
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3. Estimation of Parameters of McDonald Generalized Beta-Binomial Distribution 
3.1. Maximum Likelihood Method 
The three unknown parameters of McGBB distribution have been estimated using the maximum likelihood es-
timation technique. Let ( )1 2 ,, , NY y y y=   be a random sample of size N  from a McGBB distribution with  
unknown parameter vector ( )T,  ,  α β γΘ = , then the log-likelihood function for Θ  can be defined as, 

( ) ( ) ( )
0 0 0 0

1Θ log log log 1 , .
,

kn yN N N
j k k

k k k j

n n y y jl B
y jB

α β
α β γ γ

−

= = = =

   −     
= + + − + +                
∑ ∑ ∑ ∑         (4) 

3.2. Quasi-Likelihood 
The quasi-likelihood (Wedderburn, 1974 [11]) is based on the knowledge of the form of first two moments of 
the random variable ,i i iz Y n= . Where ( ),i iE z π= , and ( ) ( ) ( ){ },var 1 1 1iz nπ π ρ= − + − . While with  

,i i iY z n=  then, ( ) iE Y nπ=  and ( ) ( ) ( ){ }var 1 1 1Y n nπ π ρ= − + − . 

The quasi-likelihood with the above mean and variance is given by ( ),1 ,n
i iiQ Q z π ρ
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= ∑  
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By virtue of independence between samples, the quasi-likelihood with the above means and variance is given 
by: 
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We denote Equation (5) by QLλ . In this case ijd β  is given as ( )1i
ij i i ij
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Then the partial derivatives for the three parameters α , β , γ  given ρ as also obtained as follow: 
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3.3. Quadratic Estimating Equations 
By considering estimating functions quadratic in iz  the QEEs has general form a 
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( ) ( ){ }2 2
i i i i i i i

m
ig a z b zλ λ λ λπ π σ − + − +  

= ∑ , Crowder (1987) [7], where λia  and λib  are specified nonsto-  

chastic functions of λ . Thus, through derivation the unbiased quadratic estimating equations for parameters: 
α , β  and γ  for McGBB distribution is found as follows. 

The unbiased quadratic estimating equations for α , β  and γ  and ρ  have the form 
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We obtain the Gaussian estimating equations. We denote this Equation (10) by GLλ  
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If we take 2j
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i

i
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a β
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β
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= , and 0
jib β = . 

Then we obtain the unbiased estimating equations (QEE’s) for McDonald Generalized Binomial Distribution. 
These equations were obtained by combining the quasi-likelihood estimating equations for the regression para-
meters and the optimal quadratic estimating equations of Crowder (1987) [7] for the dispersion parameter after 
setting 1ϒ  and 2ϒ  to zero.  

We denote the estimates so obtained from Equation (11) by 1Mλ  
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This simplifies to, 
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We obtain the optimal quadratic estimating equations. We note that the forms of the skewness 1λϒ  and the 
kurtosis 2λϒ  are not known. We then take these based on the second, third and fourth moments of the McDo-
nald generalized beta-binomial distribution, which are: 
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We denote the estimates obtained by solving these optimal quadratic estimating equations by 2Mλ  Further 
we also denote the estimates obtained by solving the optimal quadratic estimating equations with  

1 2 0i iλ λϒ = ϒ =  by 3Mλ . Note the estimates 3Mλ  are also obtained by using the pseudo-likelihood estimating 
equations of Davidian and Carrol (1987) [7]. 
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4. Small-Sample Relative Efficiency 
The asymptotic relative efficiency may not be very useful when comparing different estimators in small samples. 
So we conducted a simulation study using relatively small n  alongside the real data. We compare the small 
sample relative efficiency of the estimates obtained by the five estimation procedures: QL ; GL ; 1M ; 2M ; 

3M  with the MLE. The estimated Relative efficiency of α  is ( ) ( )MLvar var tα α  where QLt = , GL , 
1M , 2M , 3M . In the situation where relative efficiency is greater than one, then the procedure with its effi-

ciency as the denominator is preferred than the “gold standard” ML . The relative efficiency results for the 
McGBB parameters are summarized in Table 2 for the real data and those for simulated data are summarized in 
Table 3 and Table 4 and plotted in Figure 1 for simulated data. 

5. Estimation 
Table 1 shows the data set used by Alanko and Lemmens (1996) [12], Rodrίguez-Avi et al. (2007) [13], and 
Chandrabose et al. (2013) [14] in the study of handling over dispersion. It shows the number of days an individual 
consumes alcohol y, out of n = 7 days in N = 399, where y = number of days, n = frequency of consumption. We 
used this data in Table 1 to obtain the estimates for ,  α β  and γ  and estimated relative efficiencies by the six 
different procedures as given in Table 2. 

6. Simulation 
We compare the relative efficiency of the estimates ,  α β  and γ  obtained by the six estimation procedures  
 
Table 1. Number of alcohol consumption days and the frequency of consumption.                                      

y  0 1 2 3 4 5 6 7 

n  47 54 43 40 40 41 39 95 

 
Table 2. The estimate ,  α β  and γ  and their estimated Relative efficiencies by MLE QL M1 M2 and M3 methods for the 
real data.                                                                                                 

 Parameter estimates Estimated relative efficiencies 

Parameters MLE  QL  GLλ  1Mλ  2Mλ  3Mλ  MLE  QL  GLλ  1Mλ  2Mλ  3Mλ  

α  0.0333 0.0281 0.0301 0.0287 0.0312 0.0282 1.000 1.0912 1.0424 0.6121 0.9352 0.3292 

β  0.1797 0.1502 0.1671 0.1655 0.1671 0.1611 1.000 0.9085 0.9831 0.5192 0.9811 0.3615 

γ  26.7312 25.5541 25.8127 24.8421 25.4523 24.6746 1.000 0.9010 0.8742 0.5320 0.9381 0.3510 
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 (a) Estimated Relative Efficiencies of QL and GL vs α for β = 0.5 using McGBB distribution 

 
(b) Estimated Relative Efficiencies of QL, GL M1, M2 and M3 α for β = 0.5 using McGBB distribution 

 

α  α   

 (c) Simulation: Estimated Relative Efficiencies of QL and GL vs β for α = 0.7 using McGBB distribution 

 

β  β  

(d) Simulation: Estimated Relative Efficiencies of QL, GL M1, M2 and M3 β for α = 0.7 using McGBB distribution 

 

 
Figure 1. Plot of relative efficiencies for various estimators relative to that of the MLE under McDonald Generalized Beta- 
Binomial model: for (a) relative efficiency comparison for α  varied when 0.5β =  for QL and GL procedures while (b) 
α  varied when 0.5β =  for simulated data for all procedures; for (c) relative efficiency comparison for β  varied when 

0.7α =  for QL and GL procedures while (d) β  varied when 0.7α =  for the simulated data for all procedures.            
 
using weekly (7 days) alcohol consumption survey data and simulated data for the survey of weekly alcohol 
consumption for a small time frame ( 7n =  days) along with estimates of the parameters of the maximum like-
lihood method. Estimated Relative efficiency of α  is ( ) ( )MLvar var tα α  where QLt = , GL , 1M , 2M , 

3M . In the situation where relative efficiency is greater than one, then the procedure with its efficiency as the 
denominator is preferred than the “gold standard” ML. Using the combination of ,  α β  and γ  parameters. 
We simulated 5000 samples from the MacDonald generalized Beta-Binomial distribution using the weekly al-
cohol consumption data. During simulation, all the parameters ,  α β  and γ  were estimated for all the six 
procedures including maximum likelihood and their efficiencies and subsequently their relative efficiencies for 
the six procedures. Figure 1: Maximum likelihood procedure relative efficiency comparison for (a) when we fix 

1γ =  and 0.5β =  then α  varied for GL and QL procedures, (b) α  varied when 0.5β =  for all proce-
dures. While (c) β  varied when 0.7α =  and fix 1γ =  for GL and QL procedures and (d) β  varied when 

0.5β =  for all procedures under simulated data.  
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7. Discussion 
From Table 2, Table 3 and Table 4 we see that the methods QL, GL and 2M  all consistently provide high ef-
ficiency (never below 0.83). Efficiency of parameters by the method GL is consistently the best. The good be-
haviour of the Gaussian likelihood estimator may be due to the fact that the Gaussian likelihood is a proper like-
lihood and the distribution of the data does not depend on a specific departure from the binomial distribution. 
Generally the estimates of parameters by all estimating functions methods have high efficiencies. In this paper 
we showed that the estimates obtained through small sample parameter estimates and efficiencies obtained dur-
ing data analysis are the best for GL followed by QL and then 2M  method (estimates based on the optimal 
quadratic estimating equations with the third and the fourth moments of the McGBB distribution) are consistent. 
The next best, at the cost of some loss of efficiency, are the 1M  and then 3M  seems to be the least method. 
Therefore, when data follow a McGBB distribution, these methods are expected to have high efficiency as 
compared to MLEs.  
 
Table 3. Relative efficiencies for various estimators for α  varied when 0.5β =  and 1γ =  for simulated data for all 
procedures.                                                                                             

α  varied 
Estimated relative efficiencies 

MLE  QL  GLλ  1Mλ  2Mλ  3Mλ  
0.0 1.000 0.980 0.950 0.591 0.933 0.454 

0.1 1.000 0.990 0.967 0.638 0.938 0.519 

0.2 1.000 0.998 0.985 0.490 0.859 0.586 

0.3 1.000 1.014 1.000 0.592 0.928 0.609 

0.4 1.000 1.052 1.053 0.617 1.247 0.425 

0.5 1.000 1.095 1.025 0.706 0.990 0.438 

0.6 1.000 1.148 1.135 0.669 1.552 0.411 

0.7 1.000 1.131 1.021 0.655 0.839 0.415 

0.8 1.000 1.035 1.010 0.592 0.982 0.298 

0.9 1.000 1.001 0.989 0.529 0.952 0.216 

1.0 1.000 0.998 0.993 0.389 0.941 0.201 

 
Table 4. Relative efficiencies for various estimators for β  varied when 0.7α =  and 1γ =  for simulated data for all 
procedures.                                                                                             

β  varied 
Estimated relative efficiencies 

MLE  QL  GLλ  1Mλ  2Mλ  3Mλ  
0.0 1.000 1.080 0.950 0.431 0.946 0.589 

0.1 1.000 1.109 0.997 0.488 0.908 0.429 

0.2 1.000 1.210 0.989 0.549 0.885 0.348 

0.3 1.000 1.214 1.130 0.627 0.941 0.411 

0.4 1.000 1.252 1.289 0.717 1.493 0.495 

0.5 1.000 1.35 1.325 0.796 0.898 0.517 

0.6 1.000 1.348 1.305 0.739 1.541 0.524 

0.7 1.000 1.343 1.216 0.715 0.953 0.459 

0.8 1.000 1.235 1.101 0.69 0.894 0.398 

0.9 1.000 1.191 0.995 0.652 0.958 0.306 

1.0 1.000 0.908 0.985 0.479 0.902 0.297 
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8. Conclusion 
The estimation functions are based on the knowledge of moments and one of the advantages of this approach is 
that it is robust to model misspecification. The comparison results in this paper indicate that the Estimating Equ-
ations are superior to MLE. The small relative efficiency for the estimates results also shows that estimates us-
ing optimal quadratic estimating functions of Crowder (1987) are highly efficient and are the best among all es-
timates investigated followed by Quasi-likelihood. Thus, we propose quadratic estimating function for estima-
tion of point parameters of any model inclusive of McDonald Generalized Beta-Binomial instead of MLEs since 
they are consistent and robust to variance misspecification. 
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