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Abstract 
Effects of many medical procedures appear after a time lag, when a significant change occurs in 
subjects’ failure rate. This paper focuses on the detection and estimation of such changes which is 
important for the evaluation and comparison of treatments and prediction of their effects. Unlike 
the classical change-point model, measurements may still be identically distributed, and the 
change point is a parameter of their common survival function. Some of the classical change-point 
detection techniques can still be used but the results are different. Contrary to the classical model, 
the maximum likelihood estimator of a change point appears consistent, even in presence of 
nuisance parameters. However, a more efficient procedure can be derived from Kaplan-Meier es-
timation of the survival function followed by the least-squares estimation of the change point. 
Strong consistency of these estimation schemes is proved. The finite-sample properties are ex-
amined by a Monte Carlo study. Proposed methods are applied to a recent clinical trial of the 
treatment program for strong drug dependence. 
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1. Introduction 
Change-point models studied in clinical research usually refer to changes in the failure rate. Many articles and 
clinical reports describe situations when after a certain survival period, the failure rate is expected to change due 
to the treatment or during the after-treatment recovery. Detection of such changes, their estimation, and their 
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comparison between different groups of patients (the treatment arm and the placebo arm is the classical example) 
is important understanding the treatment’s effect and for the evaluation of the treatment’s success. For example, 
during the zoster pain resolution trial [1], the treatment lightens pain from acute to subacute and then to chronic, 
resulting in three different failure rates. As another example, [2] describes analysis of the Physician’s Health 
Study for testing the effect of beta-carotene on cancer incidence. New tumors need time to become detectable 
while the treatment does not affect pre-existing tumors. Thus, there is an approximately two-year waiting period 
before the effect of the treatment is noticeable. Survival times in this example have a higher initial failure rate 
and a lower failure rate afterwards. Similar examples are found in [3]-[9]. 

Survival data with a change point are described by two models for the failure rate, namely, one model before 
the change point and the other model after the change point. When a subject passes the change point, the failure 
rate typically reduces, and the probability of the overall survival increases. 

This situation is conceptually and mathematically different from the classical change-point model, see e.g. 
[10]-[14], where observations follow one distribution before the change point and another distribution after it. In 
the described scenario, with one or several changes in the failure rate, all the subjects are assumed to have the 
same distribution. Each change point is understood as a parameter of this distribution that separates two patterns, 
two different models for the failure rate, and typically, it is the moment of a “clinically significant” reduction of 
the failure rate. 

Despite the fundamental deviation from the classical change-point model, we will show that classical methods 
for the standard change-point analysis can be to a certain extent applied to the survival data. Developing these 
methods, we can also account for the right censoring that is typical for survival data. 

The goal of this paper is to find efficient change-point detection methods for the piecewise constant failure 
rate models [5] [6] [8] [15] with unknown pre-change and post-change parameters. Maximum likelihood estima-
tion of the change point in presence of nuisance parameters is reviewed; it appears consistent under certain con-
ditions. A new alternative estimation procedure is proposed based on Kaplan-Meier estimation of the survival 
function [16] followed by the least-squares estimation of the change point. For this scheme, strong consistency 
of all the estimators is established. This is a rather constitutive distinction from the classical change-point mod-
els where consistent estimation of the change-point parameter is not possible. 

Developed methodologies are applied to the recent clinical trial of the treatment program for methampheta-
mine dependence conducted by Research Across America in Dallas TX [17]. Participants of this trial were cha-
racterized by strong addiction to methamphetamine, and the critical measure of efficacy was their time until re-
lapse. Proposed methods show significant change points in the survival function for both control and treatment 
groups although the change in the treatment group occurs earlier, about two weeks after receiving the treatment. 
In simple words, it appears that if a regular user of methamphetamine stays away from the drug for two weeks 
after starting the treatment program, the probability of relapse on any day thereafter reduces significantly. This 
finding has a rather significant clinical meaning. 

The rest of the paper is organized as follows. The failure rate change-point model is introduced in Section 2. 
In Section 3, we give a brief review of maximum likelihood estimate and its properties. We propose an alterna-
tive least square estimator, find its convergence rate, and prove its strong consistency in Section 4. In Section 5, 
we extend the strong consistency of the least square estimator to a more general model, Cox proportional hazard 
model with a change point. We compare the two estimation procedures by means of a simulation study in Sec-
tion 6. Section 7 shows application of these methods to the Prometa clinical trial. Conclusion is given in Section 
8. Proofs of theorems, lemmas, and corollaries are in the Appendix section. 

2. Survival Models with Change Points 
We assume a constant failure rate function ( ) 0xλ λ=  until an unknown time τ . Change occurs at time τ , 
and ( )xλ  shifts to a new value 1λ  and remains at it thereafter. Thus,  

( ) 0 1x xx τ τλ λ λ≤ >= +1 1                                  (1) 

where 0 10,  0λ λ> > , and τ  is the change point, the main parameter of interest. 
Consider a sample of n  independent subjects with the failure rate function ( )xλ . Let 0

iX  denote the 
survival time of subject i . Survival data are often subject to random right-censoring. If the survival time 0

iX  
is censored at time iC , the variable  
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{ }0min ,i i iX X C=  

is observed instead of 0
iX . In practical clinical studies, right-censored survival times are rather common due to 

the early termination of the observation period or due to patients’ withdrawals from the clinical trial. 
The indicator variable  

0

0

0

1 if  
0 if  >i i

i i
i X C

i i

X C
X C

δ
≤

 ≤= = 


1  

will show whether the i th survival time is censored. Then, we observe pairs ( ),i iX δ  for 1, 2, ,i n=  . Cen- 
soring variables iC  are assumed to be independent of 0

iX . Matthews (1982) and Worsley (1988) discuss the 
effect of random censorship. 

Throughout the paper, 0τ  denotes the true value of the change point; ( )τΛ  is the log-likelihood ratio given 
the occurrence of a change point at τ ; τ̂ , 0̂λ , and 1̂λ  are the maximum likelihood estimators of τ , 0λ , and 

1λ , respectively; and τ , 0λ , and 1λ  are the proposed least squares estimators of τ , 0λ , and 1λ , respec- 
tively. 

3. Maximum Likelihood Estimation 
Under model (1), the likelihood function of 1, , nX X  is  

( ) ( ) ( ){ }
( )( ) ( )( )0 1 0 10 0

1 0 1 0

0 1
1 0

, , , , exp d

                                 e e e 1 e ,i ii i
i i i i

i i

x
n

x xx x
x x x x

F x x x t t

λ τ λ τ λ τ λ τλ λ
τ τ τ τ

δ δ

λ λ τ λ λ

λ λ − − − − − −− −
≤ > ≤ >

= =

= −

= + × +

∫

∏ ∏



1 1 1
 

which yields the log-likelihood ratio  

( ) ( )( ) ( )( )( )1
1 0 0 1

0

log 1
i ii i x i i x i

i n i n
x x yτ τ

λ
τ δ τ λ λ δ τ λ λ

λ > >
≤ ≤

   Λ = − − − + − − − =  
   

∑ ∑1 1          (2) 

where  

( )( )

( )( )

1
0 1

0

0 1

log for  and  1

for  and  0
0 otherwise

i i i

i i i i

x x

y x x

λ
λ λ τ τ δ

λ
λ λ τ τ δ

 + − − < =
= − − < =




                   (3) 

When 0λ  and 1λ  are known, iy  is linear in τ , ( )τΛ  is linear between any two consecutively observed 
survival times, and thus, its maximum is attained at some observed survival time iX , which equals, say, the k
th ordered survival time, ( )kX . For all j k≤ , the value of ( )jy  corresponding to the order statistic ( )jX  is 0. 
Hence the maximum likelihood estimator for the change point τ  is  

( ) ( )ˆ
1

ˆ      ˆ ,   where arg max .
n

ik k i k
X k yτ

= +

= = ∑                            (4) 

When 0λ  and 1λ  are unknown, [18] shows that  

( ) ( ) ( ) ( ) ( ) ( ){ }1 1 2 2 1 1ˆ , , , ,..., , ,n nX X X X X Xτ − −∈ − − −  

where ( )ˆ nXτ = −  means that the maximum likelihood is attained as τ  approaches ( )rX  from below, and 
also proves that 0 1

ˆ ˆˆ,  ,  τ λ λ  are consistent. 
The effect of random censorship has been studied by many authors. [6] have suggested that moderate censor-

ship has little impact on the null distribution of the likelihood ratio, based on simulation results for type I cen-
soring. [15] have proved that the exact distributions of test statistics under the null hypothesis remain unchanged 
for type II censoring. For other forms of noninformative censoring [19] have shown that the asymptotic null dis-
tributions of likelihood ratio statistics in general remain unchanged.  
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4. Least Squares Method Based on Kaplan-Meier Estimation 
In this section, we introduce a different change-point estimation procedure which is based on Kaplan-Meier 
estimator of the survival function. Since the Kaplan-Meier method is nonparametric, the change-point estimation 
scheme proposed here can be easily extended to a wide variety of survival models with change points arising in 
clinical trials and other applications. 

Kaplan and Meier (1958) proposed a famous estimator for the survival function ( )S t :  

( )
( )

( )

.
1

j

j

n
x x

n jS x
n j

δ

≤

 −
=  − + 
∏                                  (5) 

This is a step function with jumps at observations iX  for which 1iδ = . It is a nonparametric estimator of 
the survival function, and it can be applied in presence of censoring. No assumptions are required for the 
probability distribution other than the independence between the survival and censoring variables. Kaplan-Meier 
estimator (5) has the following properties:  

1) It is the nonparametric maximum likelihood estimator of the true survival function ( )S x .  
2) It has an asymptotically normal distribution for any x  where ( )S x  is continuous.  
3) It converges almost surely to ( )S x  uniformly in x , and for each 0> , there exists 0c > , such that  

( ) ( )( ) e nc
nS x S x −− > ≤P   for sufficiently large n . Refer to [20] for details.  

4) If no censoring occurs or all variables are censored at the same time, then the Kaplan-Meier estimator 
reduces to the usual empirical distribution function.  

4.1. Least Squares Estimation and Strong Consistency 
Under the piecewise constant failure rate model (1) with a change point τ , the logarithm of the survival 
function at the time ix  is given as  

( ) ( ) ( )( )0 1 0 0 1, , log .
i ii i i x i xL S x x xτ ττ λ λ λ λ τ λ τ≤ >= = − − + −1 1  

Let ( )0 1, ,θ λ λ τ=  denote the vector of parameters. Its least squares estimator ( )0 1, ,θ τ λ λ=  

  consists of 
those values of τ , 0λ , and 1λ  that minimize the error sum of squares  

( ) ( ) ( )( )2

1
ESS ,

n

n i i
i

y x Lθ θ
=

= −∑                               (6) 

where  

( ) ( )
( )

( )log log .
1ij

n i n i j
x x

n jy x S x
n j

δ
≤

−
= =

− +∑

                          (7) 

Lemma 1. At θ θ=  , the error sum of squares components satisfy the strong law of large numbers; that is, 

( )1 ESS
n

θ  converges to 0 almost surely, as 0→n .  

The proof can be found in the Appendix. 

To prove the strong consistency of the vector of least squares estimators 0 1,  ,  τ λ λ 

 , we express ( )1 ESS
n

θ  in 

terms of the residual ( )n xα , 

( ) ( )( ) ( ) ( )( )

( )
( )( )

( )
( ) ( ) ( )( )

( ) ( )( )

2 2

0 0 1

2 2

0 0 0 1 0 1
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2
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τ τ

τ τ τ τ

τ τ τ

θ λ λ τ λ τ
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λ λ τ λ τ α

≤ >

≤ ≥
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= + + + + −

= − + + + − − − + + − +
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∑
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1 0
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= + + +
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 (8) 
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where  

( )
( )

( )
( ) ( )( )
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0 0
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0 1 0 1
max ,
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τ τ
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∑

∑
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
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 

 
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The uniform convergence of ( )n xα  and the strong law of large numbers in [21] imply directly that  
. .

0
a s

nA n→ ,                                      (9) 
. .

0
a s

nB n→ ,                                     (10) 
. .

0
a s

nC n→ ,                                     (11) 
. .

0
a s

nD n→ .                                     (12) 

Since we assume that there is indeed a change-point, it is reasonable to make the following assumption. 
Assumption (A): There exist known 0 m M< <  such that [ ]0 ,m Mτ ∈ . 
Assumption (A) is a classical assumption in the case when a change point is estimated in presence of nuisance 

parameters, and it ensures that samples of a sufficient size are used to estimate the nuisance parameters. 
Under Assumption (A), the least squares estimator τ  is defined as the minimizer of ( )ESS θ  over the 

given interval, therefore, [ ],m Mτ ∈ . 
Theorem 1. 0λ  is strongly consistent for 0λ  under Assumption (A).  
The proof can be found in the Appendix. 
Theorem 2. τ  is strongly consistent for τ  under Assumption (A).  
Proof. 1) We will prove ( ) 1τ τ τ τ→ ∩ > = P  in this part. 
We prove by contradiction. Suppose for any 0> , there exist 0δ >  and ( )N   such that  

( ) ( )    for all    .n Nτ τ ε τ τ δ− > ∩ > > > P                         (13) 

From Theorem 1 and (12), we get  

( ) ( )
. .2 2

0 1
1 0.

i

a s

i
X

x
n τ τ

τ λ λ
< ≤

− − →∑


                             (14) 

From (13), we have  

( ) ( )2 2

0i i
i i

X X
x x

τ τ τ
τ τ δ

< ≤ < − ≤

 
− > − > 

 
∑ ∑



P


 

for all ( )n N>  . 
Also,  

( ) ( )
. .2 2

0
0

1 0.
i

a s

i X
X

x X
n τ

τ
τ τ < − ≤

< − ≤

− → − >∑ E 1 


 

Hence, for sufficiently large n ,  

( ) ( ) ( )2 2 2
0

0

1 1 1 0 2,
2i i

i i X
X X

x x X
n n τ

τ τ τ
τ τ τ δ< − ≤

< ≤ < − ≤

 
− > − > − > > 

 
∑ ∑



P E 1 


 

which contradicts (14). 
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2) We will prove ( ) 1τ τ τ τ→ ∩ ≤ = P  in this part. 
We also prove this by contradiction. Suppose for any 0> , there exist 0δ >  and ( )N   such that  

( )τ τ τ τ δ− > ∩ ≤ > P                                 (15) 

for all ( )n N>  . 
Then  

( ) ( )2 21 1

i i
i i

X X
x x

n nτ τ τ τ
τ τ δ

< ≤ − < ≤

 
− > − + > 

 
∑ ∑



P


  

for all ( )n N>  . 
Also,  

( ) ( )
. .2 21 0.

i

a s

i X
X

x X
n τ τ

τ τ
τ τ − < ≤

− < ≤

− + → − + >∑ E 1 


   

Hence,  

( )21 0     for    .
i

i
X

x n
n τ τ

τ δ
< ≤

 
− > > →∞ 

 
∑P



  

From (11) and Theorem 1, we can get  

( )1 0     for    .nλ λ δ→ > →∞P   

Hence  

( ) ( )( )2
0 1 0

1

1 1ESS 0 ,
n

i i
i

x x
n n

θ λ τ λ τ λ δ
=

 − − − − + → > 
 

∑P  

whereas  

( )( ) ( ) ( )

( ) ( )

2 2 2
0 1 0 0 1

1 1
. . 2 2

0 1

1 1

                                                  0.

n n

i i i
i i

a s

X

x x x
n n

x τ

λ τ λ τ λ τ λ λ

λ λ τ

= =

>

− − − + = − +

→ + − >

∑ ∑

E 1

 

Hence  

( ) ( )( )2
0 1 0

1 1ESS 0 2
2 i ix x

n n
θ λ τ λ τ λ δ > − − − + > > 

 
∑P  

for sufficiently large n , which contradicts Theorem 1. 
Combining 1) and 2) gives  

( ) 1τ τ→ =P .                                     □ 

Theorem 3. 1λ  is strongly consistent for 1λ  under Assumption (A).  
The proof can be found in the Appendix.  

4.2. Convergence Rate of the Least Squares Estimator 
Now let us investigate the convergence rate of τ  for known 0λ  and 1λ . We will analyze the probability that 

( )ESS τ  is less than ( )0ESS τ  for τ  outside of the  -neighborhood of 0τ , where 0τ  is the true value of 
the change point. 

Theorem 4. For any 0> , there exists 0c > , such that  

( ) ( ){ }
0

0
:

ESS ESS 0 e nc

τ τ τ ε
τ τ −

− >

 
− < ≤  

 


P  

for sufficiently large n . 
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The proof can be found in the Appendix. 
Corollary 1. The change-point estimator τ  is strongly consistent; 0τ τ→  almost surely as n →∞ . In 

particular, for any 0> , there exists 0c >  such that  

( )0 e ncτ τ −− > ≤P   

for sufficiently large n . 
Proof. According to Theorem 4, for any arbitrary sequence 0j > , 0j ↓  as j ↑ ∞ , there exists ( ) 0jc >  

such that ( ) ( )e jnc
n jP α −
≥ ≤

 . Hence  

( ) ( ){ } ( )
( )

( )
0

0
1 1:

eESS ESS 0 e .
1 e

j
j

j
j

c
nc

c
n nτ τ τ

τ τ
−∞ ∞ −

−
= =− >

 
− < ≤ = < ∞   − 

∑ ∑P








 

Since the sum of probabilities converges, by the Borel-Cantelli lemma, with probability one,  
( ) ( )0ESS ESSτ τ−  for all 0:τ τ τ−  for sufficiently large n . Therefore, τ , the minimizer of ( )ESS τ , 

belongs to the j -neighborhood of 0τ  almost surely and all sufficiently large n . 
It remains to let j  go to zero over a countable set (e.g., 1j j= ). For each j , we obtain that 0 jτ τ− ≤   

almost surely. Therefore, 0τ τ→  a.s., as n →∞ . 

5. Least Squares Method for the Cox Proportional Hazard Model with a Change 
Point 

Generalizing the previous results, in this section we develop change-point estimation techniques for a more 
general model, Cox proportional hazard model with a change point. Under this model, the hazard rate function 
has the form,  

( ) ( ) ( ) ( ) ( )0 0 1 1 >exp expx xh x Z h x Z h x Zτ τβ β≤′ ′= +1 1                     (16) 

where Z  is a vector of covariates ( )1, , kz z , 0 1,  β β′ ′  are vectors of coefficients, and ( ) ( )0 1,  h x h x  are 
baseline hazard rates. Clearly, a model with covariates allows to study effects of numerical and categorical 
factors on the occurrence of a change point and to compare change points between subpopulations. 

It is well known that Cox proportional hazard model is semiparametric. Indeed, it puts no assumptions on the 
form of baseline hazard rates ( )0h x  and ( )1h x  (nonparametric part of model) but assumes a parametric form 
of the effect of covariates on the hazard. 

Introduce the following notations: 
• ( ) ( ) ( )0 0 0expx Z h x Zλ β ′=  is the hazard function before the change point;  
• ( ) ( ) ( )1 1 1expx Z h x Zλ β ′=  is the hazard function after the change point;  

• ( )1, , nF x x Z  is the joint likelihood function under model (16);  
• ( )ZτΛ  is log-likelihood ratio under model (16);  

• ( )S x Z  is survival function under model (16);  
• ( )0 1, ,τ β βΘ =  is the unknown parameter vector;  
• Θ  is the least squares estimator of Θ  which, similarly to Section 4.1, minimizes the error sum of squares 

based on the differences between the log-survival functions obtained from model (16) and from the Kaplan- 
Meier estimator (5).  

Under model (16), the survival function is expressed as  

( ) ( )( ) ( ) ( )( )0 0 10 0
exp d exp d d ,

x x
x xS x Z s Z s s Z s s Z s

τ
τ ττ

λ λ λ≤ >= − + − −∫ ∫ ∫1 1  

so that  

( ) ( ) ( )( ) ( ) ( )( )0 0 10 0
log d d d .i i

i i

x x
i i x xL Z S x Z s Z s s Z s s Z s

τ
τ ττ

τ λ λ λ≤ >= = − − +∫ ∫ ∫1 1  

The least squares estimator ( )0 1, ,τ β βΘ =  

  of the change point 0τ  and slopes 0β  and 1β  is then defined 
as the minimizer  

( )arg min ESS Z
Θ

Θ = Θ  
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of the error sum of squares  

( ) ( ) ( )( )2

1
ESS ,

n

n i i
i

Z y x L Zτ
=

Θ = −∑                             (17) 

where components ( )n iy x  are defined in (7). 

Strong Consistency and Convergence Rate of the Least Squares Estimator 
Extention of the results of Section 4 on the strong consistency of the change point estimator and estimators of 
the nuisance parameters to Cox proportional hazard model is straightforward. Indeed, the uniform strong 
consistency of the Kaplan-Meier estimator holds for any type of the underlying distribution of survival times. 
Therefore, the error sum of squares can be split into four parts as in (8), with almost sure convergence holding 
for each part. 

Along the same lines as in the constant hazard rate model, we obtain the following results. 
Lemma 2. At Θ = Θ , components of the error sum of squares (17) satisfy the strong law of large numbers; 

that is, ( )1 ESS Z
n

Θ  converges almost surely to 0 as 0n → .  

Theorem 5. With known 0β  and 1β , the change-point estimator τ  is strongly consistent. It converges to 
the true change point 0τ  at the same rate as in the constant hazard rate model; i.e., for any 0> ,  

( )0 e ncτ τ −− > ≤P   

for some 0c >  and all sufficiently large n. 
Proof. The proof is similar to the proof of Theorem 4.5 and Corollary 4.6 of Section 4.2.                □ 
The following results show that the strong consistency of τ  holds even without the assumption of known 

slopes 0β  and 1β . 
Theorem 6. The estimated slopes 0β  and 1β  are strongly consistent for 0β  and 1β  under Assumption 

(A).  
Theorem 7. Under unknown slope parameters 0β  and 1β , the change-point estimator τ  is strongly 

consistent under Assumption (A). 
Strong consistency of τ  and iβ  in presence of nuisance parameters is proved by the techniques developed 

in Section 4.1 and essentially along the same lines. For details, see [22], chapter 5.  

6. Comparison of Estimators 
In classical cases, under the usual regularity assumptions, the maximum likelihood estimator is asymptotically 
the uniformly minimum variance unbiased estimator. Change-point models violate the regularity conditions 
because of the discontinuity of the likelihood function at the change-point parameter. As a result, the maximum 
likelihood estimator may no longer be optimal. In this section, we compare the maximum likelihood estimator 
and the least squares estimator by means of the following Monte Carlo simulation study. 

Generating samples from model (1) is quite simple. We generate an ( )0Exp λ  sample, and for those vari- 
ables that exceed 0τ , replace the generated variable with ( )0 1Expτ λ+ . The memoryless property of Exponen- 
tial distribution ensures that the resulting variable has the distribution according to (1). 

Samples are generated with the change point 0 5τ = , censoring time 20t = , and failure rates ( )0 1,λ λ  taken 
to be ( ) ( )0.2,0.15 ,  0.25,0.15 , and ( )0.3,0.1 . Clearly, it should be easier to detect the change point if the 
difference between 0λ  and 1λ  is larger. Samples sizes from 100 to 300 are considered each with 1000 Monte 
Carlo runs. An example of ESS, a piecewise polynomial function, is depicted in Figure 1. 

Table 1 lists the estimates of 0τ , 0λ , and 1λ  for different sample size and different actual failure rates. 
Table 2 lists the mean square errors for estimates of 0τ , 0λ , and 1λ . These estimates and mean square errors 
lead to the following conclusions: 

1) Both MLE and LSE of 0τ , 0λ , and 1λ  converge to the true change point and hazard rates as the sample 
size increases. 

2) Both MLE and LSE become more accurate when the difference between 0λ  and 1λ  is increased, holding 
the sample size constant. 
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Figure 1. Error sum of squares and the least squares estimator of the change-point.                 

 
Table 1. Estimates of 0τ , 0λ , and 1λ  from simulated data.                                                      

0λ  1λ  Sample size 
MLE LSE 

0τ  0λ  1λ  0τ  0λ  1λ  

0.3 0.1 100 2.8 0.33 0.150 3.925 0.239 0.159 

  200 2.701 0.315 0.156 5.117 0.233 0.157 

  300 2.979 0.312 0.147 5.917 0.222 0.155 

0.25 0.15 100 2.809 0.271 0.173 3.860 0.234 0.188 

  200 2.93 0.263 0.176 3.808 0.254 0.184 

  300 3.146 0.262 0.171 4.232 0.251 0.182 

0.2 0.15 100 3.44 0.208 0.161 4.136 0.212 0.169 

  200 3.403 0.208 0.159 4.72 0.225 0.166 

  300 3.261 0.208 0.158 5.111 0.242 0.164 

 
Table 2. Mean squared errors of estimates of 0τ , 0λ , and 1λ .                                                    

0λ  1λ  Sample size 
MSE for MLE MSE for LSE 

0τ  0λ  1λ  0τ  0λ  1λ  

0.3 0.1 100 10.005 0.112 0.025 15.919 0.059 0.026 
  200 7.98 0.101 0.025 29.864 0.059 0.025 
  300 9.7615 0.098 0.022 38.455 0.055 0.024 

0.25 0.15 100 10.239 0.076 0.031 16.177 0.057 0.036 
  200 9.549 0.07 0.032 20.361 0.077 0.034 
  300 11.238 0.069 0.03 25.67 0.071 0.033 

0.2 0.15 100 12.609 0.044 0.028 19.848 0.055 0.03 
  200 12.799 0.044 0.026 29.5 0.064 0.028 
  300 12.161 0.044 0.025 34.978 0.038 0.027 
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3) The LSE of 0τ  has a lower bias than the MLE for the same sample size and the same failure rates. The 
mean squared error of the LSE of 0τ  is larger than that of the MLE, for the same sample size and same failure 
rates, however, the hazard rates are estimated by the LSE method with the same or lower mean square error. 

7. Example: Prometa Clinical Trial 
In this section, we apply both the maximum likelihood method and the least squares method to a recent clinical 
trial for treating methamphetamine-dependent patients conducted by Research Across America, an outpatient 
clinical research center in Dallas, Texas [17]. 

Fifty patients participated in an open-label study over the time frame of 84 days. In this study, all of the 
participants were long-term users of methamphetamine. After the screening visit on day 0, patients received five 
infusions during the first three weeks and conducted 14 follow-up visits. 

Later, a double-blind, placebo-controlled study was conducted to better evaluate the effect of treatment. In the 
double-blind study, neither the participants nor the clinicians knew which patients belong to which treatment 
arm. The reason for blinding and placebo controls is to determine (as much as possible) whether the effects 
observed in the study are due to the treatment itself and not other factors. For each participant, the survival time 
is the time to relapse, which is the duration of time without the use of drugs. 

Our goal here is to detect the after-treatment effect of Prometa, which results in a significant reduction of 
failure rate some time after the first three infusions. We detect such changes with both the maximum likelihood 
method and the least squares method. Results are listed in Table 3 and Table 4. 

First, we estimate the change point for the 50-subject open-label study. 
1) Using the maximum likelihood method, day 13 maximizes the log-likelihood ratio in Figure 2, left. The 

likelihood ratio test provides a p-value of 111.5067 10−× , which is low enough to reject the null hypothesis 
“there is no change point”. On the day of the change, the failure rate drops from 0.1402 to 0.0105. Thus, we 
conclude that the failure rate after taking the drugs reduces significantly from 0.1402 to 0.0105 if the patients do 
not use drugs for 13 days following the treatment. 

2) Using the least squares method, the estimate for change point is 14.2373 and the failure rate drops from 
0.1281 to 0.0142, which are very close to the results from maximum likelihood estimate. The graph of error sum 
of squares is in Figure 2, right. 

Change points for the female and male groups are compared to see whether occurrence of a change point 
depends on gender. 

1) Using the method of maximum likelihood, the estimated change points for males and females are 8 and 17 
from Figure 3, left. However, the likelihood ratio test fails to detect a significant difference between the genders 
with the p-value of 0.3203, i.e., there is no evidence that there are any significantly different change points for 
males and females. The failure rate reduces from 0.1649 to 0.0201 for males and from 0.1387 to practically 0 for 
females. 

2) Using the least squares method, the change-point estimator for males is about day 14 and the failure rate 
reduces from 0.1494 to almost 0, while the change-point estimator for females is 13 and the failure rate reduces 
from 0.1495 to almost 0. We can see that there is almost no difference between male group and female group in 
change-point estimators from graph 3, right. 
 
Table 3. Estimates of 0 1,  ,  τ λ λ  for open-label study.                                                           

 
Open-label study Male group Female group 

τ  0λ  1λ  τ  
0λ  1λ  τ  

0λ  1λ  
MLE 13 0.1402 0.0105 8 0.1649 0.0201 17 0.1387 0 
LSE 14.2 0.1281 0.0142 14 0.1494 0 13 0.1495 0 

 
Table 4. Estimates of 0 1,  ,  τ λ λ  for two-armed double-blind study.                                                

 
Prometa group Placebo group 

τ  
0λ  1λ  τ  

0λ  1λ  
MLE 13 0.0781 0.0139 18 0.1145 0.0532 
LSE 17 0.0720 0 14 0.1255 0.0016 
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Finally, we estimated the change points for the randomized double-blind placebo-controlled study. Change 
points are estimated separately for the active treatment group and for the placebo group. 

1) The graph of log-likelihood ratios is in Figure 4, left. The estimated change point for the treatment group is 
13, and the failure rate reduces from 0.0781 to 0.0139. For the placebo group, the change-point estimate is 18, 
and the failure rate reduces from 0.1145 to 0.0532. The likelihood ratio test shows that these two groups have 
significantly different change points with p-value 0.0098. 

2) With the least squares method, the change-point estimator for the treatment group is around day 17 and the 
failure rate reduces from 0.0720 to almost 0, while the change-point estimator for Placebo is around 14 and the 
failure rate reduces from 0.1255 to 0.0016. The graph for error sum of squares is in 4, right. 
 

 
Figure 2. Least squares estimate of change-point for open-label study.                                              
 

 
Figure 3. Least squares estimate of change-point for female and male groups.                                        
 

 
Figure 4. Least squares estimate of change-point for Prometa and Placebo groups.                                     
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As a result, besides statistical significance, existence of change-points in the survival curves for both treat-
ment groups has an important clinical significance. It shows a drop in the risk of relapse after a certain period of 
abstinence. Although the MLE and LSE methods slightly disagree on the exact location of change-points in the 
two treatment groups, both methods show that the after-change failure rate is significantly lower for the active 
treatment groups. Essentially, a patient has to abstain from methamphetamine for two weeks after receiving the 
treatment, and then the failure rate reduces significantly. 

8. Conclusion 
Detection of change-points in survival curves and estimation of their location finds important application in 
clinical research. This problem is conceptually different from the standard change-point analysis, where the 
distribution of data changes at unknown times. Nevertheless, similar statistical techniques can be used. The 
maximum likelihood approach yields a tractable change-point estimator, however, a more efficient procedure 
can be obtained by the Kaplan-Meier estimator of the survival function coupled with the method of least squares. 
Unlike the standard change-point problems, here both methods result in strongly consistent estimators. 
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Appendix 
Proof of Lemma 1 
Proof. Express ( )ny x  in the following form, 

( ) ( ) ( ) ( )( ) ( )0 0 1log .n n x x ny x S x x x x xτ τα λ λ τ λ τ α≤ >= + = − − + − + 1 1  

Define ( )supn nx xα α= . According to the mentioned uniform convergence of the Kaplan-Meier estimator 
of the survival function,  

. .
0

a s

nα →  

and for any 0> , there exists 0c >  such that ( ) e nc
nα

−> ≤P  . Hence  

( )
. .

2 2

1 1

1 1 1ESS 0.
n n a s

in n
i in n n

θ α α
= =

= ≤ →∑ ∑  

Since θ  minimizes ( )ESS θ , we always have  

( ) ( )0  ESS ESSθ θ≤ ≤  

Hence 

( )
. .1 ESS 0.

a s

n
θ →  

Proof of Theorem 1 
Proof. From (9), we have  

( )
( )

. .2 2
0 0

min ,

1 0.
i

a s

i
X

x
n τ τ

λ λ
≤

− →∑


  

On the other hand,  

( )

. .
2 2 2

min ,

1 1 0.
i i

a s

i i X m
X X m

x x X
n nτ τ

≤
≤ ≤

≥ → >∑ ∑


E 1  

Hence we have 
. .

0 0

a s
λ λ→ .  

Proof of Theorem 3 
Proof. From Theorems 1, 2, and (10), we obtain  

( )
( ) ( )

. .22
1 1

max ,

1 0.
i

a s

i
x

x
n τ τ

τ λ λ
>

− − →∑


  

On the other hand,  

( )
( ) ( ) ( )

. .2 2 2

max ,

1 1 0.
i i

a s

i i X M
x x M

x x X
n nτ τ

τ τ τ >
> >

− ≥ − → − >∑ ∑


E 1  

Hence 
. .

1 1

a s
λ λ→ .  

Proof of Theorem 4  
Proof. First, express ( )ESS τ  and ( )0ESS τ  in terms of the residual nα . From (8),  

( ) ( )( )2
0

1
ESS

n

n i
i

xτ α
=

= ∑  
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and  

( )
( )

( )( )
( )

( )( ) ( )( ) ( )( ) ( )( )
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0 0 0
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0 0 1 0 1
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                     .

i i i
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+ − − +
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Let 1N  be the number of ( )0max ,ix τ τ≥ , and 2N  be the number of 0ixτ τ< ≤ . For any 0>  we have 
the following inequality,  
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and the theorem is proved.  
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