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Abstract 
The quality of coatings, produced by thermal spraying processes, considerably decreases with the 
occurrence of higher residual stresses, which are especially pronounced for complex workpiece 
geometries. To understand the occurring effects and to aid in the planning of coating processes, 
simulations of the highly transient energy flux of the HVOF spray gun into the substrate are of 
great value. In this article, a software framework for the simulation of nonlinear heat transfer 
during (HVOF) thermal spraying is presented. One part of this framework employs an efficient 
GPU-based simulation algorithm to compute the time-dependent input boundary conditions for a 
spray gun that moves along a complex workpiece of arbitrary shape. The other part employs a fi-
nite-element model for a rigid heat conductor adhering to the computed boundary conditions. The 
model is derived from the fundamental equations of continuum thermodynamics where nonlinear 
temperature-depending heat conduction is assumed. 
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1. Introduction 
Thermal spraying is a cost-efficient coating technique for the production of wear-resistant surfaces consisting of 
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various materials tailored to particular applications. For the coating of forming tools, e.g., hard material coatings 
of tungsten carbide (WC) and cobalt (Co) are used, [1], because of their superior wear-resistance compared to 
chrome (Cr) and nickel (Ni) coatings, [2]. As a disadvantage, the High Velocity Oxygen Fuel (HVOF) thermal 
spraying process induces a large amount of energy into the heterogeneous coating and the substrate which leads 
to a complex transient thermo-mechanical problem, as illustrated in Figure 1. For an overview about HVOF 
thermal spraying, the reader is referred to, e.g., [3] [4]. While thermal-spraying of planar work pieces delivers 
coatings of quite satisfying quality, the quality considerably decreases with the rising degree of complexity of 
the work pieces’ geometry, for instance due to radii or curvatures. Experimental analyses suggest significant 
temperature exaltations in the substrate in dependence of the component geometry, whereby the coating quality 
decreases due to residual stresses during the cooling process. Thus, for the computer aided planning of thermal 
spray processes, the ability to predict the temperature development for a given workpiece is of high value. 

This article presents a simulation framework for the computation of the temperature development for a given 
workpiece during the thermal spraying process. Therein the “outer” part of the framework handles the time 
stepping process, the spray gun movement and computes the time-dependent input boundary conditions for the 
“inner” simulation module, which evaluates a thermodynamically consistent transient and nonlinear heat con-
duction formulation for a rigid heat conductor based on the governing equations of continuum thermodynamics, 
as introduced by Coleman and Noll [5]. 

For complex workpieces the setup of the input boundary conditions is a computationally expensive procedure 
by itself, since the (non-ambient) load distribution on the workpiece surface due to thermal radiation is not lo-
cally restricted and may affect a large fraction of the workpiece. The computation of the affected parts consti-
tutes a computationally expensive visibility problem. For this, a novel approach is presented, which makes use 
of an elegant GPU-acceleration technique and is in fact an adaption of a method developed earlier in the context 
of mass deposition simulation [6]. This two-level simulation approach enables the highly detailed thermody-
namic model, which is specifically adjusted to the HVOF spraying process, to be efficiently applied even to 
larger workpieces such as forming tools in the automotive industry or complex geometries like turbine blades. 
Another contribution of this work is the “inner” finite element simulation module including a multi-threaded 
C++ based implementation which uses the solver library Eigen.  

The following two sections describe the fundamental equations of continuum thermodynamics for a rigid heat 
conductor and the resulting finite element discretisation. Section 4 outlines the functionality of the robot guided 
spray simulation, [6], and provides important details regarding the GPU-accelerated computation of the input 
boundary conditions. Section 5 presents a demonstration of the software tool for the simulation of a real work 
piece. The material parameters of the underlying constitutive relations—the heat capacity c  as well as the heat 
conduction coefficient λ —are represented by suitable functions which are fitted to experimental data.  
 

 
Figure 1. Photograph of the HVOF spraying process, kindly pro-
vided by LWT, TU Dortmund.                                 
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2. Continuum Thermodynamics 
The governing well-established equations of continuum thermodynamics for a rigid heat conductor are illustrated 
in the following section. The fundamental balance equation for a rigid heat conductor is the balance of energy, 
here in local form,  

,e qρ +∇ ⋅ =X q                                     (1) 

wherein e  denotes the rate of the internal energy, q  denotes the heat flux vector and q  denotes the external 
heat supply, while ρ  represents the material density, [5]. The balance of energy equation represents the first 
law of thermodynamics. By assuming the entropy flux to be proportional to the heat flux, as proposed by 
Coleman and Noll [5], the general entropy inequality results in the so called Clausius-Duhem inequality  

0.qρη
θ θ

+∇ ⋅ − ≥X
q

                                  (2) 

In the above inequality, η  is the rate of the entropy and θ  is the absolute temperature. The Clausius- 
Duhem inequality represents the second law of thermodynamics. A Legendre transform of the internal energy ( )e η  
results in the free energy density ( ) eψ θ θη= −  so that η ψ θ= −∂ ∂  and subsequently e ψ θ ψ θ= − ∂ ∂ . 
Following Liu [7] and references cited therein, the only remaining part of inequality (2) is the thermal dissi- 
pation therm 0θ θ= − ⋅∇ ≥Xq , also referred to as Fourier’s inequality which is fulfilled if the heat flux points 
from a hot spot to a cold spot. To maintain generality, the specific heat is introduced temperature-dependent, i.e. 
( ) ( ) ( )2 2c eθ θ θ ψ θ= ∂ ∂ = − ∂ ∂ . The energy balance (1) is now restated in the strong form of the temperature 

field equation valid for a general rigid heat conductor,  

( ) .c qρ θ θ +∇ ⋅ =X q                                  (3) 

This equation is to be solved within a general thermodynamical initial boundary value problem. For this pur- 
pose, the boundary ∂  of the body   is decomposed into three disjoint parts, i.e., D N R∂ ∂ ∂ = ∂      
with D N∂ ∂ = ∅  , D R∂ ∂ = ∅   and N R∂ ∂ = ∅  . On D∂  Dirichlet boundary conditions are 
prescribed for the temperature θ , whereas Neumann and Robin boundary conditions are prescribed for the heat 
flux q  on N∂  respectively R∂ :  

( )D N N R Ron , on , on .q qθ θ θ= ∂ − ⋅ = ∂ − ⋅ = ∂q n q n                 (4) 

Fourier’s law of heat conduction is applied throughout this work. For a review on non-Fourier heat 
conduction the reader is referred to other recent works, e.g., the works of Atefi and Talaee [8] [9]. 

3. Finite Element Discretisation 
The different representations of the energy balance equation derived above are given in strong form. To 
calculate a solution for the desired field of the temperature by means of the finite element method in the context 
of inhomogeneous initial boundary value problems, the temperature-based balance of energy has to be 
reformulated in weak form. Therefore, we transfer Equation (3) to a residual form,  

( ); 0,z c qω θ ω ρ θ = +∇ ⋅ − = X q                            (5) 

where ω  is a scalar-valued test function, see [10] for detailed background information. This relation also holds 
under integration over the volume of a body  ,  

( ); d 0.Z c q Vω θ ω ρ θ = +∇ ⋅ − = ∫ X q


                        (6) 

The divergence of the heat flux in Equation (6) can be reformulated by the application of Gauß’s theorem and 
integration by parts,  

d d d d 0.c V q V V Aωρ θ ω ω ω
∂

− − ∇ ⋅ + ⋅ =∫ ∫ ∫ ∫X q q n

   
                    (7) 

Here, n  denotes the outward unit vector on the boundary of the body  . By interpreting the test function 
ω  as the virtual temperature δθ , which is 0 at Dirichlet boundaries D∂ , Equation (7) represents the virtual 
temperature problem and can be written in terms of dynamic, volume, internal and surface terms  
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( ) dyn vol int sur; 0 ,g w w w wδθ θ δθ= − − + = ∀                       (8) 

which, in turn, are defined by  

dyn vol int surd , d , d , d .w c V w q V w V w Aδθ ρ θ δθ δθ δθ= = = ∇ ⋅ = ⋅∫ ∫ ∫ ∫X q q n

   
      (9) 

Equation (8) is the weak form of the initial boundary value problem of a rigid heat conductor which now has 
to be discretised in time and space, following the procedure outlined, e.g., in [11] or Kuhl et al. [12]. For time 
discretisation, a differential-quotient-based Backward Euler integration scheme is applied [13],  

[ ] [ ] [ ]1 ,n n

t t
+

• − •∂ •
≈

∂ ∆
                                (10) 

where [ ]•  symbolises an arbitrary quantity of interest and t∆  denotes the time increment 1n nt t+ − . Subscript 
1n +  denotes a quantity at the actual time step 1nt + , whereas subscript n  denotes a quantity at the previous 

time step nt . Application of Equation (10) to the temperature θ  results in  

1 .n n

t
θ θ

θ + −
=

∆
                                    (11) 

In addition to the Backward Euler method applied in this work, recent works which address thermal problems 
use the Crank-Nicolson method [14] or energy-momentum consistent schemes in the context of thermo- 
elastodynamics [15]. At time 1nt + , Equation (11) leads to the relation  

( )1 dyn vol int sur; 0 ,ng w w w wδθ θ δθ+ = − − + = ∀                       (12) 

for the unknown temperature 1nθ + . In view of the discretisation in space, it has to be taken into account that 
Robin boundary conditions require additional effort, since they represent one type of temperature dependent 
loads. For a review on the implementation and algorithmic treatment of deformation dependent loads, the reader 
is referred to the textbook by Bonet and Wood [16] and references cited therein. For that purpose, on the one 
hand the body   is approximated by a finite number of eln  volume elements e

  and, on the other hand, 
the Robin boundary R∂  of the body   is approximated by eln∂  surface elements e

∂ , i.e.  

R R

1 1
, .

el eln n
h e h e

e e

∂

∂
= =

≈ = ∂ ≈ ∂ =
 

 

                                (13) 

Following the spirit of the isoparametric concept, the geometry of the body, in terms of position vectors X , 
as well as the temperature of the body θ  and the virtual temperature δθ  are interpolated element-wise by 
shape functions ,

iNX   respectively ,
iN ∂X   and discrete node point positions iX  of 1, , eni n= 

  
respectively 1, , eni n∂= 

  element nodes, i.e.  
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                   (14) 

Hence, the gradients ∇X X , θ∇X  and δθ∇X  are approximated as  

, ,
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The insertion of the approximations given by Equations (14) and (15) into Equation (12) leads to the fully 
discretised balance of energy in terms of the unknown temperature 1nθ +   

( )1 dyn vol int sur 0,h h
I n I I I Ir f f f fθ + = − − + =                           (16) 

where the discrete inertia, volume, internal and surface fluxes are expressed by  
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                     (17) 

In the above equations, A  represents the assembly operator over all 1, , ele n= 

  volume element 
contributions and all 1, , ele n∂= 

  surface element contributions at 1, , eni n= 

  respectively 1, , eni n∂= 

  
element nodes to the global node points 1, , npI n= 

. Note, that q  and Nq  are assumed to be temperature- 
independent throughout this work. With the definitions in Equation (17), Equation (16) represents the discretised 
nonlinear temperature field equation. The solution is performed by an incremental Newton-Raphson scheme, see 
[17] for detailed background information in the context of the finite element method. For that purpose, the 
Jacobian of the residual with respect to the temperature θ  has to be determined. Therefore, the iterative 
scheme can be expressed as  

, 1 ,
, 1 , 1 d 1, , ,h k h k

I n I n I npr r r I n+
+ += + ∀ =                             (18) 

wherein d Ir  is approximated by the linear term of a Taylor series expansion,  

1
d d 1, , .

npn

I IJ J np
J

r K I nθ
=

= ∀ =∑                              (19) 

The derivative IJ I JK r θ= ∂ ∂  is assembled to the global tangent operator  
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∫ ∫
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 

 

 

    

A

A A
        (20) 

The first term represents the dynamic contribution and therefore characterises the time-dependency of the 
problem, whereas the second term corresponds to the internal heat flux where the constitutive relation for the 
heat flux q  still has to be defined. The third term reflects the surface element contribution by Robin boundary 
conditions ( )Rq θ . 

4. Implementation 
Two aspects are vital for the computer aided planning of thermal spray processes: the prediction of the coating 
thickness distribution on the surface of a workpiece and the prediction of the temperatures reached in the 
workpiece during the process. For the simulation of the coating thickness, an efficient GPU-accelerated, C++ 
based simulation was developed in [6]. In the present work, this framework is modified so as to compute a time 
dependent temperature distribution ∞θ  on the surface of the discretised workpiece mesh which serves as an 
input for the finite element framework developed in the previous section. In order to model the energy input of 
the unloaded flame of the spray gun into the workpiece, the surface heat flux is assumed to be applied by 
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convection and radiation. An unloaded flame means that the problem at hand is restricted to heat transfer only 
without accounting for mass transport phenomena. One simple approach to mathematically cover the convective 
heat contribution is the introduction of a so-called film condition  

,c cq h θ θ ∞ = − −                                   (21) 

wherein ch  denotes the convective heat transfer coefficient which is assumed to be a constant, and where θ ∞  
denotes the environmental temperature which either represents the HVOF spray gun or the room temperature. It 
should be noted that ch  represents a rather complex fluid mechanical process, not captured by the finite 
element approach as this work proceeds. The heat radiation is modelled by  

2 2with ,r r rq α θ θ α εσ θ θ θ θ∞ ∞ ∞    = − − = + −                     (22) 

where ε  is the emissivity and σ  represents the Stefan-Boltzmann constant, cf. Comini et al. [18]. Both, cq  
and rq , are Robin boundary conditions in manner of Equation (4), i.e. ( ) ( ) ( )R

c rq q qθ θ θ= + . For 
implementation, the heat capacity is specified by a cubic polynomial  

( ) 2 3
0 1 2 3 .c a a a aθ θ θ θ= + + +                             (23) 

To guarantee thermal stability as discussed above, it has to be ensured that ( ) 0c θ >  holds for arbitrary 
(positive) values of the absolute temperature θ . Furthermore, the heat conduction is modelled by Fourier’s law  

( ) ,θ θ= − ⋅∇Xq k                                    (24) 

where ( )θk  has to be positive semi-definite for any θ , see e.g. [7], and is thus represented by  

( ) ( ) ( )
2

4
,2

0 ,1
1 ,3

with exp ,i
i

i i

b
b b

b
θ

θ λ θ λ θ
=

  − = = + −      
∑k I                (25) 

where I  characterises the second order identity tensor and where ( ) 0λ θ >  is the heat conduction coefficient. 
The assumption of ( )θk  being proportional to I  leads to an isotropic heat conduction model. The nonlinear 
heat conduction model specified via Equations (21)-(25) is implemented in C++ as part of the already mentioned 
simulation framework. The remaining part of this section describes the computation of the film condition 
parameters iθ

∞  for all boundary triangles of the tetrahedron volume mesh representing the workpiece. 
Apart from the triangulated workpiece mesh, the simulation approach takes a robot guided spray gun 

movement path as an input, which is represented as a sequence of 3-tuples { }, ,i i i it=p x q  for 1, ,i n=   
discrete robot path positions. Therein ix  is the spray gun position in global coordinates and iq  is a quaternion 
describing the orientation of the spray gun at time it . For detailed background information on quaternions the 
reader is referred to Argyris [19], Betsch et al. [20], Altmann [21] and the references cited therein. 

During the simulation a virtual spray gun is moved along the given path in discrete time steps t∆ , where 
positions are interpolated linearly and where quaternion slerp interpolation is used for the orientations [22]. For 
every gun position ip  the following computations, where steps 1-3 are entirely GPU-based and implemented 
in OpenGL and the OpenGL Shading Language (GLSL), are performed:  

1) Compute the subset loadedN  of nodes of the workpiece mesh that receive a heat flux from the current spray 
gun position.  

This is defined to be the subset of nodes, the coordinates of which are inside the spray plume, approximated 
by a (spray) cone which expands from the gun center position ( )tx , see Figure 2. Only those nodes visible 
from the spray gun center are considered; nodes on the back side of the workpiece or nodes shadowed by other 
parts of the workpiece do not receive a high temperature load.  

This visibility computation for arbitrary meshes with potentially hundreds of thousands of nodes and faces 
can be efficiently implemented by exploiting the computational power of modern graphics cards, tailored by de-
sign to perform visibility computations on large triangle meshes in real-time. For the rendering of virtual scenes 
consisting of triangle meshes, the graphics card projects the three dimensional nodes of the mesh in a perspec-
tive correct manner onto a two-dimensional image plane. In the first visibility computation step, projected nodes 
outside the rectangular screen area are discarded, limiting the remaining nodes to the ones inside a pyramidal 
viewing frustum as depicted in Figure 2. In an additional step, the graphics hardware uses the depth-buffer al-
gorithm [23] to remove any nodes that are shadowed by the geometry for the particular viewpoint considered.  
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Figure 2. Visibility computation to determine the nodes of 
the workpiece to be coated and to receive a heat flux from the 
gun (white nodes). Nodes outside the spray cone or nodes 
that are shadowed from the gun by parts of the workpiece are 
not coated.                                          

 
For the current spray gun position, first, the opening angle of the viewing frustum of the virtual camera is ad-
justed to match the desired opening angle of the spray cone. Subsequently, the workpiece mesh is rendered and 
the desired nodes that receive a heat flux from the gun are determined. The case that the viewing frustum is rec-
tangular, but the spray cone should be circular is corrected in the next step. 

2) For every node in the subset loadedN  determine the thermal load nodeθ ∞  in order to set up Robin type 
boundary conditions.  

The nodes are projected onto a plane orthogonal to the central axis of the spray cone at the stand off distance 
SODd  from the gun center. The thermal load for every node is then computed based on its distance nor  from 

the cone center axis. Due to the lack of precise measurement data, the load function is modelled as a rotationally 
symmetric Gaussian with standard deviation s  and amplitude maxθ  which is offset by inr  in order to cover a 
larger circular area of magnitude maxθ : 

max no in

node amb max no

2
no in

ma amb

, if 
, if

1exp , else
2

r r
r r

r r
s

θ
θ θ

θ θ

∞

∆



 <


= ≤
  −  − +      

                    (26) 

with ma max ambθ θ θ∆ = − . The threshold maxr  is used to limit the function to a circular radius thereby 
transforming the rectangular viewing frustum into the desired circular spray plume approximation. For the 
simulations presented in this article an HVOF spraying process is assumed and the values SOD 170 mmd = , 

max gunθ θ ∞= , in 10 mmr = , max 66 mmr =  and 2 mms =  are used. The shape of the load function is shown in 
Figure 3. 

3) The remaining nodes are set to receive an ambient thermal load ambθ ∞  in order to set up Robin type 
boundary conditions.  

4) The thermodynamic model is evaluated. 
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Figure 3. Shape of the radially symmetric load function nodeθ ∞  used in the 
benchmark simulations; Equation (26).                                       

 
For each Newton iteration, the C++ implementation of the thermodynamic model assembles the global iterative 
residual vector Ir  and the global tangent matrix IJK  according to Equations (19) and (20), and then employs 
a conjugate gradient iterative solver with Jacobi (diagonal) preconditioning (pCG) to solve the system. 

5) The simulation time index is increased by t∆ .  
This scheme is iterated until the end of the robot guided path is reached. A key aspect for the efficient 

computation of the boundary conditions is the similarity of the geometric relationships of the spray plume 
expanding from the gun nozzle towards the workpiece on the one hand, and the geometry-projection process 
towards a virtual camera center in the visibility computation on the other. Due to this similarity, the first three 
steps can easily be performed by exploiting GPU acceleration techniques and are implemented in OpenGL and 
the OpenGL Shading Language (GLSL) within our framework. 

5. Examples 
The implemented framework is now applied to carry out simulations of a realistic deep drawing tool in order to 
demonstrate the capabilities of the novel software. The starting temperature 

0t
θ  of the material is considered to 

coincide with the room temperature amb 293 Kθ ∞ =  whereas the temperature of the spray gun is set to 
gun 3073 Kθ ∞ = . The steel material is St 35.8 (1.0305), the physical properties of which have been investigated by 

Richter [24] [25] up to a temperature of 873 K. The parameters for Equation (23), the polynomial of the heat 
capacity, are taken from [24] [25] and summarised in Table 1. Note, that the polynomial is parameterised in ˚C 
not in K. For the sake of completeness, the polynomial is depicted with a K-scale in Figure 4(a). It can be seen 
that the parameter set is not valid for temperatures beyond the interval [ ]293;873 Kθ = . Since ( ) 0c θ >  is 
guaranteed within the temperature range of interest, 293 Kθ ≥ , the implemented framework remains thermally 
stable even when the physical valid temperature range is excelled. This turns out to be helpful for testing the 
algorithmic framework. 

Furthermore, the parameters for the heat conduction coefficient ( )λ θ , given by Equation (25), are also 
summarised in Table 1. Because the parameters are the result of fitting a polynomial of Richter, [25], both 
functions are depicted in Figure 4(b). The solid line represents the fitted function and, in contrast, the dashed 
line represents the polynomial taken from Richter, [25]. Obviously, the fit is very good within the physical valid 
temperature range. Beyond this range, the fitted curve asymptotically tends to a positive limit while the Richter 
polynomial has a root at 1451.58 Kθ = . As an advantage, the fitted function guarantees ( ) 0λ θ >  for any θ, 
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thereby avoiding numerical problems while testing the algorithmic framework. To complete the set of parame-
ters, values for the convective heat transfer coefficients air

ch  and gun
ch  as well as for the emissivity ε and the 

Stefan-Boltzmann constant σ are summarised in Table 2. We assume the surface surrounded by air to be 
exposed to natural convection, as the surface loaded by the HVOF spray gun is assumed to be charged with 
forced convection. 

The integrated coating and thermodynamic simulation is employed to predict the workpiece temperature for 
the manufacturing of thermal sprayed sheet metal forming tools. In this regard, the heat transport into a deep 
drawing tool of a moving and unloaded HVOF thermal spray gun is simulated using a complex robot tool path at 
three different movement speeds. The fastest simulation run completes the tool path within 40 s, the medium 
speed simulation in 80 s and the slowest run within 160 s. The tool path of the spray gun movement is depicted  
 

Table 1. Parameters for ( )c θ  introduced in Equation (23) and ( )λ θ  introduced in 

Equation (25). The values are valid within [ ]293;873 Kθ = ; see [25] for further details.       

( )c θ  

0a / 1 1mJ g K− −⋅ ⋅    1a / 1 2mJ g K− −⋅ ⋅    2a / 1 3mJ g K− −⋅ ⋅    3a / 1 4mJ g K− −⋅ ⋅    

4.22 × 102 9.31 × 10−1 −2.14 × 10−3 2.64 × 10−6 

( )λ θ     

 0b / 1 1W mm K− −⋅ ⋅      

 3 × 10−2   

i  ,1ib / 1 1W mm K− −⋅ ⋅    
,2ib / K  ,3ib / K  

1 1.549 × 10−2 2.342 × 102 1.051 × 102 

2 8.527 × 10−3 3.717 × 102 1.357 × 102 

3 2.091 × 10−4 5.916 × 102 1.518 × 101 

4 1.888 × 10−2 5.389 × 102 3.266 × 102 

 
Table 2. Values for the convective heat transfer coefficients air

ch  and gun
ch , the emissivity ε  

and the Stefan-Boltzmann constant σ .                                              

air
ch / 2 1W mm K− −⋅ ⋅    gun

ch / 2 1W mm K− −⋅ ⋅    ε  σ / 2 4W mm K− −⋅ ⋅    

1.0 × 10−5 1.4 × 10−4 0.81 5.670373 × 10−14 

 

 
(a)                                                       (b) 

Figure 4. (a) Richter polynomial of the heat conduction ( )c θ ; (b) Fitted curve and the Richter polynomial of the heat 

conduction coefficient ( )λ θ ; see [25] for further details.                                                        
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in Figure 5. The colors of the robot path represent the temperature load resulting from the respective gun 
position. For the robot path, the blue regions on the right and left parts have not been processed yet, since the 
gun started at the lower end of the path proceeding upwards along the circular opening of the workpiece onto the 
plain surface on top. For the path already processed, the coloring represents the surface load temperatures in-
duced by the gun, where grey areas represent zero thermal load. In other words, these grey parts represent posi-
tions of the spray gun where the spray cone does not intersect with the workpiece. The surface colors represent 
the surface temperature at different time steps for the medium gun speed simulation run. 

The simulation keeps track of the volume-averaged temperature and the peak workpiece temperature both 
with respect to time to identify critical sections of the path, which may cause an overheating of the workpiece. 
Figure 6 shows the simulated temperatures averaged over the entire workpiece volume and the peak tempera-
ture occurring in the workpiece—both plotted versus time—for the three gun speed simulation runs. The spray-
ing process can be divided into four sections—compare Figures 5(b)-(d): First, the spray gun aims at the front 
radius working its way up to the plain surface, which is then coated in circular arc movements from left to right 
and back. During this process, peak temperatures are reached when the gun approaches the border of the work-
piece and turns around for the next arc in opposite direction. The fluctuations of the peak temperature curves are 
due to the gun leaving and entering the workpiece at the borders. The third and fourth distinguishable sections 
are the right and left border areas of the workpiece including the screw holes for mounting the part. At the be-
ginning of these sections, the peak and average temperatures increase considerably, because the large screw 
holes provide a significantly larger surface area that is heated by the spray gun. Afterwards the temperatures 
drop again when the gun gradually leaves the workpiece area. It can be seen that, for the considered robot tool 
path, the slowest simulated gun movement speed leads to the highest mean temperature of the workpiece as well 
as to the highest surface peak temperatures. The heat output to the environment through the surface is lower than 
the heat input by the spray gun. 
 

  
 

(a)                                                   (b) 

  

(c)                                                   (d) 

293 K  443 K 

Figure 5. Simulated deep drawing workpiece and the employed robot movement path. The surface colors represent the sur-
face temperatures and the path colors the temperature load after (a) 6 s; (b) 20 s; (c) 30 s; and (d) 40 s of the medium gun 
speed simulation run. Blue path segments have not been processed yet.                                             
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Figure 6. Simulated development of peak and mean workpiece temperature of the 
workpiece shown in Figure 5. The temperatures are depicted for the three gun 
speed simulation runs.                                                  

6. Summary 
This work presents a novel integrated simulation approach for the computation of the workpiece temperature 
development during thermal spraying which is suited for large and arbitrarily complex shaped components. As 
its core, a thermodynamically consistent nonlinear heat transfer model based on the fundamental equations of 
continuum thermodynamics is employed. The equations obtained are transformed into their weak forms that 
represent the underlying equations of the presented non-linear finite-element-framework, implemented in C++ 
and the Eigen library. The material parameters are adjusted to experimental data by fitting suitable functions, 
and the parameters of the Robin boundary conditions are chosen in order to model realistic heat transfer. The 
presented simulations of a complex shaped deep drawing tool demonstrate a possible field of application for the 
novel software tool.  

Future work will include the consideration of the mass flow of the HVOF gun in order to model the coating 
process of the substrate with hot particles. Furthermore, the developed framework shall be used to extend the 
optimisation software described in [26] in order to be able to optimise temperature quantities. Another aspect of 
future research is the extension towards a thermo-mechanically coupled framework, [27], which will enable the 
analysis of residual stresses and damage due to thermal spraying as discussed in, e.g., [28] [29].  
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