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Abstract

An innovative, extremely fast and accurate method is presented for Neumann-Dirichlet and Di-
richlet-Neumann boundary problems for the Poisson equation, and the diffusion and wave equa-
tion in quasi-stationary regime; using the finite difference method, in one dimensional case. Two
novels matrices are determined allowing a direct and exact formulation of the solution of the
Poisson equation. Verification is also done considering an interesting potential problem and the

sensibility is determined. This new method has an algorithm complexity of O( N ) , its truncation

error goes like O (hz ) , and it is more precise and faster than the Thomas algorithm.
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1. Introduction

Poisson equation is used to describe, in quantitative manner, electrostatic and magnetostatic phenomena. It also
helps to understand diffusion and propagation related problems, in quasi-stationary regime. Its solution is of
great interest for a wide range of fields such as engineering, physics, mathematics, biology, chemistry, etc.

Most of solving methods, of this very important equation, use matrix inversion technics and algorithms,
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which are dependent on its Right-Hand Side (RHS). A recent study [1], concerning the case of one dimension,
has proposed a direct, exact, and closed formulation of the inverse matrix; independently on the RHS. This in-
verse matrix has allowed getting a new, extremely fast solution to the Poisson equation. However, this innova-
tive solution, obtained with the finite difference method, discussed only the case of boundary conditions of type:
Dirichlet-Dirichlet (DD).

In the present study, we focus on the Poisson equation (1D), particularly in the two boundary problems: Neu-
mann-Dirichlet (ND) and Dirichlet-Neumann (DN), using the Finite Difference Method (FDM). Essentially, at-
tention is given to the matrices extracted from the algebraic equations from this differential method. Furthermore,
an exact formulation of their inverses, independently of the RHS, is determined. Therefore, a new and advanced
formulation of the solution to the Poisson equation, is found, for Neumann boundary conditions.

The proposed method is more accurate and faster than the Gaussian elimination method and that of Thomas.
In addition, it completes the work made by Gueye S. Bira [1], where the Dirichlet-Dirichlet problem was pre-
sented and treated very rigorously and clearly. Here, we determine two matrices that constitute, with the one in
ref. [1], a set of solutions, which will contribute greatly to the advance of research in the field of numerical
solving of differential equations. They will also permit an extremely exact and simple formulation of the solu-
tion to the Poisson equation.

We will first consider an ND boundary problem and establish the corresponding algebraic equations coming
from the application of the finite difference method, using the centered difference approximation (second order
derivative). Then, we will, based on these algebraic equations, and considering the boundary conditions; estab-
lish the matrix equation. Thereafter, we discuss the properties of the associated matrix and then, determine its
inverse, exactly and independently of the RHS. This will allow a direct and exact formulation of the solution to
the Poisson equation for a 1D problem with ND boundary conditions. Complexity, accuracy, and stability are
discussed and compared with other methods: Gaussian elimination algorithm and Thomas. Moreover, a verifica-
tion of this new method is done by considering an interesting potential problem with inhomogeneous ND boun-
dary conditions. The results are compared to the exact analytical solution and show great agreement. A similar
approach is followed in the case Dirichlet-Neumann problem. The exact formula of the inverse matrix is deter-
mined and also the solution of the differential equation.

2. 1D Poisson Equation with Neumann-Dirichlet Boundary Conditions

We consider a scalar potential @(x) which satisfies the Poisson equation A®(x)= f(x), in the interval
Ja,b[, where f isa specified function. @(x) fulfills the Neumann-Dirichlet boundary conditions
®'(a)=d, and ®(b)=d,.An appropriate discretization is chosen, as shown in Figure 1.

a

The mesh is composed of N +1 discrete points belonging to the interval [a,b]; and an extra, imaginary

(b-2)
N

(%) are defined by the following relation: x;, =a+(i-1)-h, i=0,1---,N+1. We denote by @, the ap-

proximate value of the desired potential at point X, : ®; ~ ®(x; ). For each point x in the interval [a,b], the
value of the right-hand side functionis: f, = f(x;).

O =0'(x) and ®/=d"(x;) are the first and second derivative of the potential function @, respectively,
at point x; . With the centered difference approximation (O(hz)) [2] [4], one gets the first derivative:

point, X, , which is not within this range [2] [3]. With the following step size: Ax = = h, the mesh points

’ _cDi+l — cDi—l 2
cDi —T+ O (h ) (1)
and the second derivative:
¥
—————— *— o - ————0—0 —0 ———————@ ® *® >
X X X; X3 Xi1 Xi Xis1 XN-1 Xy X1 X
- »
a b

Figure 1. Discretization for Neumann-Dirichlet boundary conditions.
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O, -20, + D, .
q)iﬂzl—lTMJro(hz), i=23-N. 2
Thus, the discretized 1D Poisson equation becomes a set of algebraic equations:
®, - 20, +®,, =h’f, =2 N. ®)

The boundary x, =a must be carefully handled with the extra imaginary point x,. Combining (1) and (3)
for i=1, the effect of the imaginary point is eliminated:

-0, +®, =h’ %Jr ho! . (4)

One sees that this extra point does not affect the result. It is also to remark that the truncation error goes like
O(hz)) [2]. Therefore, this additional point helps to still use the centered difference approximation, even at
boundary point a.
We can introduce the vector F which elements F, are defined by:
fl

F1:h2?+hd>;, Fy=h’f,-®,, and F =h*f, i=23--,N-L1 (5)

Thus, one obtains the following matrix equation:
f

-1 1 0 0 O 0 @, h2?1+hc1>;
1 21 0 0 0| @, Y
01 -2 1 0 0| | o, he fz
3
0 0 1 -2 1 Ol @ | | ey -
00 0 1 -2 : @, he g
s 0 : °
00 0 0 . " " 1|]|®, he f
N-1
00 0 0 0 0 1 -2/ (®, hE @
-A D e

The centered difference approximation leads to an N x N-matrix A:(aij) that is diagonally dominant, tri-
diagonal, negative definite, and symmetric.

3. The Inverse of the Matrix A

The inverse of the matrix A, denoted B = (bij ) , iIs also symmetric. It has the following properties:
b+, =6
b, —2b,, +b,; = &7
by —2b; +b,; = 5ij
biN—l - 2biN = ‘S}N

, 1< j<N, )

where & is the Kronecker’s delta.
It also holds:

0 :{bu+<j—1), i< ] -

by +(i-1), i

The behavior of the determinant and the co-factor of the matrix A in ref. [1] give us also the following rela-
tions:

det(B):(_l)N' b11:ﬁ:_'\l! and bNN:%:_lzblN 9)

()"

)
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Using the relations in (7)-(9), we can determine exactly the inverse of the matrix A that is associated with
our approximation in case of ND boundary conditions. Thus, the coefficients of B are determined with:

NELECE Iy
bi,-—{_[N_(i_l)]’ > (10)

Equation (10) is also equivalent to:
bij:—[N—[max(i,j)—l]]:{N{w—lﬂ. (12)

Equations (10) and (11) contain the same information. We prefer the first because it appears to be simpler than
the latter and can be preferred for an eventual implementation in a programming language.

Thus, the inverse matrix is entirely determined. We get the simple, beautiful, exact, and very important matrix
B that is shown in Figure 2.

We call this impressive matrix (B), for Neumann-Dirichlet problem: Bira_ND-Matrix. Considering Equa-
tion (6), the solution’s vector is obtained with: @® = BF . Thus, solving the 1D Poisson equation is reduced to a
simple matrix-vector multiplication. One does not need an inversion method that depend on the right hand side
of the differential equation. Further, the interesting properties of this matrix allow us to get the closed formula-
tion of the solution, directly without matrix multiplication.

4. Analysis and Exact Solution of the Poisson Equation

The matrix (B) is simple and elegant. Only the N first nonzero integers appear in the matrix (B). Its dee-
per analysis leads to an exact, closed, and high precise formulation of the solution vector @, of the Poisson
equation.

With Equation (6), one obtains the solution @ at point x, with:

O, =-3F (12)

The scalar potential @,_, atabscissa x,_, isgiven by:

Oy, = {_Ziﬁ :| —Fy- (13)

Thus, the solution of the 1D Poisson equation, in the case of Neumann-Dirichlet boundary, is determined ex-
actly with the direct relation:

<1>Nk=—{(k+1)-[NiZlkE}+{ i (N—(i—l))-Fiﬂ, k=012-,N-L1. (14)

i=N-k+1

This is equivalent to:

(Dk:{(N —k+1)-{iﬁ}{ii (N —(i—1)).Fiﬂ, k=12,-,N. (15)

N N-1 N=2 - - 21
N-1 N-1 N-2 - - 21
N-2 N-2 N-2 - - 21

B=—| : : 2 1],

: 21
2 2 2 2 2 21
1 1 111 11

Figure 2. Inverse matrix for Neumann-Dirichlet problem.
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Equation (15) represents a great improvement for solving the Poisson equation, particularly for Neumann-
Dirichlet boundary conditions. The solution is determined properly, exactly, and given in a direct formulation. It
can be very easily programmed. One loop will be largely sufficient to compute all the solution of one the most
important equation in physics and engineering, in the one-dimensional case. It is a novel and exact formulation
of the solution with the finite difference method using the centered difference approximation. The very impor-
tant matrix B allowed us to obtain this innovative solution.

The methods that use inversion technics to obtained the matrix B (Gauss Elimination (O(N3)), Thomas
Method (O(N)) are ameliorated [5].

The presented new solution is more direct, more exact, more stable; and faster than the Thomas Method for
1D Poisson equation. An important fact is that the determination of B does not depend on the right-hand side
of the inhomogeneous Poisson equation. While the other methods use an inversion depending on the RHS of the
differential equation. Also, this new solution is very economical with respect to the memory occupation. Then,
the solution of the 1D Poisson equation can be got, plotted, and exploited without declaring or using an array in
a programming code. That is a great improvement in term of efficient use of memory allocation. Now, we can
verify the method, using a potential problem with ND boundary conditions.

5. Verification with a Neumann-Dirichlet Potential Problem

We consider a scalar field @ (x), which satisfies

_0°D(x)
ox?

AD(x) = f(x) =V,cos(kx+g¢, ),
in Ja,b[, where a, b, V,, k, and ¢, are specified real constants. ®(x) fulfills the Neumann-Dirichlet

boundary conditions: the values ?ji)(a) =®, and ®(b)=®, are given. The exact solution is
X
’ VO H VO
Dy (X) = qba—?5|n(ka+¢o) -(x—b)—k—z[cos(kx+¢0)—cos(kb+%)}AI)b (16)

We can apply the finite difference method, taking: a = —g, b =7 vV, =1, k=

mesh according to Figure 1, with N =100, Ax=h=(b-a)/N, X

T T .

-, =—. We define the
2" 77
=a+(i-1)-Ax, @, ~d(x), and
f. = f(x)=cos(kx +¢,). We consider inhomogeneous Neumann-Dirichlet Boundary conditions: @ =

BN

and @, :—%.

Then, we compute the solution, with new method, given by Equation (15) and compare it with the exact po-
tential (Equation (16)). Naturally, we also take into account the Equation (5).

We denote by ¢ (100) the relative error at point X, for (N =100). ®,q,, is the potential value calcu-
lated with the new method i.e. @, , at mesh point x; .

For a given N, the relative error is obtained according the follow relation:

& (N ) =
The denote £(N) the average value of the relative error for a given N . Itis defined by:
_ 13
e(N):WZ&(N) (18)
i=1

It is calculated for the given parameters and its value is: 5(100) ~1.67681x10°°. This is a very good accu-
racy and corresponds to the results we expected.
Table 1 illustrates the potential @, , calculated at the position X; by the method of finite differences using

C2)

(DiFDM -0

iexact 17
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iexact



S. B. Gueye et al.

Table 1. Results of the Neumann-Dirichlet problem..

i
1
2
3
4
5
6
7
8
9

10

94
95
96
97
98
99
100

XI
—-1.57075000000000E + 000
—1.54718875000000E + 000
—-1.52362750000000E + 000
—-1.50006625000000E + 000
—1.47650500000000E + 000
—1.45294375000000E + 000
—1.42938250000000E + 000
—1.40582125000000E + 000
—1.38226000000000E + 000
—1.35869875000000E + 000

6.20446250000000E — 001
6.44007500000000E - 001
6.67568750000000E — 001
6.91130000000000E — 001
7.14691250000000E - 001
7.38252500000000E - 001
7.61813750000000E — 001

(DIFDM
—2.71049555636409E + 000
—2.70463260741735E + 000
—2.69881073784837E + 000
—2.69300943807698E + 000
—2.68720817035272E + 000
—2.68138639688126E + 000
—2.67552360795082E + 000
—2.66959935002018E + 000
—2.66359325372979E + 000
—2.65748506179750E + 000

—7.45019794236258E — 001
—7.09544997649102E - 001
—6.74194664545259E — 001
—6.38988724499491E - 001
—6.03946909340638E — 001
—-5.69088726128929E — 001
—5.34433430441114E - 001

iexact

—2.71034032092203E + 000
—2.70448077828378E + 000
—2.69866231971233E + 000
—2.69286443328641E + 000
—2.68706657891129E + 000
—2.68124821644832E + 000
—2.67538883384463E + 000
—2.66946797522434E + 000
—2.66346526890279E + 000
—2.65736045528557E + 000

—7.45019233405500E - 001
—7.09544463063843E — 001
—6.74194170412462E - 001
—6.38988287300993E — 001
—6.03946547810577E — 001
—-5.69088461228090E - 001
—5.34433285328220E - 001

£,(100)
5.7271978069078828E — 0005
5.6136694186233766E — 0005
5.4993903041874358E — 0005
5.3844887626367652E — 0005
5.2690909099853660E — 0005
5.1533204280089372E — 0005
5.0372983361732822E — 0005
4.9211427867181912E — 0005
4.8049688825695523E — 0005
4.6888885177432215E — 0005

7.5277296381940664E — 0007
7.5341981245887082E — 0007
7.3292303065673737E — 0007
6.8420377609101713E — 0007
5.9861232073208781E — 0007
4.6548249409032874E — 0007
2.7152660325651898E — 0007

the centered approximation. It also gives the exact value of the potential (®,,. )., obtained by considering the
Equation (16) and the relative error at mesh point x; .

We see that the solution of the ND boundary problem with the proposed method is also very accurate as
shown in the table above.

At this stage, we are interested in the sensitivity of this method. We have shown the average relative error
g(N) for different values of N . Then, we got the curve shown in Figure 3, which is a hyperbola. This func-

: : 2 (b_a)z 2
tion can be assumed to be proportional to h* = NT =AX".
A curve fitting of the sensibility can be given with:
b-a)’
Trunc(N):th:a-(N—z), (19)

where a ~3.11729x107?. The two curves are shown in Figure 3.
The average relative error z(N) behaves like a truncation error that we express in the following manner

ok, (o)
12

(D("')

exact

(c) is the fourth order derivative of the exact potential function ® in a point (here

exact

C ), which belongs to the interval [a,b].
For the given function ® and also the results from the fitting, we have [6]:

exact
(b—a)® h3V,k2
. < .
N2 12

g(N)ra-h®=qa (20)
6. Solution of Dirichlet-Neumann Problem
6.1. Discretization and Matrix Equation

As we proceeded in the case of boundary conditions of type ND; we will do the same for a DN problem. The
first step is to find an adequate and comfortable discretization. We propose that of Figure 4.
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Sensibility
Average Relative Error vs N
2.0x1073 Py T T T T T T T T T T T
be
eps (N)
! Fitt
1.6x10°4 ® 1
4

1.2x10°4 | .
—_
z i
2 A 4
® 78x104 @ .

\
*
) .
3.7x107 N 1
.\
.
* o -
T -9 ---0---@0---@9 -- O
-2.8x107 4 : : : : : - : . e e
10 20 30 40 50 60 70 8 9 100 110 120
N
Figure 3. Sensibility for the Neumann-Dirichlet problem.

—o—o —0—————— *—o — ——————— ® ®- - - - >
Xo X; X X; Xig X; Xis1 Xn-1 —xl\ X+t X
‘< »
a b

Figure 4. Discretization for Dirichlet-Neumann boundary conditions.

Here, the mesh points (xi) are defined by the following relation: x, =a+i-h, i=0,1---,N+1. And, ®,
and @; are given. The imaginary pointis Xx,,,. Its potential @, iseliminated analogically and it holds:

O, ,—D, = hZ%N—th,;. (21)
Thus, the vector F can be defined:
FN:hZ%N—h(D(J, F =h*f,-®,, and F =h’f, i=23-- N-1 (22)
Thus, the matrix equation becomes:
2
21 0 0 0 0) ( @, =,
1 21 0 0 0| @, "
0 1 -2 0 0| o, "t
0 0 1 -2 1 0| @, h°f,
o[ = h? f (23)
0 0 0 1 -2 : O, s
. . . 0 . X N
0 0 0 0 " - " 1]]|d "ty
O 0 0 0 0 0 1 1 (ON hzf—N—hCDb,
=A =0 2

=F
In the case of DN boundary conditions, the matrix A is also symmetric, tridiagonal, diagonally dominant,

and negative definite. With regard to the anti-diagonal, it is the symmetric of matrix A, obtained in the case of
Neumann-Dirichlet boundary conditions.

G2
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6.2. Inverse Matrix and Closed Solution

Thus, the inverse matrix of A can be easily determined from that of the case of ND boundary conditions; using
the symmetry in relation to the anti-diagonal. We obtain the beautiful and elegant matrix in Figure 5:

We call this impressive matrix (B), for Dirichlet-Neumann problem: Bira_DN-Matrix. Thus, the exact ex-
pression of the solution of the Poisson equation can be formulated in a very simple manner, as following:

o o] g e

This solution, given by the simple and extremely important Equation (24), can be easily computed, in one
programming loop that give all the solutions.

N. (24)

7. Verification with a Dirichlet-Neumann Boundary Problem

We consider the same potential as that of the ND boundary problem, studied above. In this DN problem, the

boundary conditions are: Zﬁ(b) =®; and ®(a)=®,. The exact solution is obtained by permuting a and
X

b in Equation (16).

We can apply the finite difference method, taking: a = —g, b=

r
4 1

V, =1, k

I

=X o :%. We define the

2

mesh according to Figure 4, with N =100, Ax:h:%, X =a+i-Ax, @, ~d(x),and

fi=f

a

tential.

(x)=cos(kx +@,) -
1/2.
Then, we compute the solution, of our new method, given by Equation (24) and compare it with the exact po-

We consider

Table 2 shows the obtained results:
The solution of the DN problem is also very accurate as shown in Table 2:

Z(100) ~ 2.9216432x10°°.

Table 2. Results of the Dirichlet-Neumann problem.

inhomogeneous DN Boundary conditions:

o) = Y4

i X D, £,(100)
1 —154718875000000E +000 2.09766077361566E —001  2.09765915601080E —001  7.7114701892455033E — 0007
2 -152362750000000E +000 1.69491075345375E —001  1.69490747135373E —001 ~ 1.9364441548302441E — 0006
3 —1.50006625000000E +000 1.29195503531596E —001  1.29195006524124E —001 ~ 3.8469409371262447E — 0006
4 -1.47650500000000E +000 8.88998996706821F —002  8.88992338620832E —002  7.4894190135139803E — 0006
5 —1.45294375000000E +000 4.86248015569752E —002  4.86239692878904E —002  1.7116143576826946E — 0005
6 —1.42938250000000E +000 8.39071890224891E —003  8.38972485441347E —003  1.1846992456981569E — 0004
7 —1.40582125000000E +000 -3.17818947522889E —002 —3.17830435624571E —002 3.6146685943268267E — 0005
8  —1.38226000000000E +000 —7.18726700470679E —002 ~—7.18739642780780E —002 1.8007276051733702E — 0005
9  —1.35869875000000E +000 -1.11861349699941F —001 —1.11862777698022E —001 1.2765786255979351E — 0005
10 -1.33513750000000E +000 —1.51727816248482E —001 —1.51729364063541E —001 1.0201261030939630E — 0005
94  6.44007500000000E —001 —2.08215537029102E +000 —2.08200508363523E +000 7.2178406056207437E —0005
95  6.67568750000000E —001 —2.09290190877235E +000 —2.09274841802101E +000 7.3338722034521300E — 0005
96  6.91130000000000E —001 —2.10379284031175E +000 —2.10363616194671E +000 7.4474236264563418E — 0005
97  7.14691250000000E —001 —2.11484789673807E +000 —2.11468804949346E +000 7.5583329116289166E — 0005
98  7.38252500000000E —001 —2.12608658511153E + 000 —2.12592358994813E +000 7.6664405173435873E — 0005
99  7.61813750000000E —001 —2.13752816100888E +000 —2.13736204108543E 000 7.7715899367085104E — 0005
100 7.85375000000000E —001 —2.14919160215294F +000 —2.14902238279437E +000 7.8736283167273635E — 0005




S. B. Gueye et al.

-2 N-=-2
N-1
N

=

Il

|
—_ m = m = = e
T N N N N N

z =z =

-2
-2
-2

z =z =
— — N

Figure 5. Inverse matrix for Dirichlet-Neumann problem.

Sensibility
Average Relative Error vs N
3~2X1073 ‘ T 1 T 1 T 1 T I T T T
e
,[ eps (N)
]
1 Fitt
26x10°4 @ q
[}
19x10° 1 1
—_ L
e .
2 b
® 13x10%4 .
®
\
°
6.1x107 ' ]
LN
‘ -,
® . Y
T -0 ---0---9---0---0 -~
-4.9x107° T T T T T T T T T T L4

T

T
10 20 30 40 50 60 70 80 90 100 110 120

Figure 6. Sensibility for the Dirichlet-Neumann problem.

Now, the sensibility can be determined, for the DN boundary problem: the average relative error £(N) is
plotted for different values of N . Then, we got the hyperbola in Figure 6, which can be assumed to be propor-
tional to h?.

A curve fitting of the sensibility can be given using Equation (20) with o ~5.504505492x107. The two
curves are shown in Figure 6.

The average relative error z(N) goes like O(hz) , which corresponds to the predicted truncation error.

8. Conclusion

This study has determined two novels matrices independently of the RHS providing a new and exact formula-
tion of the solution of the Neumann boundary problem, for the 1D Poisson equation. The presented results and
methods constitute a great improvement in the field of solving similar equations: diffusion and wave equations,
in the quasi-stationary case, using the FDM. They are direct, highly accurate, extremely fast, and economical in
terms of memory occupation.
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