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Abstract 
As pointed out in the paper preceding this one, in the case of functionals whose independent vari- 
able must obey conditions of integral normalization, conventional functional differentiation, de- 
fined in terms of an arbitrary test function, is generally inapplicable and functional derivatives 
with respect to the density must be evaluated through the alternative and widely used limiting 
procedure based on the Dirac delta function. This leads to the determination of the rate of change 
of the dependent variable with respect to its independent variable at each isolated pair, 

( ) [ ]( )r ,f Q f , that may not be part of a functional (a set of ordered pairs). This extends the con- 
cept of functional derivative to expectation values of operators with respect to wave functions 
leading to a density even if the wave functions (and expectation values) do not form functionals. 
This new formulation of functional differentiation forms the basis for the study of the mathemati- 
cal integrity of a number of concepts in density functional theory (DFT) such as the existence of a 
universal functional of the density, of orbital-free density functional theory, the derivative discon- 
tinuity of the exchange and correlation functional and the extension of DFT to open systems cha- 
racterized by densities with fractional normalization. It is shown that no universal functional ex- 
ists but, rather, a universal process based only on the density and independent of the possible ex- 
istence of a potential, leads to unique functionals of the density determined through the minimi- 
zation procedure of the constrained search. The mathematical integrity of two methodologies 
proposed for the treatment of the Coulomb interaction, the self-interaction free method and the 
optimized effective potential method is examined and the methodologies are compared in terms 
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of numerical calculations. As emerges from this analysis, the optimized effective potential method 
is found to be numerically approximate but formally invalid, contrary to the rigorously exact re- 
sults of the self-interaction-free method. 
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1. Introduction 
The paper preceding this one, referred to hereafter as I, established the formal result that conventional functional 
differentiation cannot be performed in the case of functionals in which the independent variable must obey 
conditions of integral normalization. In these cases, functional differentiation must be carried out in terms of the 
Dirac delta function, consistent with the interpretation that it describes the rate of change of a dependent variable 
(e.g., a functional) with respect to the change of the independent variable (a function) at some point in space. 
One of the central aims of the present paper is to apply this result to the analysis of a number of concepts that 
have evolved in connection with the formal aspects of density functional theory (DFT) [1] and the implemen- 
tation of the theory in terms of the Kohn-Sham formalism [2]. The paper also examines certain long-held beliefs 
prevalent in the field through analysis at the fundamental level. 

In 1964, Hohenberg and Kohn published a paper [1] containing two incredible theorems, known as the theo-  
rems of Hohnenberg and Kohn. The First Theorem demonstrated that if a density, ( )n r , represents the ground  

state of an interacting many-particle system under the action of an external potential, ( )v r , then the potential is  
a uniquely defined (within a constant) functional of the density. In other words, given the density and only the 
density of the ground state of a system of N  interacting particles (with a specified inter-particle potential, such 
as the Coulomb repulsion for electrons) one can determine the external potential uniquely, modulo a constant. 
The Second Theorem established the existence of an energy functional of the density associated with the po- 
tential in question whose minimum value materialized at the density of the system’s ground state where it equals 
the energy of that state. This energy functional has the form, 

[ ] ( ) ( ) GS GS
ˆ ˆd ,N N N N

vE n v n T U= + Ψ + Ψ∫ r r r                       (0.1) 

where GS
NΨ  denotes the ground state of the N-particle interacting system under ( )v r , and ˆ NT  and ˆ NU  are, 

respectively, the operators representing the kinetic energy and inter-particle interaction potential of the system 
(Coulomb interaction for electrons). The expectation value in the definition of the energy functional is known as 
the Hohenberg and Kohn functional, 

[ ]HK GS GS
ˆ ˆ ,N N N NF n T U= Ψ + Ψ                             (0.2) 

for densities that represent the ground state of a potential (referred to hereafter as v -representable densities). It 
is to be noted that the integral in (0.1) represents the expectation value of the (external) potential operator with  
respect to the ground-state, GS

NΨ . It follows that the density, ( )n r , is obtained from a wave function, (see 

(0.7) and (0.10)), and is thus strictly normalized to an integer. 
Most strikingly, the theorems imply that the wave function of the ground state of an interacting, N-particle 

system (say, electrons), admittedly an immensely complicated structure depending on the N3  coordinates (and 
spins, for electrons) of an interacting system could be determined through knowledge of a function of three- 
dimensional coordinates, the particle density of the systems’s ground state. And this would be accomplished 
without the need to solve the many-particle Schrödinger equation for the interacting system! 
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1.1. The Problem of v-Representability 
At this point, however, a serious difficulty emerges: The set of v-representable densities is unknown, that is to 
say, there exists no rigorous mathematical procedure determining whether a given density is v-representable, so 
that the domain of definition of the Hohenberg and Kohn functional is also unknown, and correspondingly 

[ ]HKF n  is ill-defined, e.g., [3]-[5]. This is the so-called and well-known v-representability problem. 
The implications of this feature can be understood by recalling the general definition of a functional, as a set 

of ordered pairs, ( ) [ ]( ),f Q fr , in which the first entry, the independent variable, forming the domain of the 
functional, is a function of coordinates, and the second entry, the dependent variable or functional, referred to as 
the range of the functional, is given strictly and uniquely in terms of the independent variable [6]. Single- 
valuedness requires that no two independent variables coincide (corresponding to the definition of a function as 
a set of ordered pairs of real numbers, ( ),x y , in which the first entry, x , the independent variable, no two of 
which are the same, determines uniquely the second entry, the dependent variable or the function, y ). In both 
cases, of the function and the functional, the dependent variable is determined uniquely through the sole knowl- 
edge of the independent variable. 

Such a procedure would imply that the Hohenberg and Kohn functional is a mere function of the density or a 
functional of form, so that it is evaluated at the point (function) of a given density (as the function, 2x , is 
evaluated through knowledge of x ). Provided that the v-representability of a density could be rigorously 
determined, the mere insertion of the density into a fixed form would determine [ ]HKF n  satisfying the re- 
quirement that the Hohenberg and Kohn functional is determined through sole knowledge of the density, thus 
being consistent with the description of [ ]HKF n  as a universal functional of the density. 

The belief in the existence of a Hohenberg and Kohn functional that is a universal functional of the density in 
the sense that it is a function of the density is possibly the most enduring albeit mathematically unsupported 
belief in the development of DFT, if not in the whole of mathematical physics. The belief in such functions of 
the density is further expressed through the attempts to derive a function of the density that represents the so- 
called exchange and correlation functional [2] [3] in the Kohn-Sham [2] (KS) formulation for the practical 
implementation of DFT. The exchange and correlation functional [2]-[4] represents the difference, 

[ ] ( ) ( )

[ ] [ ] ( ) ( )

1 2
xc GS GS 0 0 1 2

1 2

1 2
HK s 1 2

1 2

ˆ ˆ ˆ d d

d d .

N N N N N N N n n
E n T U T

n n
F n T n

= Ψ + Ψ − Φ Φ −
−

= − −
−

∫

∫

r r
r r

r r

r r
r r

r r

             (0.3) 

In the KS formalism, 0
NΦ  denotes the ground state of N  non-interacting particles (assumed to evolve 

under the action of some auxiliary external potential) and leads to the same density as that of an interacting 
system. More generally, 0

NΦ  represents the state that leads to the density, ( )n r , of an interacting system's 
ground state and also minimizes the expectation value of the kinetic energy operator, ˆ NT , for a system of N  
non-interacting particles (see discussion of N-representability and the constrained search in Section 0.2). The 
integral over the product of densities denotes the Coulomb energy of a classical charge, ( )n r , and the kinetic 
energy of the non-interacting system's ground state is given by the expression, 

[ ]s 0 0 .N N NT n T= Φ Φ                                  (0.4) 

It can be shown [7] that in the absence of degeneracy, 0Φ  is a Slater determinant. Under these definitions, 
the energy functional in (0.1) can be written exactly in the form, 

[ ] ( ) ( ) [ ] ( ) ( ) [ ]1 2
s 1 2 xc

1 2

d d d .v

n n
E n v n T n E n= + + +

−∫ ∫
r r

r r r r r
r r

                (0.5) 

Once again, the exchange and correlation functional, as well as the kinetic energy functional of non-inter- 
acting particles, [ ]sT n , are presumed to exist as mere functions of ( )n r . 

Yet, in the presence of functionals that are mere functions of the density, expectation values, e.g., (0.2), would 
be determined without the explicit use of the wave function in direct contradiction of the premise that DFT 
determines the wave function from knowledge of the density. 
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1.2. Claims 
It is generally accepted that DFT is characterized by the following features: 

1) The wave function of the ground state of N  interacting particles, a functions of N3  coordinates (and 
spins, for electrons) is determined uniquely (baring degeneracy, not considered here) through knowledge of the 
density, a function of three-dimensional coordinates. 

2) The external potential acting on an interacting system can be obtained uniquely (within a constant) through 
sole knowledge of the density of the system's ground state. 

1.3. Consequences 
There is a consequence of 1) above that in a deep sense is the most striking feature of DFT: The determination 
of a quantum state (an element of an abstract Hilbert space that defies observation) from sole knowledge of the 
density, an observable (an element of physical reality that is subject to observation and can be determined as the 
outcome of measurement). This utterly unexpected turn of events allows the fulfillment of the program of 
quantum mechanics, the determination of quantum states that yield measurement outcomes for interacting many- 
particle systems directly from knowledge of the outcome of measurement, notably bypassing, in principle, the 
conventional procedure of solving the Schrödinger equation for the systems. 

This reveals the fundamental purpose behind the development of density functional theory as an alternative to 
the Schrödinger equation, at least with regard to the ground states of interacting many-particle systems. 

The determination of the potential as a unique functional of the density carries its own brand of subtlety. One 
is to determine the potential based exclusively on knowledge of the density and nothing else. No room exists for 
considering values of functionals at different values of the density. Because the density may in fact describe a 
physical, interacting system, the condition of sole knowledge of the density corresponds to the condition that 
isolated systems under an external potential must be studied strictly in their own right independently of any 
other system, hence of any other density. 

The mathematical implication of the last condition, dictated as it were by the make up of physical reality, is 
that no information about the states corresponding to a given density can be obtained from knowledge of only 
the states corresponding to another. In terms of derivatives, this implies that the functional derivatives with 
respect to a given density must be carried out strictly within the space of the density in question, namely the 
space defined by a single pair formed by the density and its dependent variable (irrespective of the possibility 
that this pair may belong to the domain of a functional). 

Hohenberg and Kohn’s second theorem shows that the functional in (0.1) exhibits a minimum at the exact 
density of the ground state of the potential, ( )v r , that conventionally is claimed to imply that the minimizing 
density can be obtained from the condition (defining the minimum of the functional), 

[ ]
( )

0,vE n
n

δ
δ

=
r

                                    (0.6) 

in terms of the vanishing of the functional derivative of the energy functional with respect to the density eva- 
luated at the density of the ground state of the potential. This expression brings to the fore the need for close 
scrutiny of functional differentiation within DFT. 

For example, as alluded in the previous paragraph, the derivative in the last expression must be evaluated at a  
given density, ( )n r , through knowledge of the single pair, ( ) ( )( ), vn E n  r r , without reference to the value  

of the functional, [ ]vE n , at a different density. How this differentiation can be carried out was the central 
theme in I. 

The section that follows reviews the concept of N-representability that allows the resolution of some of the 
difficulties connected to the v-representability problem, in particular regarding the definition of the Hohenberg 
and Kohn functional. It also sets up the framework for the explicit performance of derivatives with respect to the 
density. 

2. N-Representability and the Constrained Search 
A function of coordinates, ( )n r , that is everywhere finite, non-negative and integrates to an integer, N , is said 
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to be N-representable [8] because it can be obtained from an antisymmetric N-particle wave function, 

( )( ) ( )1 2, , ,N N
NNΨ = Ψ r r r r , by means of the integral, 

( ) ( )( ) 2

1 2d d .N
NNn N= Ψ∫ r r r r                             (0.7) 

This represents the expectation value of the density operator,   

( ) ( ) ( )†ˆ .n ψ ψ=r r r                                  (0.8) 

where ( )†ψ r  and ( )ψ r  are creation and annihilation operators for an electron at r , with respect to a wave 
function, ( )1, ,N

NΨ r r , normalized to unity, 

( )
2

1 1, , d d 1.N
N NΨ =∫  r r r r                             (0.9) 

Unit normalization is a strict requirement because the modulus squared of the wave function represents the 
classical probability of finding a system of N  particles in the configuration described by the instantaneous 
values of the coordinates, ( )1 2, , , Nr r r . It is seen that the density is subject to strictly integral normalization, 

( )d .n N=∫ r r                                    (0.10) 

The notation, ( )( ) ( )N
N nΨ →r r , signifies that the wave function, ( )( )N

NΨ r , leads to a density through 

(0.7) [9]. 
There are an infinite number of wave functions that lead to a given density, and a formal procedure for deter- 

mining the complete set, ( )( ){ }N
N N

Nn
S n
Ψ →

= Ψ Ψ →r , of these wave functions has been set forth by Cios- 

lowski [10]-[12]. In the constrained search formulation introduced by Levy [8] and later Lieb [7], one examines 
all such wave functions and determines the one (degeneracy excluded) that minimizes the expectation value of 
the sum of the kinetic and inter-particle potential operators, 

[ ]
( )

0 0
ˆ ˆ ˆ ˆMin .

N

N N N N N N N

n

F n T U T U
Ψ →

= Ψ + Ψ = Ψ + Ψ


r

                (0.11) 

Analogously, one defines the kinetic energy functional (see (0.4)), 

[ ]
( )

0 0
ˆ ˆMin .

N

N N N N N

n

T n T T
Φ →

= Φ Φ = Φ Φ


r

                      (0.12) 

in terms of a wave function that leads to the density and minimizes the expectation value of the kinetic energy of 
a system of N  particles. 

Assuming the absence of degeneracy, the constrained search returns a single wave function, ( )( )0 NΨ r . This  

wave function exists regardless of whether or not the density is v-representable. In the case in which the density 
happens to be v -representable in terms of a potential ( )v r , so that it arises through (0.7) from the solution,  

( )( )GS
N

NΨ r , of a Schrödinger equation for the ground state of a system of N  generally interacting particles  

under ( )v r , then, 

( )( ) ( )( )0 GS .N N
N NΨ = Ψr r                              (0.13) 

In this case, the constrained search yields, [ ]HKF n , 

[ ] [ ]HK .F n F n=                                  (0.14) 

Thus, the constrained search solves one aspect of the v-representability problem, i.e., provides a rigorous 
definition of a functional of the density that for v-representable densities defines [ ]HKF n . Notably, however, the 
concepts of N-representability and the constrained search do not solve the v-representability problem, namely, 
they do not provide a rigorous mathematical procedure that can determined whether or not an arbitrary density is 
v-representable (associated with the ground state of a potential). 
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Furthermore, the present state of the formalism reveals a deep characteristic of the method: The Ho- 
henberg and Kohn functional, obtained through a procedure, that of the constrained search, is given as the 
expectation value of operators with respect to wave functions that generally are not mere functions of the 
density [13]. 

2.1. Functionals of Form and of Process 
Based on sole knowledge of a density, ( )n r , the constrained search delivers [ ]F n , establishing a point (an 
ordered pair) in the functional, ( ) [ ]( ),n F nr . The minimizing wave function, ( )( )0 NΨ r , is also a functional of 
( )n r . These functionals are universal in the sense that the sets of ordered pairs that define them have as first 

entry (independent variable) the density regardless of whether or not it is v-representable. The term universal can 
be taken to refer to this exclusive dependence on the density, or the lack of dependence of the entire functional 
on external elements such as the potential. The extension of this interpretation to individual elements of the 
range of the functional as mere functions of the density, however, has no rigorous foundation. 

Functionals of form are mere functions of the independent variable, such as, for example, the functional 
defined by the integral, ( ) ( )dv n∫ r r r . They exhibit explicitly the independent variable in the manner in which 
an ordinary function is written explicitly in terms of its independent variable. A functional of form is an ex- 
pression, such as an integral, set of integrals, algebraic forms, exhibiting explicitly in parametric form the 
presence of the independent variable (one can imagine expressions containing blank spaces to be filled by the 
independent variable, the density function). 

On the other hand, the quantities ( )( )0 NΨ r  and [ ]F n  are functionals of process, determined through a  

procedure, here the constrained search. Such functionals are notorious for defying expression as functionals of 
form [14]. Yet, since the introduction of Kohn-Sham DFT, there has been an intense effort to develop func- 
tionals of form, (to say nothing about developing functionals by fitting to experiment [15]-[23]!) 

With the exception of the so-called exact exchange treated within the optimized effective potential (OEP) 
method [24] (analyzed below) and the recently developed self-interaction free (SIF) method [25], no functional 
proposed for the implementation of the Kohn-Sham is obtained as an expectation value of an operator with 
respect to a wave function, and hence none is formally valid. Furthermore, as discussed below, of the two me- 
thods that fulfill this condition, only the SIF methodology is obtained through rigorous derivation of the func- 
tional derivative of expectation values, based on the properties of Hilbert spaces and expansions in terms of 
orthonormal and complete bases in such spaces. 

2.2. Are the Kohn-Sham Orbitals Functionals of the Density? 

In the absence of degeneracy, the antisymmetric wave function that leads to a given density, ( )( ) ( )0 1N nΦ →r r ,  

and minimizes the expectation value of the kinetic energy of a system of N  particles 

[ ]
( )

0 0
ˆ ˆMin .N N N N

n
T n T T

Φ →
= Φ Φ = Φ Ψ



r
                        (0.15) 

takes the form of a Slater determinate [7], 

( )( ) ( ) ( ) ( )1 1 2 2det , , , ,N NN f f fΦ = r r r r                         (0.16) 

where the ( )jf r  are single-particle orbitals. The fact that ( )( )0 NΦ r  is a uniquely defined functional of the  

density may induce the notion that the orbitals entering the definition of 0Φ  are individually functionals of 
the density. It is used, for example, as a formal justification of the concept of orbital dependent functionals that 
underly the development of the optimized effective potential (OEP) method. e.g., [24]. 

Even though the Slater determinant, 0 nΦ → , is a uniquely defined functional of the density, the individual 
orbitals in the determinant do not have this property (except in the trivial case of the ground state of a single 
particle in an external potential). Indeed, there is no unique association of any of these orbitals to the density 
characterizing 0Φ , or any other density. Each orbital can contribute to the formation of determinants that lead 
to different ground state densities or densities of excited states. For example, the ground state of a single particle 
in a one-dimensional square well potential with infinite walls contributes to the determinant describing the 
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ground state of N  non-interacting particles, for all N . It also contributes to the determinant describing an 
infinite number of excited states of all possible numbers of particles. Note also that even though the complete set of 
all anti-symmetric, N-particle wave functions that lead to a density is a unique functional of the density, by far not 
each element of the set is a functional of the density. Therefore, generally there exists no functional of the form, 

( ) ( )( )( ), N
Nn Ψr r , (except of specific cases of minimizing wave functions). Yet, each isolated pair,  

( ) ( )( )( ), N
Nn Ψr r , or ( ) ( )( ) ( )( )( )ˆ ˆ, N N N N

N Nn T UΨ + Ψr r r  as well as ( ) ( )( ) ( )( )( )ˆ, N N N
N Nn TΦ Φr r r ,  

does possess a derivative of the second entry (dependent variable, whether a wave function leading to the den- 
sity, or an expectation value with respect to such a wave function) with respect to the density, evaluated at the 
density in the pair. 

This is an illustration of the general principle that even though a collection of objects may be a unique 
functional of the density, the individual elements of the collection do not necessarily have this property, but do 
possess derivatives with respect to the density. The absence of a functional also explains the absence of a Taylor- 
series-like expansion connecting two points in the range of the functional. 

3. Derivatives with Respect to the Density 
This section of the paper provides a summary of the notions underlying functional derivatives with emphasis on 
functionals whose independent variable is subject to normalization to an integral number. A more extensive 
discussion is given in I. 

We recall the main result of that paper: A functional derivative is to be interpreted as the rate of change 
induced on the dependent variable through a change at a single point, r , of the independent variable (a 
given function in the domain of the functional) and can be determined through knowledge of that single 
independent variable and its associated dependent variable. This definition obviates the need for determining 
differences in the dependent variable induced by differences in the independent variable defined over all 
space. 

3.1. Functional Derivatives of Density Functionals 
Because of the fundamental importance of the density as the independent variable of density functional theory, 
we review some of the salient features of derivatives with respect to that quantity. 

In analogy with derivatives of functions, conventional functional differentiation measures the rate of change 
in the functional with respect to the change in the independent variable [3], where the difference is defined over 
all space (the domain of the independent variable). Consider, for example, the simple (linear) functional, 

[ ] ( ) ( )d ,wQ n w n= ∫ r r r                                  (0.17) 

where ( )w r  is a function of coordinates, that leads to a well-defined integral, [ ]wQ n . Conventional func- 
tional differentiation calculates the rate of change of the functional with respect to the change in the independent 
variable by means of the limit, 

[ ] [ ] [ ]
( ) ( ) [ ]

( ) ( )
0 0

1lim lim d d ,w w w wQ n Q n Q n Q n
n n

φ δ δ
φ φ

δ δ→ →

+ −
= =∫ ∫ 




 
r r r r

r r
           (0.18) 

where ( )φ r  is an arbitrary test function. Now, for the explicit functional in (0.17), we obtain the expression, 

[ ] [ ] ( ) ( ) ( ) ( ) ( ) ( )
0 0

lim lim d d .w wQ n Q n n n
w w

φ φ
φ

→ →

+ − + −
= =∫ ∫ 

 
 

r r r
r r r r r         (0.19) 

Comparing the last two integrals over the arbitrary function, ( )φ r , we can set the remaining integrants equal 
point by point to obtain, 

[ ]
( ) ( ).wQ n

w
n

δ
δ

= r
r

                                 (0.20) 
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Were the density function an ordinary function of coordinates, the last derivation of the functional derivative 
would be rigorous. In that case, ( )n r  and ( ) ( )n φ+ r r  would lie in the domain of definition of the func- 
tional, [ ]wQ n . However, the density is far from an ordinary function. 

The density must be non-negative, and must be normalized to an integer, N . Both of these condition are in 
peril when the density is changed arbitrarily by ( )φ r . For any 0≠ , normalization can fail; (let 
( ) ( )Knφ =r r , where ( )Kn r  is a density normallzed to K ). However small the deviation may be, integral 

normalization can fail, while quantum states must be normalized to unity and the density must be normalized to 
an integer, strictly. On the other hand, forcing the choice of ( )φ r  such that normalization to an integer is pre- 
served, (by imposing the condition, ( )d 0φ =∫ r r ), violates the requirement for arbitrariness, and the last 
equality cannot be inferred. Therefore, the function, ( ) ( )n φ+ r r , is not in the domain of [ ]Q n , and con- 
ventional differentiation becomes inapplicable. 

This also shows that conventional functional differentiation of the energy functional, [ ]vE n , cannot be 
performed. It is certainly true that the functional has a minimum at the ground state density of ( )v r , but its 
functional derivative, interpreted conventionally, cannot be performed and thus cannot be said to vanish there. In 
fact, that derivative simply does not exist (this should not be interpreted in terms of the derivative vanishing, 
rather that it has no existence). It seems to be one of the misconceptions of conventional wisdom about density 
functional theory that the minimum of the energy functional can be approached variationally through the process 
of functional differentiation [26] through consideration of changes induced by densities in the vicinity of a given 
density. However, in the sense just described, density functional theory is not variational. 

The considerations above can be viewed as a proof by construction of the following theorem (see also 
discussion in I): 

Theorem on functional derivatives in DFT: No conventional functional derivatives can be defined over the 
domain of densities with integral normalization. 

As shown in I, conventional functional differentiation can also be interpreted as (indeed, be replaced by) the 
rate of change of the functional (dependent variable) with respect to change in the independent variably (say, the 
density) at a given coordinate point, r . The rate of change is an inherent property of the dependent variable and 
its associated independent variable and is divorced from any connection with the values of independent and 
dependent variables that are different (even infinitesimally) from the ones participating in the differentiation 
process. Functional differentiation now takes the form [27], 

( )
( )

( ) ( ) ( )
0

lim .w w wQ n Q n Q n
n

δ δ
δ →

′+ − −          =
′ 





r r r r r
r

                 (0.21) 

When this procedure is applied to the functional, [ ]vE n , it leads to the result in (0.6) but with the derivative 
obtained locally, within a single pair of a density and the value of [ ]vE n  at that density. The following sub- 
sections examine some of the attempts in the literature to circumvent the difficulties of functional differentiation 
over domains constrained by the condition of integral normalization. 

3.2. Extensions to Ensembles and Non-Integral Normalization 
Conventionally, attempts to bypass the difficulties associated with integral normalization in the performance of 
derivatives with respect to the density have been based on the concept of analytic continuation of the Hohenberg 
and Kohn functional or the constrained search functional to ensembles [28] [29]. An ensemble (mixed state) 
describes the statistics of measurement outcomes encoded in a density matrix, 

2 2ˆ , with 1.j j j j
j j

w wΓ = Ψ Ψ =∑ ∑                         (0.22) 

If the jΨ  describe states of a given system, then, j k jkδΨ Ψ = , and the density describing the mixed 
state retains integral normalization. In this expression, the system is known to occupy one and only one of the 
states, jΨ . The chance that the system occupies a particular state is given by the classical probability 

2
jw . (Contrast this with the superposition forming a pure state, j jjwΨ = Ψ∑ , in which the system is 

taken to be simultaneously present in all states in the superposition.) 
Of interest to the present discussion is the case in which the individual states in the ensemble may correspond 
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to systems with different numbers of particles. 
Now, with ( )jN

j nΨ → r , the ensemble density, 

( ) ( )2 2
, with 1,jN

j j
j j

n w n w= =∑ ∑r r                          (0.23) 

is no longer necessarily normalized to an integer. In this case, the constrained search functional takes the form [4] 
[7], 

[ ]
( )


( ) 2
frac

ˆ

ˆInf Tr .jN
j

n j
F n T U w F n

Γ→

  = Γ + =   ∑
r

                     (0.24) 

Note the appearance of an infimum rather than a minimum designating the lack of a rigorous procedure that 
allows a search over all possible density matrices leading to a given ensemble density (see also below). 

3.3. Variational Treatment of Fractional Charges 
The variational treatment of density functional theory rests on consideration of the expression, 

( ) ( )( )( )d 0,E n N
n
δ µ

δ
− − =∫ r r

r
                          (0.25) 

where the Lagrange multiplier, µ , guarantees preservation of particle number that is not necessarily taken to be 
integral, ω+MN = , with 0 1ω< < . From the vanishing of the last variation, we obtain,   

[ ]
( ) ( ) ,vE n

N
n

δ
µ

δ
=

r
                                (0.26) 

with ( )Nµ  interpreted as the chemical potential defined with respect to continuous (non-integral) particle 
number. 

Under this assumption, functional derivatives are conventionally defined through the expression, 

[ ]
( ) ( )

( ) ( )

( ) ( ) ( ) ( )

d

d ,

N

vN N N N
v v

n

N N

E n
E n E n n n

n

N n n N

δ
δ

µ µ

+ +

+

     − = −     

 = − = 

∫

∫
r

r r r
r

r r r

 

 

                  (0.27) 

describing the change in the energy of the ensemble when the number of particles changes by  . This inter- 
pretation is now subjected to formal scrutiny. 

In the case of fractional charges, the energy functional is taken to have the form, 

[ ] ( ) ( ) [ ]fracd ,vE n n v F n= +∫ r r r                             (0.28) 

where the functional, [ ]fracF n , is determined through a proposed generalization of the constrained search to en- 
sembles, 

[ ]
( )


( )frac
ˆ

ˆInf Tr ,
D n

F n D T U
→

 = + 
r

                             (0.29) 

where the minimum is defined with respect to a search over density matrices, 
1 1

1 1
ˆ with 1.M M M M

M M M MD a a a a+ +
+ += Ψ Ψ + Ψ Ψ + =              (0.30) 

[ ]
( )


( ) ( )1
frac

ˆ

ˆInf Tr 1 ,M M

D n
F n D T U F n F nω ω+

→

     = + = + −    
r

              (0.31) 

where ( )1 1ˆ 1M M M MD ω ω+ += Ψ Ψ + − Ψ Ψ . The corresponding density, 

( ) ( ) ( ) ( )1ˆ ˆTr 1 ,M M Mn Dn n n Mω ω ω ω+ + = = + − = + r r r                  (0.32) 

is normalized to a non-integral number. 
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The form of the integral in (0.27) is now consistent with the definition of conventional functional diffe- 
rentiation, evidently alleviating the drawbacks of integral normalization. This analysis has been used to study, 
for example, the properties of open systems [30] that, because of the possibility of exchanging particles with the 
environment are usually characterized by a fractionally normalized particle density. 

Unfortunately, however, this formulation is fundamentally flawed. 
First, the construction of the infimum in (0.24) requires a search over all possible superpositions over all 

possible densities with integral normalization that lead to a given ensemble density. Yet, it can readily be de- 
monstrated that even the construction of all possible densities with a given integral normalization is not possible 
(see Appendix). (Contrast this with the determination of all possible antisymmetric wave functions leading to a 
given density with integral normalization, as described by Cioslowski [10]-[12]). Second, the formalism rests on 
the assumption that the constrained search functional is a functional of form that can be analytically continued to 
densities with fractional normalization. As shown above, however, this assumption is false. The constrained 
search functional is defined strictly with respect to quantum states with unit normalization leading to a density 
with integral normalization. 

Finally, we recall the classical nature of a mixed state as representing the statistics of measurement outcomes.  

The expression, 
( )

N
vE n

n

ωδ

δ

+  
r

, denotes the conventional functional derivative that is multiplied by the difference  

of two densities. However, because of the classical character of an ensemble, the conventional functional 
derivative of the ensemble is by definition the ensemble of conventional functional derivatives, each of which, 
as already shown, fails to exist. 

On the other hand, when the derivative of the functional in (0.31) with respect to the density is replaced with 
the derivative with respect to the occupation number, ω , one obtains the physically and mathematically mean- 
ingful result, 

( )1
1

1
.

N N N
v v v N N

v v

E n E n E n
E n E n

ωδ ω ω

δω δω

+ +
+

     + −         = = −                 (0.33) 

The change in the energy of the ensemble under a change, ε , in the occupation number now takes the form, 
1 .N N N N

v v v vE n E n E n E nω ω+ + + +        − = −        
                     (0.34) 

The last expression negates the notion of a chemical potential that is a continuous function of particle number. 
It also demonstrates that the derivative of the energy functional, [ ]vE n , with respect to the density at its mi- 
nimum vanishes modulo a constant. The extension of DFT to open systems (described by ensembles, or mixed 
states) is given in work currently in progress. 

3.4. Derivative Discontinuity 
The analytic continuation of the constrained search functional (or the Hohenberg and Kohn functional) to 
fractionally normalized densities gives rise to the concept of a single function of the density representing the 
exchange and correlation functional associated with a mixed state. It seems to be one of the enduring fallacies in 
DFT that the exchange and correlation functional (and consequently [ ]F n ) is a mere function of the density, 
(in fact an analytic function), that can be evaluated for any density regardless of normalization. From this 
springs the requirement that the functional derivative of the exchange and correlation functional with respect to 
the density must have a discontinuous slope at integral values of particle number (see [4] and references 
therein). 

It is to be emphasized that [ ]F n  is an expectation value with respect to a wave function that is normalized 
to unity and leads to a density normalized to an integer. It follows that the concept of a single exchange and 
correlation functional defined for non-integral normalizations of the density and that at integral numbers of 
particles exhibits a discontinuity in the derivative with respect to particle number is both physically and 
mathematically invalid. Such a functional would straddle two different Hilbert spaces (each associated with a 
particular value of particle number) that cannot be described in terms of a single density or a single functional of 
a density. 
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3.5. Parametric Differentiation 
As shown in I, conventional functional differentiation of density functionals is not possible. It is not the case that 
the minimum of the energy functions, [ ]vE n , can be determined through the vanishing of the functional deriva- 

tive, 
[ ]
( )

0vE n
n

δ
δ

=
r

 under the conventional interpretation. The functional is variational but in a weak sense:  

Direct evaluation of the functional at various densities will exhibit a minimum at the density of the ground state 
of the system of N-interacting particles under the potential, ( )v r . That density, however, cannot be determined  

in a continuous procedure through the vanishing of the conventional functional derivative, 
[ ]
( )

vE n
n

δ
δ r

. 

At the same time, the rate of change of a functional obtained through parametric differentiation does vanish at 
extremal points, such as maxima, minima or inflection points. In this case, the rate of change of ][nEv , for 
example, at its minimum must be determined through the independent evaluation of the rates of change of its  
constituent parts, namely, ( ) ( ) [ ]v n F n+∫ r r . 

The implications of this development are far reaching: Because parametric derivatives (and rates of change) 
are local depending only on the particular dependent and independent variables of a single ordered pair, de- 
rivatives with respect to the density are well defined with respect to any wave functions leading to a density, not 
only those that are functionals of the density. It follows that any expectation value of any operator with respect 
to any wave function leading to a given density can be differentiated with respect to the density to yield the 
corresponding rate of change with respect to that density. Because the set of all expectation values with respect 
to wave functions leading to a given density includes as a subset the expectation values that may be functionals 
of the density, such expectation values can also be differentiated uniquely with respect to the density (again 
yielding their corresponding rates of change). 

It follows that all attributes of conventional functional derivatives carry over intact to the process of dif- 
ferentiation based on the Dirac delta function [31] through (0.21). In other words, as demonstrated in I, pa- 
rametric differentiation is identified with conventional functional differentiation in all cases, including those for 
which conventional differentiation procedures are blocked. Indeed, parametric differentiation is the procedure 
employed routinely for determining functional derivatives in all cases, especially in density functionally 
theory. 

Using (0.21), the functional derivative of the functional, [ ] ( ) ( )dwQ n w n= ∫ r r r , takes the form,   

[ ]
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

1lim d ,w

n

Q n
w n n n w

n nδ

δ
δ δ

δ δ′ →
′ ′ ′= + − − =  ′ ′ ∫r

r r r r r r r r
r r

        (0.35) 

or 
[ ]
( ) ( ) ( )

( ) ( ) ( ) ( )d d ,wQ n n
w w w

n n
δ δ

δ
δ δ

′ ′= = − =
′∫ ∫

r
r r r r r r r

r r
               (0.36) 

a result that agrees with (0.20). We conclude that for functionals of form subject to conventional functional 
differentiation, but also for those for which such procedures are blocked, the change described in terms of the 
Dirac delta function produces the rate of change (parametric derivative) with respect to the density known only 
at the density at which the derivative is performed. 

3.6. Parametric Differentiation of Ensembles 

The derivative of the energy, N
vE n ω+   , with respect to the density can be evaluated through the application of  

(0.21) to each element of the ensemble in (0.31). Parametric differentiation yields the expected result, 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 21
N

vE n
v v c v v c c

n

ωδ
ω ω

δ

+   = − − + + − + =r r r r
r

               (0.37) 

so that the parametric derivative (functional derivative) of the ensemble energy at its minimum vanishes modulo 
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a constant (as is the case for pure states). 

4. The Self-Interaction Error and Its Treatment 
The self-interaction error (defined below) has been a veritable thorn on the side of DFT calculations essentially 
from the start. Indeed, its presence was spotted at the very inception of quantum mechanics as pointed by Fock 
[32], when even Fermi suggested a correction [33]-[35]. Although easily realized that in applications of the 
Kohn-Sham formalism the self-interaction error can be rigorously removed through the explicit use of the ex- 
change term, such use is hampered by the inability to differentiate this term with respect to the density in order 
to determine the effective potential in the Kohn-Sham formalism. The difficulty is clear: The Kohn-Sham 
functionals are not written explicitly in terms of the density, and hence the concept of parametric differentiation 
finds no immediate application. 

In the Kohn-Sham formulation of DFT, the Coulomb energy takes the form, 

( )1 2
C 0 0 1 2

1 2

,1ˆ d d ,
2

N n
U U= Φ Φ =

−∫∫
r r

r r
r r

                        (0.38) 

where ( )( )0 NΦ r  is the N th order Slater determinant formed by the Kohn-Sham orbitals, ( )jf r , (assumed 

real, and suppressing the spin variable), with 1, 2, ,j N=   denoting the N  lowest in energy eigenfunctions 
of a single-particle in the Kohn-Sham potential, and are such as to reproduce the density by means of the 
relation, 

( ) ( ) 2
.j

j
n f= ∑r r                                   (0.39) 

They also define the two-particle density in the form, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 2 1 2 1 2 1 2 1 2

,

1, , ,
2 j i i j

i j
n f f f f n n J= − = −∑r r r r r r r r r r              (0.40) 

where the exchange term is given by the expression,   

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2
,

1, .
2 i j j i

i j
J f f f f= ∑r r r r r r                       (0.41) 

With this definition, the Coulomb energy can be written as the sum of a so-called Hartree term and an 
exchange term, 

( ) ( ) ( )1 2 1 2
C 1 2 1 2 H x

1 2 1 2

,1 d d d d .
2

n n J
U U E= − = +

− −∫∫ ∫∫
r r r r

r r r r
r r r r

               (0.42) 

In most (if indeed not all) conventional calculations based on the LDA [2]-[4], the exchange term is subsumed 
into the so-called exchange and correlation functional, where it is treated approximately within some scheme, 
e.g., [36]. This procedure, however, reduces the description of the Coulomb energy to that of the Hartree term 
(first term on the right of the equals sign in the last expression). Given the form of the density in (0.39), this 
allows the interaction between two different electrons both in the same orbital, in violation of the Pauli ex- 
clusion principle and introducing the unphysical effect known as the self-interaction error. 

The greatest defect in the treatment of the Coulomb energy, however, is at the fundamental level. There is no 
mathematical justification for splitting a single expectation value, (0.38), into two terms that are accorded 
disparate treatments. The classical expression for the interaction of a charge density with itself does not contain 
the quantum SI error (no violation of the exclusion principle), thus it is unjustified to consider the Hartree term 
in quantum mechanics as classical and relegate quantum effects to the exchange and correlation functional, the 
usual practice. Alternatively, there is as much quantum character in the Hartree terms as in the exchange 
terms; that’s why self-interaction cancels out exactly when the two are combined into the expression in (0.38). 
That all methodology so far developed provides an incorrect treatment of the Coulomb interaction now is 
clear. 

We turn to a review of three formal methods suggested for the elimination of the SI effect. 
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4.1. The Self-Interaction Correction Method 
Of the attempts used to attack the self-interaction problem, three can be singled out for special mention; the 
self-interaction correction (SIC) [37] method, the optimized effective potential (OEP) [24] [38]-[40] method, 
and the recently introduced self-interaction free (SIF) [25] method. 

In the SIC method, a correction to the self-interaction error is attempted through a process of orbital pealing. 
Although this does reduce the error, it cannot be shown to do so rigorously. Equally troubling is the violation of 
the second theorem; applied to atomic systems [37], for example, the method gives ground state energies that lie 
below experiment, the difference with experiment increasing with increasing atomic number. 

From a formal standpoint, however, the most damaging aspect of the SIC method is its lack of analytic 
standing: The peeled expressions do not correspond to expectation values of operators. The method treats the 
first term on the right of the equals sign in (0.42), leaving the second, a large negative term that carries the full 
burden of self-interaction, being assigned to the exchange and correlation functional, undisturbed. Consequently, 
there can be no demonstration that the potential obtained through orbital pealing is identical to that given when 
the derivative of the exchange energy with respect to the density is added to the derivative of the Hartree term. 
The method proceeds along the widely held perception (underlying a number of concepts discussed here) that 
the functional expressions in DFT can be manipulated on the basis of classical expressions (specific forms 
presumed to describe expectation values). In retrospect, the violation of the bound demanded by the second 
theorem may not be all that surprising. 

4.2. The Optimized Effective Potential (OEP) Method 
The optimized effective potential method [24] [38]-[40] is explicitly concerned with the derivative of the 
Coulomb energy, in particular the contribution of the exchange term to the derivative with respect to the density. 
Denoting the exchange contribution to the Coulomb energy with xE , and suppressing spin, we have, 

( ) ( ) ( ) ( )1 2 1 2
,

x 1 2
1 2

1 d d ,
2

i j j i
i j

f f f f
E = −

−

∑
∫∫

r r r r
r r

r r
                       (0.43) 

and the exchange contribution to the Coulomb potential, 

( ) ( ) ( ) ( ) ( )
( )

1C x
C H x 1

1

d .
nU Ev v v

n n
δ δ
δ δ

= = + = +
−∫
r

r r r r
r r r r

                    (0.44) 

It is clear that the derivative, 
( )

xE
n
δ
δ r

, requires the derivative of the orbitals with respect o the density, 
( )
( )
jf

n
δ
δ ′

r
r

.  

In examining the merits of the OEP method, we focus on the approach taken in evaluating this derivative. We 
note that there is no explicit appearance of the density in the orbital, and hence parametric differentiation is not 
possible at this stage. 

In the OEP method, one attempts to take advantage of the fact that the Kohn-Sham orbitals are the solutions 
of a single-particle Schrödinger equation characterized by the Kohn-Sham potential, and uses the chain rule of 
functional derivatives to arrive at the expression, 

( )
( )

( )
( )

( )
( )

d ,j jf f v
n v n

δ δ δ
δ δ δ

′′
′′=

′ ′′ ′∫
r r r

r
r r r

                           (0.45) 

introducing derivatives of orbitals with respect to the potential, and that of the potential with respect to the 
density. 

4.2.1. Derivatives with Respect to Potential 
Although the orbitals do not exhibit explicitly the potential, they can be parametrically expressed in terms of the  
potential (see also I). Because they satisfy the Schrödinger equation for a potential, say ( )sv r , they can be  
obtained as the solutions of the Lippmann-Schwinger equation (LSE), the integral representation of the 
Schrödinger equation, at energy, E , 
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( ) ( ) ( ) ( ) ( )0 0; ; , ; d ,sf E E G E v fφ ′ ′ ′ ′= + ∫r r r r r r r                        (0.46) 

where ( )0 ; Eφ r  is the solution at zero potential, and ( )0 , ;G E′r r , the free-particle propagator at energy E , 
encodes the boundary conditions at infinity. That the potential provides a complete parametric description of the 
orbital becomes evident when the LSE is expanded through iteration to powers of ( )sv r . In operator form, this 
expansion takes the form (for a development in terms of the coordinate representation, see I), 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 .s s sf E E G E v E G E v G E v Eφ φ φ= + + +               (0.47) 

The functional derivative of the orbital with respect to the potential can now be obtained in parametric mode 
by elementary means, 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1
0 0 0 01 ; .s s s

s s

f E f E
G E f E G E v G E v G E f E G v E f E

v v
δ δ
δ δ

−
= + = − =     (0.48) 

In the coordinate representation, and in the limit, jE →  , we have, 

( )
( ) ( ) ( ), ; ,j

j j
s

f
G f

v
δ
δ

′ ′=
′


r

r r r
r

                              (0.49) 

where the single-particle Green function of a system under an external potential, ( )sv r , can be written in the 
form of a resolvent, with η  a positive infinitesimal, 

( ) ( ) ( )
, ; ,

i
k k

j
k j k

f f
G

η
′

′ =
− +∑

 
r r

r r                              (0.50) 

defined as a summation over all states of a single particle in ( )sv r  and clearly displaying a pole at k j=  . 

The expression in (0.49) is definitive, providing a rigorous expression for the derivative, 
( )
( )

j

s

f
v

δ
δ ′

r
r

. It is also  

an inherent property of the potential and the orbital, expressed strictly in terms of these quantities. Finally, 
assuming that the single-particle levels are not degenerate, the static density linear response function (static sus- 
ceptibility) of the Kohn-Sham system can be written in the form, 

( ) ( )
( ) ( ) ( ) ( ), 2 , ; ,j j j

js

n
f G f

v
δ

χ
δ

′ ′ ′= =
′ ∑ 

r
r r r r r r

r
                    (0.51) 

along with its inverse, ( )1 ,χ− ′r r , defined by the relation, 

( ) ( ) ( )1, , d .χ χ δ−′′ ′′ ′ ′′ ′= −∫ r r r r r r r                          (0.52) 

This is a convenient point to compare with the results of the OEP method. 

In the OEP method, the functional derivative, 
( )
( )

j

s

f
v

δ
δ ′

r
r

, is calculated to first order in perturbation theory,  

leading to the expression, 
( )
( ) ( ) ( ), ; ,j

sj j j
s

f
G f

v
δ
δ

′ ′=
′


r

r r r
r

                          (0.53) 

where the so-called Kohn-Sham Green function is defined by the expression, 

( ) ( ) ( )
, ; .

i
k k

sj j
k j j k

f f
G

η≠

′
′ =

− +∑
 

r r
r r                           (0.54) 

Clearly, the Kohn-Sham Green function is mathematically a different quantity than its exact counterpart and, 
in fact, the absence of a pole disqualifies it as a Green function. Although numerically the exact expression in 
(0.49) and the approximate one in (0.53) may give similar results (and calculations often indicate this to be the 
case), formally the latter expression is invalid. 
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This is but the beginning of the difficulties underlying the OEP methodology. (For a rigorous analysis of 
perturbation theory used to evaluate functional derivatives, see Appendix) 

4.2.2. Further Difficulties of the OEP Method 
In spite of the absence of a pole in ( ), ;sjG E′r r , both expressions, (0.49) and (0.53), are extremely difficult to 
handle numerically. This pole structure is reflected in the inverse susceptibility, 

( ) ( )
( )

1 , ,sv
n

δ
χ

δ
− ′ =

′
r

r r
r

                                   (0.55) 

that is calculated through the Green functions in (0.51) and (0.52), but see [41], leading to the expressions, 

( )
( ) ( ) ( ) ( )1, , d ,j

j

f
G f

n
δ

χ
δ

−′′ ′′ ′′ ′ ′′=
′ ∫
r

r r r r r r
r

                         (0.56) 

corresponding to (0.49), and to 

( )
( ) ( ) ( ) ( )1, , d ,j

sj j s

f
G f

n
δ

χ
δ

−′′ ′′ ′′ ′ ′′=
′ ∫
r

r r r r r r
r

                        (0.57) 

in the case of (0.53), where sχ  is an approximation to its exact counterpart defined in (0.55), with the exact 
Green function (0.50). 

Taking advantage of the fact that ( )1 ,sχ
− ′r r  has no zeros ( ( ),sχ ′r r  has no poles), one multiplies both sides 

of the expression of the derivative of the exchange energy with respect to the density by ( ),sχ ′r r , see [24], 
obtaining an integral equation for an optimized potential that satisfies the equation and minimizes the energy 
functional, [ ]vE n . 

This procedure is characterized by a number of formal difficulties: 
1) Recall that every orbital has a derivative (rate of change) with respect to the density that depends only on 

the orbital and the density. Hence, the rate of change of every expectation value of any wave function that leads 
to any density can be uniquely obtained with respect to the density. Thus, it would be applicable to all ex- 
pectation values, regardless of their standing as a functional of the density or not. In particular, it would allow 
differentiation of the kinetic energy functional, or the expectation value of the kinetic energy operator with 
respect to any Slater determinant with respect to the density obtained from the determinant. Contrary to this 
rigorous analysis, the OEP method provides an expression for a derivative only if the orbital is v-representable, 
if the expectation value is a functional of the density and if the expectation value is associated with the minimum 
of a functional. 

2) A functional that is known to exhibit a minimum has values above the minimum value and a method that 
claims to determine the minimum must be able to detect these values through the non-vanishing of the derivative. 
The OEP method is inapplicable to arbitrary points in a functional, however. 

3) Most importantly, the OEP is inapplicable to an arbitrary expectation value of an operator with respect to a 
wave function leading to the density, if that expectation value and wave function are not functionals of the 
density. 

Consider, for example, a density of the form, 

( ) ( ) 2
,j

j
n f= ∑r r                                 (0.58) 

where the ( )jf r  are N  arbitrarily chosen solutions of a single-particle Schrödinger equation, 

( ) ( ) ( )21 .
2 r j j jv f f − ∇ + =  

r r r                            (0.59) 

Clearly, the density is that of an excited state of the non-interacting N-particle system under ( )v r . 
Now, multiply the last equation from the left by (the complex conjugate of) ( )jf r , and sum over the chosen 

set of orbitals to obtain the expression,   

( ) ( )d .j
j

T v n+ = ∑∫ r r r                              (0.60) 
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This expression cannot be differentiated with respect to the density within the formalism of the OEP method. 
There is no prescription for differentiating the kinetic energy, and T  is not a functional of ( )n r  (the Ho- 
henberg and Kohn theorems do not apply to excited states). 

4) The derivatives of wave functions (or individual orbitals) must be obtained strictly in the space of a given 
density. By searching over potentials, the OEP method violates that requirement and can no longer be shown 
formally to lead to the correct derivative of the exchange energy with respect to the density. 

5) The OEP was developed in an attempt to treat what is referred to as orbital dependent functionals. Basing 
the formalism on the orbitals, or the wave function, is contrary to the premise of DFT in which the independent 
variable is the density. Contrary to the claims in the literature [24] (and as already pointed out above), the 
orbitals of OEP are not functionals of the density; the orbitals shift as the search is carried out for the optimized 
potential. 

6) By expanding the search for a minimum to more than one density (and corresponding potentials) the OEP 
can be expected to lead to energies that are no higher than those obtained through a search pinned to a given 
density (as found by direct calculation [25]). 

7) The susceptibility-like function (density linear-response function) (0.51), represents the response of the 
density, ( )nδ r , at a point, r , due to a change in the potential at a single point, ′r . Since only the orbitals 
forming the density are occupied, the occupied orbitals are the only ones responding to the perturbation. Be- 
cause of the poles in the Green function, that overwhelm contributions from unoccupied states, that feature is 
preserved when the exact solution in terms of the Green function in (0.50) is used in (0.51). On the other hand, 
the expression of the susceptibility written in terms of the Kohn-Sham Green function leads to the unphysical 
result in which all states, occupied and unoccupied make a finite contribution to the susceptibility. 

These properties contrast with the general perception of the OEP method in which it is considered that the 
perturbation theory treatment is exact [24]. It can be said that the OEP method is of limited applicability, and 
even in the case of v -representable wave functions for which it is developed leads to results that are num- 
erically approximate but formally invalid. 

4.3. Potential Functional Theory 
Potential functional theory [42] is an attempt to provide formal foundation for the procedure of OEP method. It 
is based on functionals of the potential and is proposed to be the dual space of that of DFT. However, dual 
spaces contain the same number of elements whereas the space of densities contains all N-representable den- 
sities not all of which are v-representable. 

Furthermore, potential functional theory falls far short of the power of density functional theory, namely the 
determination of quantum states from the sole knowledge of physical observables. 

4.4. Other Methods 
Attempts to correct for self-interaction have also been introduced by Gidopoulos et al. [43] (and references 
therein). Unexceptionally, these methods fail to recognize the essential element causing the self-interaction error: 
The quantum nature of the Coulomb energy. This quantity is given through an expectation value of the Coulomb 
potential with respect to the determinantal state of the Kohn-Sham method, and must be treated as such. Its 
separation into a Hartree and exchange terms and the subsequent disparate treatment of the two terms is un- 
supported by analysis. Alternatively, the self-interaction error is eliminated exactly when the Coulomb energy is 
expressed in terms of the pair density obtained from the Kohn-Sham determinant and correctly differentiated 
with respect to the density. 

None of the difficulties mentioned with respect to previous methods arise with respect to the formalism 
described in the following section. 

5. The Self-Interaction Free (SIF) Method 
The self-interaction free (SIF) [25] method provides for the rigorous treatment of the Coulomb energy as a 
single expectation value and its functional derivative with respect to the density. 

It is useful to keep in mind the constrained search formulation and Cioslowski’s procedure for generating all 
wave functions that lead to a density, and the demonstration [10]-[12] that every wave function has a derivative 
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with respect to the density obtained within the space defined by the density. 
Cioslowski’s procedure, however, is computationally exceedingly difficult if not altogether out of reach. In- 

stead, the derivative can be calculated through a general property of Hilbert spaces, the expansion of an element 
of the space in an orthonormal and complete basis that is written explicitly in terms of the density. Such an 
expansion is confined to the Hilbert space of a single density and is an identity that can be freely interchanged 
with the wave function (e.g., an orbital). In the present case, the explicit appearance of the density allows 
immediate implementation of parametric differentiation. The details of the method can be found in [24]. 

Consistency 
The SIF methodology provides a consistent treatment of the kinetic energy and the Coulomb interaction energy, 
both being determined as expectation values of operators with respect to the same Slater determinant. With the 
exception of the OEP method, all other computational schemes introduced for the implementation of the 
Kohn-Sham formalism fail to satisfy this consistency condition. And, as discussed above, the OEP method is 
mathematically flawed, failing to determine the functional derivative of the exchange term with respect to the 
density. 

Lack of consistency and/or mathematical rigor can be blamed for the lack of uniqueness in treating the 
Coulomb interaction and the variety of results obtained in the many forms of implementation of the KS for- 
malism. 

6. Numerical Comparison 
Figure 1, part of which is quoted in [25], shows the exchange potential for atomic Argon determined by four 
different methods, two implementations of the OEP method [24]-[44], SIF and a method based on classical 
electrostatics introduced by Harbola and Sahni [45] that is applicable to spherical charges. The differences 
between the two OEP methodologies can be found in the original papers and is analyzed in [44]. 

Note that the two OEP methods, (that in the case of an exact theory should give identical results), deviate 
from one another and neither reproduces the exact results obtained by electrostatics that is, within numerical 
accuracy, indistinguishable from that of the SIF method. 

These features can be understood based on the formal analysis of I and this paper. The OEP method gives 
results obtained to first order in perturbation theory that are by construction different (see Appendix) from the 
rate of change of the exchange potential with respect to the density. Note that the electrostatics result, like SIF, 
makes no reference to densities other than the one entering the construction of the exchange term, properly 
obtaining the inherent property of rate of change that depends strictly on a density and its dependent variable 
(here the exchange term). 

The difference from the exact rate of change manifests itself in different ways in the two methods. In the 
conventional implementation of the OEP method [45], it leads to oscillations in the potential that, in the OEP 
literature, are referred to inter-shell structure. Here, they are revealed to be spurious effects caused by the lack of 
formal validity of the OEP methodology. Harbola and Sahni correctly point out [44] that a negative slope in the 
exchange potential corresponds to the unphysical effect of a positive hole repelling a negative electron. 

No inter-shell structure appears in the alternate scheme of Heaton-Burgess, et al., but unphysical effects per- 
sist. A spherical charge exerts no force at its center so that the exchange potential should approach the origin 
with zero slope. This condition is seemingly violated by the results of Heaton-Burgess [44]. 

In contrast to the OEP results, the exact results obtained within classical electrostatics and SIF are free of 
unphysical behavior. 

7. Correlation Energy 
As follows form the discussion in the paper, the concept of exchange and correlation functional is both unnece- 
ssary as well as an impediment to formal developments. The correlation functional, on the other hand, is of 
fundamental importance to the theory. 

With definitions given in the text, the correlation functional at given density has the form, 

[ ]c 0 0 0 0
ˆ ˆ ˆ ˆ .N N N NE n T U T U= Ψ + Ψ − Φ + Φ                         (0.61) 
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Figure 1. Comparison between the exchange potential of the Argon atom derived by the 
methods used in this paper (SIF, red, solid), the approach of Harbola and Sahni [45] (dashed, 
blue), and the results obtained by two different implementations of the OEP method: OEP 
designates the results obtained within first order perturbation theory (dashed, green), and 
Heaton-Burgess et al. [44] (dashed, orange).                                          

 
To be acceptable as an approximation to the exact functional, [ ]app

cE n  must satisfy the relation, 

[ ] [ ]app
c c ,E n E n≥                                    (0.62) 

guaranteeing the the minimum of the energy functional, [ ]vE n , provides an upper bound to the exact energy of 
the ground state of the potential, ( )v r . 

The last inequality would be satisfied in the presence of approximate wave functions, ( )( )0 NΨ r , and  

( )( )0 NΦ r  that obey the relations, 

0 0 0 0 0 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,N N N N N N N NT U T U T U T UΨ + Ψ ≤ Ψ + Ψ ≤ Φ + Φ ≤ Φ + Φ            (0.63) 

where 

[ ]app
c 0 0 0 0

ˆ ˆ ˆ ˆ .N N N NE n T U T U= Ψ + Ψ − Φ + Φ                        (0.64) 

The approximate wave functions are to be obtained in an implementation of the constrained search over a set 
of wave functions that lead to the density and chosen such that Ψ  minimizes the expectation value of 
ˆ ˆN NT U+ , with 0Φ  confined to a single determinant with the same minimizing property. 

The use of the constrained search envisioned here is clearly a tedious task, and the use of the approximate 
wave functions should be based on verification of the inequalities in (0.63) on a case-by-case basis. 

At the same time, in the limit N →∞  (e.g., extended system such as periodic solids) the correlation energy 
functional determined in the work of Ceperley and Alder [46], obtained in terms of a procedure that satisfies the 
inequalities in (0.63) in each step as it proceeds to the limit of infinite number of particles provides an ac- 
ceptable approximation to the correlation energy functional. 

8. The Fallacy of Universality and of Orbital-Free Density Functional Theory 
To the date of this writing, it is generally held that the Hohenberg and Kohn functional exists as a universal 
(potential independent) functional of the density, but its exact form as a function of the density is unknown. 

The inherent belief in the existence of such a form is realized by considering the more than two hundred 
forms [36], including fits to experimental data, proposed during the last nearly fifty years in an attempt to fill it. 
It is also evidenced by attempts to derive, for example, an orbital-free (read wave-function free) form of density 
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functional theory [47]-[52]. Yet, were such a functional available, it would represent a stunning negation of the 
very property, see 1) above, that makes DFT the remarkable formal scheme that it is claimed to be determining 
the wave function from the density. 

Because the wave function is a solution of a many-particle Schrödinger equation, the search for an orbital-free 
DFT amounts to a search of a wave-function-free solution of the Schrödinger equation. Given the interpretation 
of the density (an observable) determining quantum states, it would also negate the use of quantum mechanics in 
the study of interacting systems since it would allow analysis of classical reality (experiment) in terms of 
experimental results (represented by expectation values) without the explicit need of determining wave functions 
(quantum states). 

No confusion should arise from the existence of functionals of the density that may be expressed as functions 
of the density in special cases, such as, for example, the von Weizsäcker expression [3] for the kinetic energy of 
a single particle (or two particles of opposite spins on a single orbital), and the expressions for the kinetic energy 
and exchange energy (Dirac’s formula) [3] for the case of plane wave states that fill all space (jellium). Also, the  
ground state of a single-particle system with density ( )n r , is given by ( ) ( )0f n=r r . These are simply  

exceptions that prove the rule: The expectation values of operators are to be evaluated with respect to wave 
functions describing N-particle systems on a case by case basis, and generally defy representation in terms of 
classical expressions, as mere functions of the density. 

8.1. Hohenberg and Kohn Functional as Function of the Density 
Equation (0.60) in I displays a form for the transformation defining the elements of a basis used to construct the 
N-particle, antisymmetric wave functions leading to a given density, ( )n r , normalized to N . It is clear that 
each wave function can be expressed parametrically in terms of the density. All expectation values with respect 
to such wave functions, therefore, have this property. Furthermore, each wave function and each expectation 
value can be parametrically differentiated with respect to the density, through the corresponding derivative of 
the wave function under the integral signs determining an expectation value. 

It is also clear that all of the wave functions leading to a different density, ( )n′ r , can be obtained from the 
same procedure, described by Cioslowski [10]-[12]. Expectation values can be obtained through the wave 
functions determined by means a single procedure applied to a given density. This, however, is a far cry from 
determining wave functions, or expectation values, through replacement of the density in an otherwise fixed 
expression. 

This mitigates against the possibility of a Hohenberg and Kohn functional that is a mere function of the 
density. The same holds true for other functionals defined through the properties (minimization) of expectation 
values of operators. 

More directly, in the preceding paper, a constructive argument was developed against the existence of a 
universal functional of the density. It was demonstrated that any wave function leading to a density, including 
those obtained through the constrained search, can be written exactly in the form of expansions in terms of the 
equidensity basis (see I). If the functional (i.e., the expectation value of operators with respect to such a wave 
function) were universal, requiring only a change in the density to proceed from one density to the next, then the 
coefficients of each such expansion in a functional of the density would be constant! A simple direct calculation 
easily demonstrates that this is not the case (see, for example [25]). 

8.2. The Fallacy of an Exchange and Correlation Functional 
A previous paper [25] provides a derivation of the Kohn-Sham equations displaying a fundamental feature of the 
theory: The rigorous expression for the Kohn-Sham functional contains no exchange and correlation functional, 
but only a correlation energy functional (see [25]). The conventional exchange and correlation functional [3] [4] 
is obtained when the exchange term from the Coulomb energy functional is lumped together with the correlation 
functional. 

This conventional development is then coupled with the notion that the functionals of DFT are mere functions 
of the density giving rise to the large number of various forms produced for the description of exchange and 
correlation. It should be kept firmly in mind that elements of the Hilbert space, e.g., wave functions determining 
an expectation value, cannot be replaced with ordinary functions of an observable (the density) without raising 
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the implication that quantum mechanics itself is unnecessary (see previous subsection). It follows that general 
expectation values cannot in principle be expressed in terms of mere functions of observables, e.g., the density. 
The effects of wave functions in determining expectation values of operators cannot be second-guessed from the 
classical side, invalidating (with minor exceptions, see previous section) the various expressions for the ex- 
change and correlation functional introduced in implementations of the Kohn-Sham formalism thus far. 

Furthermore, given that the Hohenberg and Kohn functional is defined strictly in terms a pure state describing 
an integral number of particles, the notion that an exchange and correlation functional spans different particle 
numbers and that it displays a discontinuity at integral values of particle number is mathematically insensible. 

9. Strongly Correlated Systems: Beyond Density Functional Theory? 
It is customary to categorize systems in which the Coulomb energy exceeds (often by far) the kinetic energy 

GS GS GS GS
ˆ ˆ ,N NU TΨ Ψ Ψ Ψ                           (0.65) 

as being strongly correlated. It is also customary to view such systems as lying beyond the reach of density 
functional theory and to seek formal treatments that exceed the power of DFT, e.g., [53] (and references 
therein). 

First, note that the determination of a system as strongly correlated cannot take place, at least at the formal 
level, until one has in hand an acceptable wave function that can only arise through a solution of the Schrödinger 
equation (through some means, such as DFT). This solution must be carried out in unbiased fashion—i.e., with 
no preconceptions as to the strength of correlation—or one runs the danger of tilting the solution towards the 
answer one has pre-determined would be appropriate for the problem. Biased results are generally not useful to 
analysis or to the understanding of nature through the methods of mathematical physics. 

Second, given the mistreatment of the Coulomb interaction in all implementations (other than in the SIF me- 
thod) of the Kohn-Sham formalism to date, it is premature to discount DFT and call for more general metho- 
dology. It is indeed possible that the methodology is limited, ultimately requiring the development of more 
powerful methods for the treatment of interacting many-particle systems. Such methods, however, should be 
developed for application to all systems, regardless of how strongly or weakly correlated they may be judged to 
be. And before attempts in such a direction are initiated, the Kohn-Sham formalism should be implemented with 
an exact treatment of the exchange energy. 

10. Discussion 
The concept of functional plays a crucial role in the development of density functional theory. Therefore, it may 
come as somewhat of a surprise that the related concept, that of (conventional) functional derivative, it terms of 
an arbitrary test function, has no place in the theory. This is a consequence of the general result that every 
functional has a rate of change with respect to the independent variable, but not every functional has a 
conventional functional derivative. Indeed, functional derivatives with respect to the density have nothing in 
common with ordinary derivatives other than the interpretation, common to both, as rates of change (of the 
dependent variable with respect to the independent variable). 

As shown in I, functional differentiation interpreted as a rate of change can proceed rigorously through the 
use of the Dirac delta function in place of the arbitrary test function. This leads to the determination of rates of 
change of expectation values (functionals of the density or not) confined strictly in the space of a given density. 
With reference to expansions in the equidensity basis, discussed above and in [25], it is seen that the rates of 
change are evaluated at a given density with no reference made to the equidensity basis for another density. 
Rates of change are obtained by inducing the change, ( ) ( )nδ δ′ ′−r r r , in the density, wherever it appears in 
the expansion. This change an only by made to functions of coordinates, with coefficients (elements independent 
of coordinates) remaining immune to this procedure. Thus the concept of derivatives of coefficients in the 
expansion of a Kohn-Sham orbital in terms of the equidensity basis defined by the orbitals becomes moot. 

It bears emphasis that the study of the states of interacting many-particle systems is by nature quantum and it 
must be carried out in a well-defined Hilbert space. It is an unfortunate feature of computational developments 
in the realm of density functional theory that this requirement tends to be overlooked. Here, the tendency has 
been to introduce approximations for the various functionals representing expectation values of operators with 
respect to wave functions, in particular the Coulomb energy and the so-called exchange correlation functional 
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based on arguments arrived at within the classical realm. An acceptable approximation to an expectation value 
can only be obtained through the replacement of the exact wave function by an approximate one. Forms re- 
presenting functionals in DFT that do not demonstrably correspond to expectation values of operators with res- 
pect to wave functions fail this fundamental requirement. 

The formalism for treating the Coulomb energy in the SIF method is consistent with this requirement. It also 
provides a unique determination of the form of the Coulomb energy (in terms of the pair density of the Kohn- 
Sham determinant) and specifies its rigorous treatment. As discussed above, this is a consequence of the for- 
malism for determining the wave functions leading to a density and of differentiating these wave functions with 
respect to the density. 

Bypassing the required connection to a wave function can lead to a number of formal developments that lack 
fundamental meaning, such as orbital-free density functional theory, the much sought derivative discontinuity of 
the exchange and correlation functional, and the treatment of ensembles. 

Cioslowski’s procedure [10]-[12] provides a formal determination of the set nSΨ→  of all antisymmetric N - 
particle wave functions that lead to a density normalized to N . This set can be thought of as a unique func- 
tional of the density: With fixed N  and fixed basis, ( ){ }iφ r , (see [10]-[12] and the summary in I), the set 

nS ′Ψ→  can be obtained by replacing ( )n r  by ( )n′ r  in all procedures leading to the elements of nSΨ→ . The 
elements of each of the two sets can be parametrically differentiated with respect to the corresponding densities 
with no reference made to the existence of the set associated with the other density. The existence of the de- 
rivative has also been demonstrated by Cioslowski [12]. 

The discussion in the paper also exposed a number of flaws with the OEP method. It demonstrated that the 
methodology is at best a numerical approximation to the rate of change (of a dependent variable with respect to 
a corresponding density), but is formally invalid as the functional derivative. On the other hand, the metho- 
dology developed in [25] is free of formal difficulties, providing a rigorous treatment of the Coulomb energy 
within KS-DFT. 
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Appendix 

12. Search Over Densities 
The extension of the concept of the constrained search to ensembles requires a search over all possible su- 
perpositions of all possible densities with integral normalization that lead to a given possibly fractionally 
normalized ensemble density. It is straightforward to show, however, that the set of all densities with a given 
normalization cannot be constructed. 

For simplicity, the demonstration is carried out in terms of one-dimensional densities, ( )n x . 
Assume that a set is proposed to contain all possible densities with a given normalization. 
Consider the graphical representation of the densities in the set, and note that the set does not cover two- 

dimensional space continuously. Choose any point in the plane that does not lie on a curve representing one of 
the densities of the set, and draw two lines onto the horizontal axis such that the area of resulting triangle equals 
a preset normalization. 

There are, in fact, an infinite number of densities that are not included in any proposed set assumed to 
includes all densities of a given normalization thus precluding the extension of the constrained search over 
ensemble densities. 

13. Functional Derivatives through Perturbation Theory 

As shown in I, the functional derivative, 
( )
( )
jf

v
δ
δ ′

r
r

, can be determined through the Lippmann-Schwinger equa- 

tion. The same result can also be obtained through perturbation theory. 
The change in a solution of the single-particle Schrödinger equation due to a small change in potential, 
( )v∆ ≤ r , with 0→ , takes the operator form [54], with superscripts, (0), denoting unperturbed quantities, 

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )

( ) ( )( )
( )

( ) ( ) ( ) ( )

( )

0 0 0 0 0 0
0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0

2 2(0) (0)0 0

1
2

k j k l l j
j j k k

k j k j l jj k j k j l

j j k j j k k j
k j

k j k j
j kj k

f v f f v f f v f
f f f f

f v f f v f f v f f v f
f f

≠ ≠ ≠

≠ ≠

∆ ∆ ∆= + + 
− − −

∆ ∆ ∆ ∆ − − +
− − 

∑ ∑∑

∑ ∑ 

     

  

  (0.66) 

where the dots signify the presence of terms of third or higher order. 
Summation of the perturbation expansion to all orders yields the exact solution of the Schrödinger equation at 

the perturbed potential, ( ) ( )v v+ ∆r r . The expansion of perturbation theory is an alternative to that of the 
Lippmann-Schwinger equation (in operator form), 

( ) ( ) ( ) ( ) ,j j jf v v f v G v vf v v+ ∆ = + ∆ + ∆                         (0.67) 

where ( )G v  is the Green function in the presence of the potential, ( )v r . Both expressions, the last one and 
the fully summed perturbation theory expansion, provide a parameterized expression for the solution at the per- 
turbed potential. Because the unperturbed quantities are independent of the perturbation, they are subject to  
functional differentiation in terms of ( ) ( ) ( )v vδ δ′ ′∆ → −r r r r . 

That derivative, being exact, takes the form, (see (0.49)) 
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j j
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v v
δ
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

r
r r r

r
                     (0.68) 

where ( ), ; ;jG v v′ + ∆r r  is the Green function for the potential, ( ) ( )v v+ ∆r r , and j  is the eigenvalue cor- 
responding to ( );jf v v+ ∆r . 

To these exact considerations, we can compare the formalism of the OEP method. 
In the OEP method, the perturbation series is interpreted in terms of a Taylor series expansion of an orbital in 

terms of a perturbation, v∆ , in the potential, so that the first terms in the perturbation expansion is identified as 
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the functional derivative of the orbital with respect to the potential. In this interpretation, the coefficient of the 
second power of v∆  must correspond to the second-order derivative, the coefficient of the third power in the 
perturbation gives the third derivative, and so on. 

Now, if perturbation theory yields the functional Taylor series expansion, than the first-order term in the 
perturbation expansion of the first-order derivative, ( ) ( ),js jG f′ ′r r r , must yield the second order term in the 
perturbation expansion of ( )jf r . From the expressions in (0.53) and (0.54), and assuming for simplicity that 
the orbitals are real, we obtain the terms, 
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that clearly do not reproduce the terms in the curly brackets in (0.66). 
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