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Abstract

In this paper, under the assumption that the exchange rate follows the extended Vasicek model,
the pricing of the reset option in FBM model is investigated. Some interesting themes such as
closed-form formulas for the reset option with a single reset date and the phenomena of delta of
the reset jumps existing in the reset option during the reset date are discussed. The closed-form
formulae of pricing for two kinds of power options are derived in the end.
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1. Introduction

The pricing of exotic options is often an optimal stochastic problem, in which the stochastic process sometimes
follows jump-diffusion process. The issue gets more complicated because the distribution of the maximum is
difficult to derive. There is no doubt that we should use jump-diffusion process instead of diffusion process to
describe the changing behaviors of financial markets, but the pricing process is more complex. Market quo-
tations, trade practices and information dissemination are three important factors which effect trade speed and
transaction volume. Therefore, a reasonable pricing is the premise which will make the exchange market active.
In recent years, with the exception of European and American options, a large number of new financial deri-
vatives are derived in the international financial derivative market. Among them, the power option is one of the
new typical options. The research of the power options is critically significant in both theoretical aspect and

How to cite this paper: Li, J., Xiang, K.L. and Luo, C.Y. (2014) Pricing Study on Two Kinds of Power Options in Jump-Diffusion
Models with Fractional Brownian Motion and Stochastic Rate. Applied Mathematics, 5, 2426-2441.
http://dx.doi.org/10.4236/am.2014.516234



http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.516234
http://dx.doi.org/10.4236/am.2014.516234
http://www.scirp.org/
mailto:lcy@swufe.edu.cn
http://creativecommons.org/licenses/by/4.0/

J. Lietal.

practical area. The BS [1] model has become an indispensable tool for option pricing and hedging in the finance
industry. However, it is well documented that the Geometric Brownian Motion (GBM) assumption for the
underlying asset’s price dynamics in the BS model fails to reflect the real facts: market return data display
excess kurtosis (peaked and fat-tailed distributions), skewness, volatility clustering, long-range dependence and
large, sudden movements, etc. These observations reveal that a simple GBM assumption misses some important
features of the data. Therefore, many different option valuation models with realistic price dynamics have been
currently proposed and tested. Some of these models include jump-diffusion model, sub-ordinated processes,
pure jump processes, Lévy processes, stochastic volatility model, regime-switching model, GARCH model,
processes driven by FBM and others. Except for FBM, these models give rise to incomplete market. Hu and
Oksendal [2], Elliott and van Hoek [3] have proved that there is no arbitrage in the FBM market if the wick
product is used in the definition of stochastic integration. Compared with the traditional efficient market theory,
the fractional market theory is more appropriate and accurate. Pricing option with stochastic interest rate under
jump-diffusion models is an important field in recent years.

In the FBM market, very little work on the options valuation is considered. Hu and Oksendal [2] have derived
a formula for the price at time t=0 of a European option. Necula [4] has extended the formula in [2] for every
time te[0,T]. Liu and Yang [5] [6] considered the European contingent claim and compound option for the
ease of a non constant but deterministic volatility using the quasi-conditional expectation. Xue and Wang [7]
also consider the pricing of the extremum options for the two risky-assets types. Elliott and Chan [8] obtained a
closed-from solution for perpetual American options whose maturity goes to infinity by applying quadratic
approximation. Peng [9] also obtained an explicit price of perpetual American put for a fractional O-U model.
Deng and Lin [10] considered the approximate valuation for the American put option with finite maturity date
using compound option approach.

In this paper, under the assumption that the exchange rate obeys the expanding Vasicek models, we obtain the
pricing formulas of two kinds of power options under fractional jump-diffusion models.

The rest of this paper is organized as follows. Some notations and Lemma are introduced in Section 2. Section
3 describes the model discussed in this paper. Section 4 gives the pricing formulae for the first kind of power
option and the second kind of option in FBM model with fractional jump diffusion. Finally, some conclusions
are summarized in Section 5.

2. Preliminary

Before the introduction of our model, we firstly state several preliminary theorems and lemmas presented in
[11].
Theorem 2.1. Let X ~N(0,1),Y ~N(0,1),Cov(X,Y )= p. Then, it has

E[exp(cX +dY) Zu.ovar |

bd d+be)—k @)
:expB(cz+d2+2pcd)]N[aCJr +p(ad+be) }

Jal +b? +2pab

where a,b,c,d,keR.
Lemma 2.1 Let X ~N(0,6%),Y ~N(0,07),Cov(X,Y)=p. Then, it gets

E [eXp(CX +dY )ZaX+bY2k:|

. @
= exp{a(czaf< +d%c? +2pcdo, o, )} N(D),

where a,b,c,d,k e R and

B aco} +bdo? +p(ad +bc)oy oy —k

D
\/azai +b%*c? +2pabo, o,

Definition 2.1. Some notations are given as follows
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F(w)=2a,H, (w)e(s),,

acl

G(w)=20,H, (W) < (S),

Pel

FOG (W) = Z aabﬂHaJrﬂ (W)
a,pel

Definition 2.2. We define the stochastic integration of Y about {B, (t),teR,H (0,1)} as
[ Y (£)dBy (t)=[.Y (t)ow, (t)dt, 3)
where, the function Y :R—(S),, s.t. Y (t)OW, (t) is integrated in (S). . W, (t) means fractional noise
and ¢ means wick integral.
3. Description of Our Models
1) We assume that the interest rate follows the extended Vasicek model. That means it has the following form
dr(t)=(a(t)-b(t)r(t))dt+o, (t)dBO(t), @)

where a(t) affects long-term average interest rate; b(t) is the average recovery rate which adjusts the
relationship of short-term and long-term; o, (t) is fluctuation ratio.

In order to find out the discounted factor, we need to find out the discount rate j ds From the It 6

theorem, we have,
d(en(s)r(s)) _ en(S) (a(s)ds +0, (S)dBQ (S))y

where n(s)= J'Osb(u)du . Integrating both sides of the equation above on [t,s], we have

r(s)=r(t)e"") 4 [ a(u)du+ [0, (u)dBO (u).

Furthermore,
jtTr(s)ds: r(t).[:e ds+j J'e duds+f je (u)dBQ(u)
=r(t)'[:e - ds+j'ta (u) J'te - dsdu+L je (IdsdB (u) ©
=r()m(tT)+ [ a(u)m(u,T)du+ [ o, (u)m(u,T)dBC (u)
=G(LT.5)+ ] o, (u)m(u,T)dB (u),
where
= I:e“(t)*”(s)dsl (6)
G(LT.r)=r(t)m(t,T)+ [ a(u)m(u,T)du. 7

2) We assume the market is a full market with continuous time, and there exist two kinds of continuous
trading assets, one of which is risk-free bonds. The price process of bonds M(t) satisfies the following equation

dM (t)
M{(t)

=r(t)dt, M(0)=1, €))

where r(t) is a continuous function of time t; The other trading asset is the risk asset S(t), the price pro-
cessof S(t) satisfies the following equation

05 (t) = S(t)] (t)dt+o () dB(t)+(e" ~1)aq | ©)
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where B(t) is Brownian motion; Q, is the number of random jumps of underlying asset price within [0,t]

and it follows the Poisson process with the parameter A; J(t) is the random variable which follows the
2

normal distribution N (—0—2",05} e’V -1 is the height of the stock price jump; u(t) is the expected rate

of return; o (t) is the volatility. Solving the Equation (9), we have
S(t)= Soexp{fg(y(t)—%(t)st+j(:o(t)dB(t)+%\] (i)}. (10)

3) In addition, the jump-diffusion model is independent of the risk appetite, so risk-free interest rate r(t)
can be used to take place of the expected rate of return 4 (t) according to the risk-neutral valuation principles.
Consequently, the Formula (10) can be rewritten as follow

S(t)= S@xplijé{r(t)—#]ds +J';o—(t)dB(t)+ %“J (I)} (11)

4) Fractional Jump-Diffusion assumption. On the basis of assumption of (3), we replace the Brownian mo-
tion B(t) with fractional Brownian motion By, (t) in (9), i.e., the risk-neutral dynamics of the underlying
asset is given as

ds (t) =S (t)[(r (t)-40)dt+ o (t)dB,, (t)+J (t)dQ, |, (12)

where {BH (t),Ost gT} is the fractional Brownian motion in probability space (Q,F,P); Q is the num-
ber of random jumps of underlying asset price within [t, T |, which follows Poisson process with the parameter

2
A; J(t) is the height of the jump on stock price, satisfying In(1+J(t))~N [In(l+ 0)—%,02J ;or(t) s

the expected rate of return; o (t) is the volatility.
From Equation (12), we have

ds(t)
W=(r(t)—/u9)dt+a(t)dBH (t)+J(t)dQ. (13)

According to the definitions and properties of stochastic calculus and function exp0(X), we get

S(t)= Soexpo{.[;(r(s)—ﬂe)ds+j;a(s)dBH (s)+§|n(1+a (i))}

t

= Soﬁ(l+ J (i))expo[jo(r(s)—/le)ds + ﬁo(s)dBH (s)} (14)

i=1

= Soﬁ(h J (i))epr;(r(s)—/w— Ho? (s)sZH’l)ds+_|';o-(s)dBH (s)]

4. Pricing Formulae of Two Kinds of Power Options

Under stochastic rate and Jump-Diffusion assumptions, we obtain pricing formulae of two kinds of power
options.

4.1. Pricing of the First Kind of Power Option

From Equations (5), we have
T T
[r(s)ds=G(tT,r)+[ o (u)m(u,T)dB? (u),

where m(u,v), G(t,T,r,) aregiven by (6)and (7) respectively.
Suppose that underlying assets jump m times during [t,T], then
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m

= StH(l+J (i))exp[.[tT(r(s)—/IH—Ho—z (S)SZHil)dS-i-LTO'(S)dBH (S)} (15)

i=1

Thus, we have the following conclusion.
Theorem 4.1. The formula of the first kind of call power option with exercise price K at exercise date T is

[Ms

C(tr.S, K)=

0

3
Il

{exp(—/l(T -t))@(g -2.)1, (16)
where

=P TT(2+ i (1))exp(s,)-N(dy),

=1

2
2 _Kexp{—X—G(t,T,rt)]N(dz),
n-1)° n®-n
sl—( 2) ol > 2+(n—1)G(t,T,rt)—nj:ﬂ@ds,
JTT0+ (D) . 2n-1
In s A= +G(t,T,r)-[ 26ds+(n-1)o% + o} 17)
d = '
' Jo? +o?
[T+ i) L
In| S, - 1T +G(t,T,q)—LﬂHds—ax—7Y
d —
’ Jol +o?
Proof. According to the No-Arbitrage pricing theory, we get
C(t.r.S.K)
E[exp( j r(s )ds)( K)ZST”»J (18)
- A(T-1)"
2[ p(-A(T t))%(%—zc)i-
Let X :jtTar( (u,T)dB(u j (s), thenwe have

X ~N (OL o, (u)m(u,T)du): N(0,0%).
~(O,ZH_[:c;-z(u)uz”’ldu =N (O,af)),

1, =E [exp(—j{Tr(s)ds)S{‘;(S?zK }

Since
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exp[—J'tTr(s)ds} sn

=Stnlj(1+j(i))exp (n—l)f r(s ds+nj' (-16) ds—EaY} e" (19)

and
S > K = ST (L+ (i s)d wd—— nv
TS K= ‘1,}( +J(|))exp{ U s+f 5= }} e
>K=S ~nﬁ(1+ j(i))exp f ds+.[ (-16) ds—o-—Yz e
t L] J >
2
>Q/E:>exp[.[:or (u)m(u,T)dB(u)+G(t,T,rt)+.[:(_,w)ds_%¥]ev
2
tT r /16’ ds—7+X+Y
fH 1+J
b (20)
In UK
St'”H(1+j(i))
i=1
n 2
= X +Y >In m*/E —G(t,T,q)—LT(—ﬂe)ds+a7Y,
ST+ (i)
i=1
which means
X =X (21)
X+Y > MW G(tT,r[)—LT(—AH)dHU—ZVZ
St‘”g(“j(i))
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Thus we obtain

m

i=1

.e(n—l)X +ny

X+Y>In

=g

(1+j(i))exp

m
=1

e(n—l)X +ny

m

=STT(1+j(i))exp

i=1

m

=STT(1+j(i))exp

2, = E[;xp(—.[:r(s)ds

and

-~ €[S )| (-0 6T 0 +nf (-10)ds—or |

'3

m 7G(1’T!"t)*fl.r(*it9)ds+§
s i i0)

{(n—l)G(t,T,rt)+nf(—/w)ds—gaf}

vk

Sl-ni]ijll(l+j(i))

2
X+Y>In -G(LT ., )—j{r(—ﬂﬁ)dw%’

{(n—l)G(t,T,rt)+nf(—/w)ds—go-f]exp[

(s1)-N(dy),

)Kzs{‘zK:|'

(n-1)° 62 +n’c?

2 j‘N(dl)

exp[_fr(s)ds} = exp[‘G (tT.5)- [T, (u)m(u,T)dB (“)} =exp[-G(L,T.r) |- exp(-X).

In the similar way, we have

K-exp[-G(t,T,r)]-E|exp(-X) x

X+Y>In

2

- Kexp{%—G(t,T,rl)] N (d,).

W

Sin ilr‘:[l(1+j(i))

2
~G(LT 1)~ (—/19)ds+07Y

Theorem 4.2. The formula of the first kind of put power option with exercise price K at exercise dateT is

P(t

m!

1, S, K) = g{exp(—l(T —t))M(lp

_zp)},

(22)

(23)

(24)

(25)
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where
2

1, = Kexp{%—@(t,T,q)] N (~d,),

= St“ﬁ(lJr j(i))exp(s,)-N(-d,),

i=1

Proof. Similar to the proof procedure in the first kind of call power option, we have

1,=E [exp(—fr(s)ds) K;(sTn<K }

Since

S$<K:>St”]m[(l+j(i))exp{ D ds+j s_%f}}.env

i=1

<K =S, \/ﬁ(1+j('))(1+j(i))exp{j (s)ds+[ (~26 ds—é} o

<\/_:>exp{far m(u,T)dB(u)+G(tT,r)+ I (- i&)ds—azv} e’ (26)
< =G(t,T,5)+ j(—/le)ds—%Y2+X+Y
a-dﬂ(m@))
<In mW = X +Y <In mW —G(t,T,r[)—.[[T(—/w)ds+%Y2
s 4110+ () ST+ ()
n - m (27)
ZST<K d seqlTI(+ () .
—X-Y>In I_QK +G(t,T,q)+jtT(-/19)ds-7V
and
exp( [ ()ds) exp(—G(t,T,rt)—J'tTo—,(u)m(u,T)dBQ(u)) -
=exp(-G(t,T,1))-exp(-X).
We obtain

[exp(.[ ()ds)K;( }

=K-exp(-G(t,T.1,))-E| exp(-X) x

2
+G(t,T,r1)+j'!T(—/w)ds—67Y

2

:Kexp[%‘—G(t,T,rt) ‘N (=d,).
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Also

2, = [exp(j r(s)ds)Siz,, ]

Since

exp[—fr(s)ds} sn

and

exp[—fr(s)dsJSt"lj(lﬂ( exp[nj (r(s)-20-Ho?(s)s™ 1)ds+nf s)dB, (s )}

lm[ (1+ (i exp{ ds+nj (-290) dS_EUY} e (29)
=1
= m1+j ))exp+ ( G(t,T,r) m(u,T)dB(u) |+n] /wds——o- g™
Y
=1
= ﬁ 1+J EXp{ tT r +nj ds_gag} (n=n)x+ny.
=1

S$<K:S[”ﬁ(l+j())exp{ D s)ds+ [ (-0 ds_%q}.env

<K:St-n/ﬁ(l+j(i))exp{ s)ds-+ ' (~20) ds—{} e

<x/—:epr‘:o. m(u.T)dB (u )+G(t,T,n)ﬂ:(_w)ds_%?]@

- mw = DG(t'T:rt)+LT(—/w)dS—%YZ+X+Y

s, \/ [10+1() o
<In UK

scq[1(a+ i)

2

= X+Y >1In ~G(LT.1)~[ (-A0)ds+7"
S, -
X =X - (31)
i eI+ i()
XY >l '*Ql/? G(LT .k )+ (-26)d
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We get

[exp( I r(s )ds) T;@(J

=E St”]m[(1+j(i))exp{(n—1)6(tT ) +nJ' (-10) dS_EGY}

—sTT(s j(i))exp[(n—l)G(t,T,rt)+n.[:(—/w

i=1

:St”]_m[(1+j(i))exp[(n2 0%+

i=1

e(

a(n=1)X+nY

:Stnlﬂ[(1+j(i))exp[(n—l)G(tT ) +nj (-16) ds—EaY} exp[

i=1

—In

n-1)X +nY

sq110+30)

4 -
St-p i:ﬂl(l+ i)

vk

—-X=Y>In

2
+G(t,T,rt)+jtT(-/w)ds-%Y

)ds—%ayz}

X

St ili(“ i)

2
T o
7K JrG(t,T,r[)Jrjt (—lﬁ)ds—%

—-X-=Y>In

(n —1)2 os +n’c?

Q/E _G(t,T,I’I)-i-LT(,lQ)dS_(n

_1)O->2( _

2

2n-1
(2n )O_Yz

2

[ 2 2
Oy +0y

_1)? 2
) o2 .1 62+ (n-1)G(L,T,1)-

4.2. Pricing of the Second Kind Power Option

n[26ds]-N (~d,).

|

(32)

Theorem 4.3. The formula of the second kind call power option with exercise price K, exercise date T is

C(t,r,S,.K)=

1D

[exp(—l(T —t))M(sc —4, )},

m!

(33)
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where

3, =5 lﬁ(u i(i ))exp[(n;l)2 ok + nzz_naf +(n—1)G(t,T,rt)—n.[tT/1¢9ds -N(d;),

2

4, = Kexp{%x—G(t'T,n)}- N(d,).

[1(+i(0)
i 2n-1
In| s, = +G(tT,5)-[ 26ds+(n-1)o2 + , o
N(d,)=N
(%) Joi +o?
H(1+J(')) . , o2
In| S, - % +G(t,T,rt)—LAHds—ax—7Y
N(d,)=N
(®) Joi +o?

Proof. Similarly, we have

3, = [exp(_[ ()ds) }

Since

exp[—fr(s)dsJST"
:exp[—f:r(s)ds]st”ﬁl(HJ( exp[nf (r(s)-40-Ho?(s)s™ l)ds+nJ' s)dB,, (s )}

=St”]j(1+j( ))exp[( 1)['r(s)ds+nf (-26 dS_EUY} e™ (34)

m

=S T+ i ))exp{(n—l)[G(t,T,n)+I (u)m(u,T)dB(u ]+nj (-10) ds——aY} e"

i=1

=S/ ﬁ(l—i—]( ))exp[(n—l)G(t T.r) +n.[ (-10) dS_EO'Y} gl yxny

i=1

and
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S; >K :>Sf[(1+ i(i ))exp{j ds+j

2
K T 0.

>1In — K = X+Y
ST+ i) |
> In . K -G(t,T,r)- j( 26)ds + 22
sT16+ i)
We obtain

= spak

2
(-26)ds ——} e'
2

u,T)dB(u)+G(t,T,rt)+LT(—/16’)d5—%Y2]

=G(LT.R)+], (—,w)ds_Tu X +Y

=X

eY

X+Y=In K

m
Sy 1‘[(1+ j

i=l

—|-G(t,T.1) L (-20)ds+ 22
)

[exp( j r(s )ds) T;(STZK}:E St“ﬁ(1+j(i))exp{(n—l)G(tT r) +nj -0 dS_EUY}

i=1

'e(n—l)X +ny

K
51-L1'11(1+J'(i))

=St”1m[(l+ j(i))exp[(n

i=1 _

X+Y2In

}G(I,T Rl (—19)ds+a—j

.E 'e(n—l)x+nY .

X+Y=In K

St

:]3

(1+ j

=S

i=1

s T1(1+i()

|n i=1
K

———— |-G(t,T.1) j‘ M’ds+ of
0)

r)+nf (-10 ds——o-Y}

tnlﬂ[(l+j(i))eXp[(n—l)G(tT r +nj Y ds__aY} eXp[(n—l)

+G(LT,5)-[ (26)ds+(n-1)o% +

2
o2 + 1002 ]

[ 2 2
Oy +GY

-1)G(t,T,x,

)- n.f:/wds N

(da)-

(3%)

(36)
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Also,
4, = E[exp(_fr(s)ds) K Zs, =« }
where
Hspok =X (37)
X+ 2In| — K —G(t,T,rI)—j'[T(—AO)dsa—é
St‘i:1(1+j(i))
and

exp(—fr(s)ds) = exp(—G (t.T, rt)—j:o, (u)m(u,T)dB® (u)) =exp(-G(t,T,r, )).exp(—x )- (38)

In the similar way, we have

E[exp(—fr(s)ds) K Zs; s« } =K-exp(-G(t,T,1))-E| exp(-X) x

X+Y=In

K }G(t,T,n )-jf(—w)ds+§ (39)

2

= Kexp[%—G(t,T,t’t)J- N(d,).

Theorem 4.4. The formula of the second kind put power option with exercise price K, exercise date T is

[exp(—ﬂ(T —t))@(% _4p)], (40)

M

P(t,1,S,.K)=

m

0

where

4, :st"f[(1+ j(i))exp[ i okt o} +(n—1)G(t,T,q)—nLT/lﬁds]~N(—da),

S -TT(+i(i) ) o2
—In 1T —G(t,T,n)+LﬂHds+a§+7Y
N(d)=N N '
X Y
St'ﬁ(1+j(i))
Sin| -G (4T )+ [ 260ds - (n-1)o; - 2o
N(-d,)=N
() Jo? +o?
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Proof. Similarly, we have

3,=E [exp(—fr(s)ds) K s, }

Since
- . , 41
Hspak =X St~g(1+j(i)) T ; (41)
-X=YzIn *W +G(LT R )+ (—/w)ds—7
and
exp( j ()ds) exp(—G(t,T,rt)—far(u)m(u,T)dBQ(u))
(42)
=exp(-G(L,T,1))-exp(-X),
we obtain
[exp( j ()ds)K;(ST«}
= K-exp(-G(t,T,1))-E| exp(-X) x . (43)
el (0) .
—X-Y=In :1K ] G(LT R )+]; (7/19)d577Y
O'2 _ _
:Kexp[7—G(tT r)|-N(-d,).
Also,
4, = [exp( J' r(s )ds) T;(ST<K].
Since
exp[—fr( )d }S”
:exp[—fr(s)dsJSt"lm[(lﬂ( exp[nj (r(s)-20-Ho?(s)s™ 1)ds+n.[ s)dB, (s )}
i=1
=S'T1] 1+j exp{ ds+nj (-20 dS_EUYJ e (44)
=S'T1 1+j exp{ G(t,T,r) j (u)m(u,T)dB(u J+nj -0 ds——ay} e
=S'T] 1+j exp{ G(t,T,r) +nj -10) ds—E } glnyxeny
and
= . , 45
ZST<K X Stlr[(1+j(i))} 2 ( )
~X-YzIn| —=L G(LT i )+f] (~A0)ds—
K
we obtain
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E [exp(—ftTr(s)dS)S?lsT« }

=E Stnlm[(l-i- j(i))exp{(n—

i=1

.e(n—l)x +ny

3

SeT1(1+(7))

1
K

—-X-=YzIn

= St”lj(h j(i))exp[(n—l)G(t,T,rt)+n'[lT(_/w)dS_gaY2]exp{ :

1)G(t,T,q)+nf(—i€)ds—%o’$}

2
+G(LT )+J’IT(—A:9)ds—UTV

2 2 2 2
B X Y
(n 1)0 +n0']

(46)
s TT(+i(0)) -
i IZIT —G(t,T,I})+LT(/1‘9)dS_(n_1)U>2< —(2n2 1)0'3
-N
N (n-1)" , n?-n

5. Conclusion

o7 +(n-1)G(t,T,r,)-n[ 26ds |-N(~d,).

In this paper, we investigate the issue of pricing the reset option in FBM model, closed-form formulas for the
reset option with an single reset date, and the phenomena of delta of the reset jumps existing in the reset option
during the reset date. Under the assumption that the exchange rate follows the extended Vasicek model, we
obtain the closed-form of the pricing formulas for two kinds of power options under fractional Brownian Mation

(FBM) jump-diffusion models.
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