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Abstract 
A generalized method which helps to find a time-dependent Schrödinger equation for any static 
potential is established. We illustrate this method with two examples. Indeed, we use this method 
to find the time-dependent Hamiltonian of quasi-exactly solvable Lamé equation and to construct 
the matrix 2 × 2 time-dependent polynomial Hamiltonian. 
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1. Introduction 
Another direction of investigation of quasi-exactly solvable Schrödinger is the study of time-dependent Hamil-
tonian. Time-dependence can be set through the potential. A first step is the direction was done in [1]. This is 
related to the quasi-exactly solvable sextic anharmonic oscillator potentials. The Schrödinger equation is now 
considered with a time-dependent potential ( ),V x t , 

( ) ( ), ,ti x t H x tψ ψ∂ = ,                                (1) 

where 

( )
2

2 ,H V x t
x
∂

= − +
∂

.                                 (2) 

The time-dependent potentials constructed from the well-known family of quasi-exactly solvable sextic an-
harmonic oscillator potentials 

( ) ( )2 6 4 2 22 4 3 , 0, ,V x v x vx n v x v IR n INµ µ µ = + + − + > ∈ ∈               (3) 
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are of the following form [1] 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )2
4 6 3 4 2 2 2

4 2

3 2 1
, 2 4 3 2

16
u t u t u t k k

V x t u t x u t x n k u t x
u t x

β β
 − −

= + + − + + − + 
  

 

,   (4) 

where 0, 0x t> ≥ , n  is a non-negative integer, 0k ≥ , β  is real constant and ( )u t  is an arbitrary function 
of 0t ≥  which is positive. If 1k > , the last term in the above potential ( ),V x t  may be viewed as a centrifu-
gal term in radial equation with x  playing the role of radial coordinate. The domain of the definition of the po-
tential (4) may be extended to the real line if 0,1k = . After some algebraic manipulations, one has obtained the 
algebraic solutions of the Equation (1) of the form 

( ) ( ) ( )
( ) ( ) ( ) ( )( )2

0

1 1, exp , log 4 d
8 2 2

tiu t
x t x t x k u t i u t s u t x

u t
ψ σ λ φ

  = − + + −  
   

∫


,            (5) 

where the function ( ),x tσ  is in terms of an arbitrary function ( )u t , 

( ) ( ) ( )2
4 2, log

4 2
u t u t

x t x x k x
β

σ = − − + .                          (6) 

In this paper, we will construct time-dependent Schrödinger equation for any potential. It means that we will 
find algebraic solutions namely ( ),x tψ  of that equation and one can build a time-dependent potential from any 
non time-dependent one. Note here that the static potential considered can be either quasi-exactly solvable (QES) 
or simply exactly solvable [2]-[4]. It is understood that we will generalize the formalism considered in Ref. [1] 
where the authors have constructed a time-dependent Schrödinger equation for only one family of quasi-exactly 
solvable sextic anharmonic oscillator potentials. 

2. Construction of a Time-Dependent Schrödinger Equation 
The main results are summarized by the following proposition: 

2.1. Proposition 
Let ( )V y  be a potential and ( )yφ  be a solution of the eigenvalue equation 

( ) ( ) ( )
2

2

d
d

V y y y
y

φ λφ
 
− + = 
 

                                (7) 

with eigenvalue λ . Let ( )tω  be a positive (and derivable) function of t . Then, the solution of the 
Schrödinger equation 

( ) ( ) ( )
2

2, , ,i x t V x t x t
t x
ψ ψ

 ∂ ∂
= − + ∂ ∂ 

                             (8) 

with time-dependent potential 

( ) ( ) ( )( ) ( )
2

2 2, ,
4
xV x t t V t x ωω ω

ω
= + Ω−Ω Ω ≡



                       (9) 

is given by 

( ) ( ) ( ) ( )
( ) ( )( )2 2, exp d .

4
i t

x t t i t t x t x
t

ω
ψ ω λω φ ω

ω
 

= − − 
  
∫



                (10) 

Proof of the Proposition 
We will discuss here an original method to construct time-dependent Hamiltonians which possess algebraic ei-
genvectors. Let us consider the Schrödinger equation, 

( ) ( ) ( )
2

2

d
d

V y y y
y

φ λφ
 
− + = 
 

,                           (11) 
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with ( )yφ  is an eigenfunction with eigenvalue λ  of the Hamiltonian 

( )
2

2

d
d

H V y
y

= − + .                                 (12) 

Note here that this Hamiltonian H  (or the potential ( )V y ) doesn’t depend on time t  explicitly, it means 
that t  doesn’t enter neither in the eigenvalue λ , nor in the eigenfunction ( )yφ . Let us pose 

( ) ,y t xω=  

( )
2 2

2 2 2

d 1 d .
d dy t xω

− = −                                 (13) 

As a consequence, the spectral Equation (11) is written as 

( ) ( )( ) ( )( ) ( ) ( )( )
2

2 2
2 t V t x t x t t x

x
ω ω φ ω λω φ ω

 ∂
− + = ∂ 

.          (14) 

Let us pose ( ) ( ) ( )( ), ,x t R t x t xψ φ ω=  and extend the effective potential of the above equation noted 
( ) ( )( )2 t V t xω ω  by adding a new term ( ),x t∆  and consider a full Schrödinger equation of the form 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )
2

2
2 , , ,tt V t x x t R t x t x i R t x t x

x
ω ω φ ω φ ω

 ∂
− + + ∆ = ∂ ∂ 

.      (15) 

The next step is to determine the unknown function ( ),R t x  so that one can deduce the time-dependent alge-
braic solutions ( ),x tψ  of the Equation (15) and relate it to (14). Obviously, the above Equation (15) can be 
developed as follows 

( ) ( )( ) ( )
2 2

2
2 22 ,R R RR t V t x R x t R i iR

x x t tx x
φ φ φφ ω ω φ φ φ∂ ∂ ∂ ∂ ∂ ∂

− − − + + ∆ = +
∂ ∂ ∂ ∂∂ ∂

,      (16) 

which can be rewritten 

( ) ( )( ) ( )
2 2

2
2, 2R R RR t V t x x t R i iR

x x x t tx
φ φω ω φ φ φ φ

 ∂ ∂ ∂ ∂ ∂ ∂
− + + ∆ − − = + ∂ ∂ ∂ ∂ ∂∂ 

.        (17) 

Manifestly, this equation can be written in terms of φ  (i.e. the first derivative terms of φ  must be omitted 
(must vanish)) only if the following condition is imposed 

( )( ) ( )( )

( ) ( ) 2

2

2

2

ˆ, exp
4

t x t xR iR
x x t

R iRx
x
R iRx
x

iR x t R t x

φ ω φ ω

ωφ ωφ

ω ω

ω
ω

′∂ ∂∂
− =

∂ ∂ ∂
∂ ′ ′⇒ − =
∂
∂

⇒ − =
∂

 ⇒ = − 
 







                           (18) 

with this expression of the function ( ),R t x , the Equation (17) takes the following form 

( ) ( )( ) ( )
2 2

2
2 2, R RR t V t x x t R i

tx x
ω ω φ φ φ φ

 ∂ ∂ ∂
− + + ∆ − =  ∂∂ ∂ 

.                  (19) 

Replacing the expression ( ) ( )( )
2

2
2 t V t x

x
ω ω φ

 ∂
− + ∂ 

 by its equivalent one in this above equation, i.e. 

2λω φ  as it is given in (14), one can write  

( )( ) ( ) ( )( ) ( )( ) ( )( )
2

2
2, R RR t x R t x t x t x i t x

tx
λω φ ω φ ω φ ω φ ω∂ ∂

+ ∆ − =
∂∂

,          (20) 

which can be rewritten 
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( )
2

2
2, R RR t x R i

tx
λω ∂ ∂

+ ∆ − =
∂∂

.                           (21) 

From this equation, the added term ( ),t x∆  to the initial potential in (15) is easily expressed as  

( ) ( )

2

2
2,

,

R Ri
t xt x w

R x t
λ

∂ ∂
+

∂ ∂∆ = − .                            (22) 

Replacing ( ),R t x in this equation by expression (18) and after some algebraic manipulations, one can write 

( )
( ) ( ) ( )

( )

( )
( )

2 2 2

2

2 2
2 2

1ˆ ˆ ˆ
4 4 2, ˆ

ˆ
,ˆ 4 4 2

iiR t iR t x R t x i
t x

R t

R t x xi i
R t

λω

λω

Ω   + − Ω + − Ω −   
   ∆ = −

Ω
= + Ω− Ω − −









              (23) 

where ω
ω

Ω ≡
 . 

One can easily remark that ( ),t x∆  is real and non-dependent on the eigenvalue λ  only if it is expressed as 

( )
2 2

2,
4 4
x xx t∆ = Ω− Ω .                                (24) 

This is possible due to the following condition 

( )
( )

2
ˆ

0ˆ 2

.
R t

i i
R t

λωΩ
− − = .                                 (25) 

Solving the above differential equation and after some algebraic manipulations, one can easily obtain the ex-
pression of the function ( )R̂ t  

( ) ( ) ( )( )2ˆ exp dR t t i t tω λω= −∫ .                              (26) 

With this expression of the function ( )R̂ t , the algebraic solutions of the time-dependent Schrödinger equa-
tion 

( ) ( )( ) ( ) ( ) ( )
2

2
2 , , ,tw t V w t x x t x t i x t

x
ψ ψ

 ∂
− + + ∆ = ∂ ∂ 

,               (27) 

with the time-dependent potential 

( ) ( ) ( )( ) ( )
2

2 2,
4
xV x t w t V w t x= + Ω−Ω                        (28) 

are determined as  

( ) ( ) ( )( ) ( ) ( )
( ) ( )( )

( ) ( ) ( )
( ) ( )( )

2

2 2

ˆ, , exp
4

exp d ,
4

tix t R t x t x R t x t x
t

i t
t i t t x t x

t

ω
ψ φ ω φ ω

ω

ω
ω λω φ ω

ω

 
= = −  

 
 

= − − 
  
∫





              (29) 

where ( )tω  is an arbitrary positive function of t  and ( )yφ  is the eigenvector of the equation 

( ) ( ) ( )
2

2

d
d

V y y y
y

φ λφ
 
− + = 
 

.                          (30) 

It means that one has constructed a time-dependent potential from the potential ( )V y  which is non 
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time-dependent. This is the generalization of the particular case of potentials considered in Ref. [1]. This is a 
particular case of ours because one can replace the original potential (i.e. the potential which is non time-de- 
pendent) in Equation (28) by any one which leads to a time-dependent potential associated to the above solu-
tions ( ),x tψ  as it is given by the Equation (29). These solutions are expressed in terms of the eigenvalues λ  
of the Schrödinger equation. The values of λ  depend on a potential considered, i.e. when the potential is 
quasi-exactly solvable, only a part of the eigenvalues is found algebraically whereas when the potential consid-
ered is exactly solvable, all eigenvalues λ  are calculated explicitly. So, we have constructed a generalized 
formula which helps to find time-dependent potentials, it means that one can deduce for a non time-dependent 
potential its associated time-dependent one. In the next step, we will use this method established previously, i.e. 
we will manipulate simply the Equation (28) and Equation (29) respectively to construct the time-dependent 
Lamé potential and the algebraic solutions of Schrödinger equation. We will also apply the above method to the 
known QES matrix polynomial operator [5] [6] and interesting remarks will be pointed out. 

2.2. Example 1: Construction of Time-Dependent Lamé Potential 
In this section, along the same lines of the above method, i.e. simply from the Equation (28), we will transform 
the non time-dependent potential associated to the Lamé equation into the time-dependent one. The Lamé equa-
tion is quasi-exactly solvable and the original form is as follows [7] [8] 

( ) ( ) ( ) ( ) ( )
2

2 2
2

d
1 ,

d
y

k N N sn y k y y
y
φ

φ λφ− + + = ,                    (31) 

where the Lamé potential is 
( ) ( ) ( )2 2, 1 , , 0,1, 2,V y k k N N sn y k N= + =  .                    (32) 

λ  is the eigenvalue of the Lamé Hamiltonian and ( ),sn y k  is the Jacobi elliptic function with modulus 
( )0 1k k≤ ≤ . This function is periodic (i.e. the Lamé potential is also periodic) with period ( )4K k  which de-

notes the complete elliptic integral of the first type, i.e. 

( )
π
2

0 2 2

1 d
1 sin

K k z
k z

=
−

∫ .                                 (33) 

Replacing the potential ( )( )V t xω  in the Equation (28) by the above Lamé potential (32), we find the fol-
lowing time-dependent Lamé potential 

( ) ( ) ( ) ( )( ) ( )
2

2 2 2 2, 1 ,
4
xV x t t k N N sn t x kω ω= + + Ω−Ω .                  (34) 

It is easily observed that this last term in 2x  of (34) isn’t periodic so that it spoils the periodicity of the 
above time-dependent Lamé potential. The above time-dependent Lamé potential (34) can become periodic only 
if the following condition is satisfied 

0∆ = , 

( )
2

2 0
4
x

Ω−Ω = , 

2Ω = Ω , 

2

d dtΩ
=

Ω
, 

0

1
t t

Ω =
−

, 

0

1
t t

ω
ω
=

−


, 

( )
0

d 1ln
dt t t

ω =
−

, 



A. Nininahazwe 
 

 
31 

( )
0

1d ln dt
t t

ω =
−∫ ∫ , 

( )
0

ct
t t

ω =
−

,                                   (35) 

where c  is a real constant. 
From the expression of ( )tω  (i.e. (35), the Lamé potential (34) can be now expressed in time t  as follows 

( )
( )

( ) ( )( )
2

2 2
2

0

, 1 ,cV x t k N N sn t x k
t t

ω= +
−

.                     (36) 

From the above expressions (35) and (36), the time-dependent Schrödinger Equation (1) is of the following 
form 

( )
( ) ( )( ) ( ) ( )

2 2
2 2

2 2
0

1 , , ,t
c k N N sn t x k x t i x t

x t t
ω ψ ψ

 ∂
 − + + = ∂

∂ − 
.            (37) 

Referring to the Equation (29) and Equation (35), the algebraic solutions of this Schrödinger equation are ob-
tained 

( ) ( ) ( )( )

( )
( ) ( ) ( )( )

2 2

2
00

, ,

, exp d .
4

x t R x t t x

c c ixx t i t t x
t t t tt t

ψ φ ω

ψ λ φ ω

=

 
 = −

− − − 

              (38) 

Note that one can deduce from a non time-dependent potential (for which the eigenvalues λ  exist) its corre-
sponding time-dependent one by using the general formula established in Equation (28) while the algebraic so-
lutions of the Schrödinger equation are found from the Equation (29). 

2.3 Example 2: Extension to Matrix Time-Dependent Schrödinger Equation 
The goal of this section is to construct a matrix time-dependent Schrödinger equation by the above method used 
to find the time-dependent potential of the non coupled Lamé equation. Let us consider the following matrix 
Hamiltonian [5] [6] 

( ) ( )
2

2 62

d
d

H y M y
y

= − +1 ,                                (39) 

where the potential ( )6M y  is 2 × 2 Hermitian matrix of the form 

( ) ( )( ) ( )2 6 4 2 2 2
6 2 1 2 1 2 2 2 2 1 3 2 0 14 8 4 8 2 1 2 8 4 8 ,M y p y p p y p mp p y p y p mp kε σ σ = + + − + − + + − 1    (40) 

where 1 3,σ σ  are the Pauli matrices, 21  is the matrix identity, 1 2 0, ,p p k  are free real parameters and m  is 
an integer. ( )H y  can be written in the matrix form as follows  

( ) 11 12

21 22

H H
H y

H H
 

=  
 

,                                 (41) 

where 

( ) ( )

( )
( )

( ) ( )

2
2 6 4 2 2 2

11 2 1 2 1 2 2 2 12

12 2 0

21 2 0

2
2 6 4 2 2 2

22 2 1 2 1 2 2 2 12

d 4 8 4 8 2 1 2 8 4 ,
d
8 ,

8 ,

d 4 8 4 8 2 1 2 8 4 .
d

H y p y p p y p mp p y p y p
y

H y mp k

H y mp k

H y p y p p y p mp p y p y p
y

ε

ε

 = − + + + − + − + + 

= −

= −

 = − + + + − + − − − 

      (42) 



A. Nininahazwe 
 

 
32 

In this case, the usual non time-dependent eigenvalue Schrödinger equation is of the form 

( ) ( )
( )

( )
( )

1 1

2 2

y y
H y

y y
φ φ

λ
φ φ
   

=   
   

,                                (43) 

where 

( ) ( )
( )

1

2

y
y

y
φ

φ
φ
 

=  
 

,                                    (44) 

with ( )yφ and λ  are respectively the eigenfunction and the eigenvalue of the matrix Hamiltonian ( )H y . 
Referring to the original method established in the section 2, one can assume 

( )y t xω= , 

( )
2 2

2 2 2

d 1 d
d dy w t x

− = − .                                 (45) 

From this change of variable, the Equation (43) takes the following form 

( ) ( )( ) ( )( )
( )( ) ( )

( )( )
( )( )

2
1 12 2

62
2 2

t x t x
t M t x t

x t x t x

φ ω φ ω
ω ω λω

φ ω φ ω

    ∂
   − + =     ∂     

, 

( )( ) ( )( )
( )( ) ( )

( )( )
( )( )

1 12

2 2

t x t x
H t x t

t x t x

φ ω φ ω
ω λω

φ ω φ ω

   
   =
   
   

, 

( )( )
( )( ) ( )

( )( )
( )( )

111 12 2

21 22 2

t x t xH H
t

H H t x t x

φ ω φ ω
λω

φ ω φ ω

    
   =        

,                     (46) 

where  

( )( ) ( ) ( ) ( )( ) ( )

( ) ( )
( )( ) ( )
( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( )

( ) ( )

2
2 8 6 6 4 2 4 2

11 2 1 2 1 2 22

4 2 2
2 1

2
12 2 0

2
21 2 0

2
2 8 6 6 4 2 4 2

22 2 1 2 1 2 22

4 2 2
2 1

4 8 4 8 2 1 2

8 4 ,

8 ,

8 ,

4 8 4 8 2 1 2

8 4 .

H t x p t x p p t x p mp p t x
x
p t x p t

H t x mp t k

H t x mp t k

H t x p t x p p t x p mp p t x
x
p t x p t

ω ω ω ε ω

ω ω

ω ω

ω ω

ω ω ω ε ω

ω ω

∂
= − + + + − + −

∂
+ +

= −

= −

∂
= − + + + − + −

∂
− −

       (47) 

After the change of function as 

( )
( )( )
( )( ) ( )

( )( )
( )( )

1 1

2 2

, ,
t x t x

t x R t x
t x t x

ψ ω φ ω
ψ

ψ ω φ ω

   
   = =
   
   

,                          (48) 

one can write the matrix time-dependent Schrödinger equation such that the initial potential acquires a supple-
mentary term ( ),t x∆  as it was done in the method established previously in the Equation (15) 

( ) ( )( ) ( )
( )( )
( )( )

( )( )
( )( )

2
1 12

62
2 2

, t

t x t x
t M t x t x i

x t x t x

ψ ω ψ ω
ω ω

ψ ω ψ ω

    ∂
   − + + ∆ = ∂     ∂     

,              (49) 

which leads to 

( ) ( )( ) ( ) ( )
( )( )
( )( ) ( )

( )( )
( )( )

2
1 12

62
2 2

, , ,t

t x t x
t M t x t x R t x i R t x

x t x t x

φ ω φ ω
ω ω

φ ω φ ω

    ∂
   − + + ∆ = ∂     ∂     

.        (50) 
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In the next step, we will calculate the function ( ),R t x  so that the algebraic solutions ( ),t xψ  of the time- 
dependent Schrödinger equation are deduced. From the above Equation (50), the following system is obtained  

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

( )

2
2 8 6 6 4 2 4 2
2 1 2 1 2 22

2
4 2 2 21

2 1 1 1 2 0 22

1
1

2
2 8 6 6 4 2 4

2

2
2 1 2 1 2

2

2

2

4
22

2

4 8 4 8 2 1 2

8 4 , 2 8

,

4 8 4 8 2 1 2

8

R p t x p p t x p mp p t x
x

R Rp t x p t x t x mp k t R x
x xx

Ri iR
t t
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∂∂
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         (51) 

Obviously, the two equations of the above system (51) can be linear respectively in 1φ  and 2φ  (i.e. the first 
derivatives of 1φ  and 2φ  are omitted) only if the following system is satisfied 

1 1

2 2

2 ,

2 .

R iR
x x t
R R
x x t

φ φ

φ φ

∂ ∂∂− = ∂ ∂ ∂
 ∂ ∂∂− =
 ∂ ∂ ∂

                                   (52) 

One can solve the first equation (or the second equation) in 1φ  (or in 2φ ) of this Equation (52) in order to 
find the expression of ( ),R t x  

( ) ( ) ( ) 2ˆ, exp iR t x R t R t xω
ω

 = = − 
 



.                             (53) 

From this expression of ( ),R t x , as a consequence, the Equation (50) is written as follows 

( ) ( ) ( ) ( )
( )( )
( )( )

( )
( )( )
( )( )

2
12 2

62
2

12

2

ˆ, exp
4

ˆ exp .
4t

t xit M x x t R t x
x t

t xii R t x
t

φ ωωω ω
ω ϕ ω

φ ωω
ω ϕ ω

  ∂   − + + ∆ −    ∂     
     = ∂ −      





              (54) 

In the next, the idea is to find the unknown function ( )ˆ ,R t x , for this, one has to consider the derivative with 
respect to t  in the second expression of the above equation and after some algebraic manipulations, the Equa-
tion (54) is written as fallows 

( ) ( ) ( ) ( )
( )( )
( )( )

( )
( )( )
( )( ) ( )

( )( )
( )( )

2 2
12 2

62
2

2
1 1

2 2

ˆ,
2 4

ˆ ,
4

t xxt M x x t i R t
x t

t x t xx R t iR t
t t

φ ω
ω ω

ϕ ω

φ ω φ ω

ϕ ω ϕ ω

  ∂ Ω
 − + + ∆ + + Ω   ∂   

   
   = Ω +
   
   





             (55) 

where ,
t

ω
ω

∂
Ω ≡ Ω Ω ≡

∂


  and ( ) ( )ˆ ˆR t R t
t
∂

≡
∂

 . 

From the Equation (46), this equality can be considered 
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( ) ( )( ) ( )( )
( )( ) ( )

( )( )
( )( )

2
1 12 2

62
2 2

t x t x
t M t x t

x t t

φ ω φ ω
ω ω λω

ϕ ω ϕ ω

    ∂
   − + =     ∂     

               (56) 

in the above Equation (55) and accordingly one can write 

( ) ( )
( )

2 2
2 2

ˆ
,

4 4 2
R t x xx t i i
R t

λωΩ
∆ = + Ω− Ω − −



 .                          (57) 

As it has shown in the above method, this expression of ( ),x t∆  leads to the Equation (24), Equation (25) 
and Equation (26). 

Finally, from the expression of ( )R̂ t  (26), one can deduce the algebraic solutions of the matrix time-de- 
pendent Schrödinger equation as follows  

( )
( )( )
( )( )

12 2

2

, exp d
4

t xix t i t x
t

φ ωωψ ω λω
ω ϕ ω

    = − −      
∫



.                    (58) 

3. Conclusion 
In this paper, referring to sextic anharmonic potentials considered in Ref. [1], we have established a generalized 
method which helps to construct time-dependent potential for any non time-dependent one. 

Indeed, we have applied this method to construct the time-dependent potential of Lamé equation. Along the 
same lines of the method, we have constructed a time-dependent potential associated to the matrix polynomial 
Hamiltonian which was also studied in [5] [6] and interesting remarks have been pointed out. 
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