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Abstract 
In this article, we study the string equation of type (2,5), which is derived from 2D gravity theory 
or the string theory. We consider the equation as a 4th order analogue of the first Painlevé equa-
tion, take the autonomous limit, and solve it concretely by use of the Weierstrass’ elliptic function. 
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1. Introduction 
1.1. The String Equation of Type (2,5) 
Put d dD z= . Consider the commutator equation of ordinary differential operators 

[ ], 1,Q P =  2: ,q q k
k kQ w D −
== Σ  2: .p p k

k kP v D −
== Σ  

We call it the string equation (or Douglas equation) of type ( ),q p , which appears in the string theory or the 
theory of quantum gravity in 2D [1]-[9]. In the followings, we set 2q = , 2 1p g= + . 

In the case where 2q = , 3p = , the string equation is written as an ODE satisfied by the potential w of 
Sturm-Liouville operator 2Q D w= + , and then, by a fractional linear transformation, it is reduced to the first 
Painlevé equation [10] [11] 

26w w z′′ = + ,                                    (PI) 
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which is equivalent to the Hamiltonian system: 

d d ,w z H v= ∂ ∂  d d ,v z H w= −∂ ∂  2 31 2 .
2

H v w zw= − −  

In the case where 2q = , 5p = , [ ], 1Q P =  yields 
( ) ( )( )4 2 2 3

0 1 25 10 3 20 16 16C w w w C w w w C w z′ ′ ′′= + + + + − + + , 

where 0C , 1C , 2C  are integral constants. By the fractional linear transformation z zα β+ , w wγ δ+ , 

7 1 ,
3

α = −  56 ,γ α=  1,Cδ = −  3
0 1 1 216 20 16C C C Cβ = − +  

and putting ( )4 2
2 18 15 4a C Cα= − , the string equation is reduced to 

( )4 2 3 820 10 40 8
3

w w w w w aw z′′ ′= + − − − ,                          (S) 

We also call it the string equation of type (2,5). Note that (S) coincides the 4th order equation of the first 
Painlevé hierarchy [12]-[15] 

[ ] 4 0nd w z+ = ,                                  (2nPI) 

for n∈ , where [ ]nd w  is an expression of a given meromorphic function w defined by [ ]0 4d w w= −  and 
[ ] ( ) [ ]3

1 8 4n nDd w D wD w d w+ ′= − − . 

1.2. Degenerated Garnier System 
Equation (S) is also obtained as follows. Consider a 2D degenerated Garnier system [16] [17]: 

{ }( ),   ,     , 1, 2 ,i j j i i j j iq t H p p t H q i j∂ ∂ = ∂ ∂ ∂ ∂ = −∂ ∂ ∈                (dG9/2)

 
( )2 2 2 2

1 2 1 1 1 2 1 2 2 1 1 2 2 1 1 2 1

2 4 2 2
2 2 1 1 2 2 1 2 1 1 1 2 2

1 2 1 1 11 3 2 ,
33 3 3 3 3

1 2 3 9 3 .
3 3

H q q t p q p p p q t q q q t t q

H q p p p q q q q t q t q

   = − − + + + + − + −   
   

= + + − + − −

 

which is a 2D analogue of (PI) in the theory of isomonodromic deformations. If we fix one of the independent 
variables ( )1 const.t a≡ = , we get a Hamiltonian system with only one independent variable 2t z≡  as follows: 

{ }( )

( ) 2 4 2 2
2 2 1 1 2 2 1 2 1 1 2

,   ,     1, 2 ,

1 2 3 9 3 .
3 3

i i i iq z H p p z H q i

H H q p p p q q q q aq zq

∂ ∂ = ∂ ∂ ∂ ∂ = −∂ ∂ ∈

= = + + − + − −
 

From the above system, eliminating 1q , 1p , 2p  and putting 2w q= , we obtain (S). So, Equation (S) is 4th 
order analogue of (PI) in the double sences. 

It is already known by Shimomura [18] that every solution to (S) is meromorphic on  , and that every pole 
of every solution is double one with its residue 0. 

1.3. Autonomous Limit of the First Painlevé Equation 
The first Painlevé equation (PI) has the autonomous limit [11]. Replacing ( ), , ,w v z H  by  
( )2 3 4 6, , ,w v z b Hε ε ε ε ε− − − −+  with a constant b∈ , and taking limit 0ε → , we obtain 26w w b′′ = +  which 
is solved by the Weierstrass’ elliptic function [10] [11]. The relation between the fundamental 2-form before and 
after the replacement is 

( )5d d d d d d d dw v H z w v H zε −∧ − ∧ ∧ − ∧ . 

1.4. Results 
It is quite natural to think that: 
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Conjecture. Each equation of the first Painlevé hierarchy has the autonomous limit, and which is satisfied by 
the Weierstrass’ elliptic function. 

For 2n = , the statement is valid, i.e. 
Theorem A. Replacing ( ), ,w z a  by ( )2 6 4, ,w z b aε ε ε ε− − −+ , or replacing ( )1 2 1 2, , , , ,q q p p z H  by  

( )4 2 3 5 6 8
1 2 1 2, , , , ,q q p p z b Hε ε ε ε ε ε ε− − − − − −+  with a constant b∈ , and taking limit 0ε → , we obtain the au-

tonomous limit of the 4th order equation of the first Painlevé hierarchy (S). Moreover, the relation between the 
fundamental 2-form before and after the replacement is 

( )7
1 1 2 2 1 1 2 2d d d d d d d d d d d dp q p q H z p q p q H zε −∧ + ∧ − ∧ ∧ + ∧ − ∧ . 

It is easy to show the above. The autonomous limit is given by 

( )4 2 3 820 10 40 8
3

w w w w w aw b′′ ′= + − − − ,                          (A) 

Theorem B. The autonomous limit Equation (A) has a solution concretely described by the Weierstrass’ el-
liptic function as 

( ) ( ) 14w z z a= ℘ , 

where ( )1 8 4 2 3a = ± − . 
Remark. Modulus of the elliptic function is determined by the constants a and b. g2 and g3 in the elliptic 

function theory are as follows: 

( ) ( )2
2 1 1 3 1 14 40 9 ,   6 10 3g a a a g a b a= − − = − − . 

The next section is devoted to give the proof of Theorem B. 

2. Proof of Theorem B 
Put ( ) ( )l.h.s. of A r.h.s. of Aϕ = − +       , i.e. 

( )4 2 3 8: 20 10 40 8 0
3

w w w w w aw bϕ ′′ ′= + + − − − = .                       (1) 

Multiplying both sides of 0ϕ =  by w′ , and integrating it, we obtain a first integral of (A) 

2 2 4 21 8d : 10 10 4 : const.
2 3

w z w w w w w w aw bw cϕ ′ ′ ′′′ ′′ ′= − + + − − − =∫                 (2) 

In order to find the elliptic function solution, let w satisfy the relation: 

( )2 4 3 2
0 1 2 3 4 :w a w a w a w a w a A w′ = + + + + = .                        (3) 

Substituting (3), ( )1
2 ww A w′′ =  and ( )1

2 www A w w′′′ ′=  into (2), we have 

( ) ( ) ( ) ( )

[ ]

2 4 2

2 6 5 2 4
0 0 1 0 0 2 1 1

3 2 2
0 3 1 2 2 0 4 1 3 2 3

1 4 2 3 4

1 1 8d 10 10 4
2 8 3

15            4 6 10 5 10 10
8

5 9 15 10 6 10 4
2 4 2
1 83 10
2 3

ww ww z A w A w A w wA w w aw bw c

a w a a a w a a a a w

a a a a a w a a a a a a a w

a a a a a b

ϕ ′ = − + + − − − =

  = − + − + + − − + −    
   + − − + + − − − + −      

+ − − + −

∫

2
2 4 3

1 1.
8

w a a a   + − + ⋅      

 

So, if we take 

( ) ( ) ( ) 2
0 2 1 3 1 4 1 3

1 10,  8 4 2 ,  16 40 9 ,  8 3 10 3 ,  and ,
3 8

a a a a a a a b a c a= = = ± − = − = − =  

then solutions of (3) satisfy (2). Now, in order to reduce 2 3
1 3 4w a w a w a′ = + +  to 2 3

2 34 g g′℘ = ℘ − ℘− , we 



Y. Sasaki 
 

 
497 

use the scale transformation w χ= ℘, { }\ 0χ ∈ . Immediately we obtain 14 aχ = , and also 2 3g a χ= − ,
3 4g a χ= − .   
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