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Abstract 
 
In this paper, the Authors present the designing of Power System Stabilizer (PSS) and Static Var Compensa-
tor (SVC) based on Chaos, Particle Swarm Optimization (PSO) and Shuffled Frog Leaping (SFL) Algo-
rithms has been presented to improve the power system stability. Single Machine Infinite Bus (SMIB) sys-
tem with SVC located at the terminal of generator has been considered to evaluate the proposed SVC and 
PSS controllers. The coefficients of PSS and SVC controller have been optimized by Chaos, PSO and SFL 
algorithms. Finally the system with proposed controllers is simulated for the special disturbance in input 
power of generator, and then the dynamic responses of generator have been presented. The simulation results 
show that the system composed with recommended controller has outstanding operation in fast damping of 
oscillations of power system and describes an application of Chaos, PSO and SFL algorithms to the problem 
of designing a Lead-Lag controller used in PSS and SVC in power system. 
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1. Introduction 
 
Power systems experience low frequency oscillations (in 
the range of 0.1 Hz to 2.5Hz) during and after a large or 
small disturbance has happened to a system, especially 
for middle to heavy loading conditions [1]. These oscil-
lations may sustain and grow to cause system separation 
if no adequate damping is available [2]. Power System 
Stabilizers (PSSs) are the most cost effective devices 
used to damp low frequency oscillations. For many years, 
Conventional PSSs (CPSSs) have been widely used in 
the industry because of their simplicity [3]. To improve 
the performance of CPSSs, numerous techniques have 
been proposed for their design, such as using intelligent 
optimization methods (simulated annealing, genetic al-
gorithm, tabu search) [4], fuzzy, neural networks and 
many other nonlinear control techniques. During some 
operating conditions, PSS may not produce adequate 
damping, and other effective alternatives are needed in 
addition to PSS. Recent development of power electron-
ics introduces the use of Flexible AC Transmission Sys-
tems (FACTS) controllers in power systems [5]. FACTS 
utilize high power semiconductor devices to control the 
reactive power flow and thus the active power flow of 

the transmission system so that the ac power can be 
transmitted through a long distance efficiently [6]. The 
conception of FACTS as a total network control phi-
losophy was first introduced by N.G. Hingorani [7] from 
the Electric Power Research Institute (EPRI) in the USA 
in 1988, although the power electronic controlled devices 
had been used in the transmission network for many 
years before that. The FACTS devices may be connected 
so as to provide either series compensation or shunt 
compensation depending upon their compensating 
strategies. [8]. Nowadays, Static Var Compensator (SVC) 
is one of the key elements in the power system that pro-
vides the opportunity to compensate reactive power and 
reliability due to its fast response. SVC has the func-
tional capability to handle dynamic conditions, such as 
transient stability and power oscillation damping in addi-
tion to providing voltage regulation [6]. Due to the char-
acteristics of power transmission systems, the FACTS 
Compensator control algorithm must be designed resort-
ing to control methods capable to deal with system 
non-linearities and unknown disturbances [9]. In this 
paper the PSS and SVC have the same controller, that 
their coefficients have been optimized by PSO, Chaos 
and SFL algorithms. Then the system with proposed 
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controller has been simulated for the special disturbance 
and the dynamic response of generator has been pre-
sented. 
 
2. Model of Proposed System 
 
A synchronous machine with an IEEE type-ST1 excita-
tion system connected to an infinite bus through a trans-
mission line has been selected to demonstrate the deriva-
tion of simplified linear models of power system for dy-
namic stability analysis [2,10]. Figure 1 shows the 
model consists of a generator supplying bulk power to an 
infinite bus through a transmission line, with an SVC 
located at its terminal. The equations that describe the 
generator and excitation system have been represented in 
following equations: 

0 1                     (1) 

  1m e D                   (2) 

  q fd d d qE X X id     do  


      (3) 

 fd A ref t pss fdE K V V U E T   
A       (4) 

where, m  and e  are the input and output powers of 
the generator, respectively. M and D are the inertia con-
stant and damping coefficient, respectively. 0

 

  is the 
synchronous speed. δ and ω are the rotor angle and speed, 
respectively. 
where,  is the internal voltage. qE fd  is the field 
voltage. 

E
d 


 is the open circuit field time constant. 

d  and d  are the d-axis reactance and the d-axis 
transient reactance of the generator, respectively. A

 
K  

and A  are the gain and time constant of the excitation 
system, respectively. ref  is the reference voltage. tV  
is the terminal voltage. Also  and  can be ex-
pressed as: 

T
V

tV e

t td tV V jV  q

q

q

q

                (5) 

td q qV                    (6) 

tq q d dV                     (7) 

e td d tqV V                  (8) 

where, Xq is the q-axis reactance of the generator. 

 1 2 3sind q bC C V C              (9) 

 4 5 6cosd q bC C V C             (10) 

Solving (9) and (10) simultaneously, d  and q   
expressions can be obtained. 1  until 6  are constant 
and b  is the infinite bus voltage. The various parame-
ters of the system have been represented in Table 1. 

C C
V

Gen 

q  
SVC

Infinitive
Bus 

Vb < 0Xe Re 
Vt 

Id, Iq 

 

Figure 1. Single machine-infinite bus system model with 
SVC. 
 

Table 1. System parameters. 

Xd = 1.7 Xq = 1.64 d  = 0.245 

H = 2.37 τ'do = 5.9 XT = 0.08 

Xe = 0.4 Re = 0.02 D = 0 

 
3. Static Var Compensator 
 
A Static Var Compensator (or SVC) is an electrical device 
for providing fast-acting reactive power on high-voltage 
electricity transmission networks. SVCs are part of the 
Flexible AC transmission system device family, regulat-
ing voltage and enhance the transient stability [11] and 
provide additional damping to power systems as well 
[12]. SVC is mainly operated at load side bus and used 
as replacement for existing voltage control devices [10]. 
A basic topology of SVC consists of a series capacitor 
bank C in parallel with a thyristor controlled reactor L, is 
shown in Figure 2. The SVC can be seen as an adjust-
able susceptance which is a function of thyristors firing 
angle. 
 
4. Power System Linearized Model 
 
A linear dynamic model is obtained by linearizing the 
nonlinear model round an operating condition (Pe = 1,  
Qe = 0.59). The linearized model of power system as 
shown in Figure 1 is given as follows: 

o                      (11) 

m e D 



   

             (12) 

 fd d d d
q

do

i
E q   



      
 


       (13) 

  fd A ref t pss fdE K V V U E T      
A

SVC

   (14) 

7 8qI c c B                (15) 

9 10 11d qI c c c BSVC                (16) 
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  11 9d d c K               (21)  

C 

L 

Vt 

 

 
5. Chaos Algorithm 
 
Chaos is a general phenomenon in non-line system. It 
can get all the states in the search space by the rules of 
itself. Moreover, a tiny change of initial values can lead 
to a big change of the system. The Chaos search can gen-
erate the neighbourhoods of near-optimal solutions to 
maintain solution diversity. It can prevent the search 
process from becoming premature. The Chaos optimiza-
tion method based on Chaos Search is proposed to avoid 
the local optimal [13]. Chaos variables are usually gen-
erated by the well known logistic map. Figure 4 shows 
the flowchart of Chaos algorithm. The logistic map is a 
one-dimensional quadratic map defined by following 
equation: Figure 2. Basic SVC topology. 

     1 1i i ik k     k          (22) 

1 2 3e q svcK K K         B

svc

      (17) 
where,   is a control parameter and  0 0i 

4

1 . 
Despite the apparent simplicity of the equation, the solu-
tion exhibits a rich variety of behaviours. For    
system (22) generates chaotic evolutions. Its output is 
like a stochastic output, no value of i  is repeated 
and the deterministic equation is sensitive to initial con-
ditions. Those are the basic characteristics of Chaos. 
Chaos variable 

 k

 0i  is mapped into the variance 
ranges of optimisation variables by the following equa-
tions [14]: 

4 5 6t qV K K K B               (18) 

1K  until 6K  are linearization constants. The block 
diagram of the linearized power system model is shown 
in Figure 3. 7K , 8K , and 9K  are constants defined as 
follows:  

  9d d c K    7

K

           (19) 

  10 81d d c               (20) 

 

 

Figure 3. Block diagram of the linearized model.   
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Figure 4. Flowchart of the Chaos algorithm. 
 

    2i i i ix k x k   1          (23) 

   0.01 , ,i i i i ib a x a b    i         (24) 

where, x is optimization variable, x  is the best ex-
periment of variable, and   is the feasible region.  

6. PSO Algorithm 
 
The particle swarm optimization (PSO) algorithm was 
first proposed by Kennedy and Eberhart [15]. Where is a 
novel evolutionary algorithm paradigm which imitates 
the movement of birds flocking or fish schooling looking 
for food. Each particle has a position and a velocity, rep-
resenting the solution to the optimization problem and 
the search direction in the search space the particle ad-
justs the velocity and position according to the best ex-
periences which are called the best  found by it and 

best

p
g  found by all its neighbors. In PSO algorithms each 
particle moves with an adaptable velocity within the re-
gions of decision space and retains a memory of the best 
position it ever encountered. The best position ever at-
tained by each particle of the swarm is communicated to 
all other particles. Figure 5 shows the flowchart of PSO 
algorithm. The updating equations of the velocity and 
position are given as follows [16]: 
 

 

Figure 5. Flowchart of the PSO algorithm. 
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    1i i ix k x k v k             (26) 

where v is the velocity and x is the position of each par-
ticle. 1  and 2  are positive constants referred to as 
acceleration constants and must be , usually 

1 2 . 1  and 2  are random numbers between 0 
and 1, w is the inertia weight,  refers to the best posi-
tion found by the particle and 

c c

r
 1 2 4c c 

2c c  r
p

gp  refers to the best po-
sition found by its neighbors. 
 
7. SFL Algorithm 
 
The SFL algorithm is a meta heuristic optimization 
method that mimic the memetic evolution of a group of 
frogs when seeking for the location that has the maxi-
mum amount of available food. The algorithm contains 
elements of local search and global information ex-
change ([17,18]). The SFL algorithm involves a popula-
tion of possible solutions defined by a set of virtual frogs 
that is partitioned into subsets referred to as memeplexes. 
Within each memeplex, the individual frog holds ideas 
that can be influenced by the ideas of other frogs, and the 
ideas can evolve through a process of memetic evolution. 
The SFL algorithm performs simultaneously an inde-
pendent local search in each memeplex using a particle 
swarm optimization like method. To ensure global ex-
ploration, after a defined number of memeplex evolution 
steps (i.e. local search iterations), the virtual frogs are 
shuffled and reorganized into new memeplexes in a 
technique similar to that used in the shuffled complex 
evolution algorithm. In addition, to provide the opportu-
nity for random generation of improved information, 
random virtual frogs are generated and substituted in the 
population if the local search cannot find better solutions. 
The local searches and the shuffling processes continue 
until defined convergence criteria are satisfied. The 
flowchart of the SFL algorithm is illustrated in Figure 6. 

The SFL algorithm is described in details as follows. 
First, an initial population of N frogs  1 2, , , NP X X X 

T

 
is created randomly. For S-dimensional problems (S 
variables), the position of a frog  in the search space 
is represented as 1 2i is

thi
, , ,X x x 

n

x

m
N m n

. Afterwards, the 
frogs are sorted in a descending order according to their 
fitness. Then, the entire population is divided into  
memeplexes, each containing  frogs (i.e.  

 1
th

m 

), 
in such a way that the first frog goes to the first meme-
plex, the second frog goes to the second memeplex, the 

 frog goes to the  memeplex, and the  
frog goes back to the first memeplex, etc. Let k

thm thm
M  is the 

set of frogs in the  memeplex, this dividing process  thk

 

Figure 6. Flowchart of the SFL algorithm. 
 
can be described by the following expression: 

   1 1 , 1k k m l .M X P k n k       m    (27) 

Within each memeplex, the frogs with the best and the 
worst fitness are identified as bX  and wX , respec-
tively. Also, the frog with the global best fitness is iden-
tified as gX . During memeplex evolution, the worst 
frog wX  leaps toward the best frog bX . According to 
the original frog leaping rule, the position of the worst 
frog is updated as follows: 

 b wD r X X                (28) 

   max,w wX new X D D D    ,       (29) 
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where,  is a random number between 0 and 1; and 

max  is the maximum allowed change of frog’s position 
in one jump. 

r
D

If this leaping produces a better solution, it replaces the 
worst frog. Otherwise, the calculations in (28) and (29) 
are repeated but respect to the global best frog (i.e. re-
places bX ). If no improvement becomes possible in this 
case, the worst frog is deleted and a new frog is randomly 
generated to replace it. The calculations continue for a 
predefined number of memetic evolutionary steps within 
each memeplex, and then the whole population is mixed 
together in the shuffling process. The local evolution and 
global shuffling continue until convergence criteria are 
satisfied. Figure 6 shows the flowchart of SFL algorithm. 
Usually, the convergence criteria can be defined as fol-
lows: 
 The relative change in the fitness of the best frog 

within a number of consecutive shuffling iterations is 
less than a pre-specified tolerance; 

 The maximum user-specified number shuffling itera-
tions is reached. 

The SFL algorithm will stop when one of the above 
criteria is arrived first. 
 
8. Simulation Results 
 
The deviation of speed that obtained from linearization 
has been selected for inputs of PSS and SVC controller 
which is shown in Figure 7. As shown in this figure, 
PSS and SVC have the same Lead-lag controller. The 
constant values of Figure 7 have been represented in 
Table 2. 

The fitness function used in this paper for Chaos, PSO 
and SFL algorithms is represented in Equation (30) that 

sim  is the simulation time,  is the deviation of 
speed and  is the deviation of terminal voltage of 
generator. 

t dw

tdv

0

10*
simt

tfitness dw dv dt  

50

        (30) 

The deviation of speed ( ) has been multiplied by 
ten to both section of fitness have the same range. Con-
trol parameters and their boundaries are given as follows: 

dw

0 K                  (31) 

10.01 1T                 (32) 

20.01 1T                 (33) 

The convergence rate of the fitness function with num-
ber of iterations for SFL, PSO and Chaos algorithms is 
shown in Figure 8. As shown in Figure 8, the SFL algo-
rithm is faster than PSO and Chaos algorithm to achieve 
the optimum coefficients. Table 3 shows the optimized  
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Figure 7. PSS and SVC controller. 
 

Table 2. Constant values. 

KA [P.U] TA [P.U] Tw [P.U] Ks [P.U] Ts [P.U] 

200 0.02 10 10 0.15 

 

 

Figure 8. Convergence of SFL, PSO and Chaos algorithms. 
 

Table 3. Optimized values. 

 SFL PSO Chaos 

K 4.42 3.84 3.63 

T1 0.164 0.18 0.19 

T2 0.0015 0.01 0.012 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 9. System dynamic response for a six cycle fault dis-
turbance. (a) Rotor speed variation; (b) Rotor angle varia-
tion; (c) Terminal voltage variation. 

parameters that found by SFL, PSO and Chaos algo-
rithms. The final setting of the optimized parameters 
have been given when the input power of generator has 
been changed 5% instantaneously and the operating con-
dition was Pe = 1 and Qe = 0.59. 

Figure 9 shows the system dynamic response for a six 
cycle fault disturbance for rotor speed variation, rotor 
angle variation and terminal voltage variation for SFL, 
PSO and Chaos controllers, also non-controller. 

As shown in these figures, it is clear that the perform-
ance of PSS and SVC controller has good damping 
characteristics for low frequency oscillations. However, 
this improves greatly the power system stability. Also the 
SFL algorithm has pretty faster behavior in convergence 
than PSO and Chaos algorithms. 
 
9. Conclusions 
 
In this paper the SMIB system where SVC located at the 
terminal of generator has been considered. The SVC and 
PSS have the same controller where their optimized co-
efficients have been earned by Chaos, PSO and SFL al-
gorithms. In order to show the excellent operation of 
proposed controller, the input power of generator has 
been changed 5% instantaneously and the system with 
proposed controllers has been simulated, then the dy-
namic response of generator for rotor speed variation, 
rotor angle variation and terminal voltage variation have 
been represented. The effectiveness of the proposed PSS 
and SVC controllers for improving transient stability 
performance of a power system are demonstrated under 
different operating conditions. The simulation results 
shown that the system composed with proposed control-
ler has superior operation in fast damping of oscillations 
of power system. Also the results show that SFL algo-
rithm has pretty faster behavior in convergence than PSO 
and Chaos algorithms. This procedure can be easily ap-
plied to the systems with similar performances. 

Humphreys for English editing. All errors are ours. 
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Notation 
 

mΡ
Ρ

  The input power of the generator 

e   The output power of the generator 
M   The inertia constant 
D   The damping coefficient 

0   The synchronous speed 
   The rotor angle 
   The rotor speed 

qE   The internal voltage 

fd

'd
E   The field voltage 
   The open circuit field time constant 

d   The d-axis reactance of the generator 

qX   The q-axis reactance of the generator 

dX    The d-axis transient reactance of the generator 

AK   The gain of the excitation system 

A

V
T   The time constant of the excitation system 

ref

V
  The reference voltage 

t

C
  The terminal voltage 

1 C
V

6

6

 The constants 

b   The infinite bus voltage 

1K K  The linearization constants 

7 9K K
,

 The constants defined in (19), (20), (21) 

i   The basic characteristics of Chaos 
x   The optimization variable of Chaos 
x   The best experiment of variable of Chaos 
   The feasible region of Chaos 
V   The velocity of PSO  
X   The position of each particle of PSO 

1 andc c2

2

 The positive constants referred to as accelera-
tion 

1 andv v
W

 The random numbers between 0 and 1 in PSO 
  The inertia weight in PSO 

and gp p  The best position found by the particle and the 
best position in PSO, respectively 

bX   The frog with the best fitness of SFL 

wX   The frog with the worst fitness of SFL 

gX   The frog with the global best fitness of SFL 
r   A random number between 0 and 1 in SFL 

maxD  The maximum allowed change of frog’s posi-
tion in one jump in SFL 

simt
dw

  The simulation time 
  The deviation of speed 

tdv   The deviation of terminal voltage of generator 
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