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Abstract 
We examine here the proposition that all multiparty quantum states can be made monogamous by 
considering positive integral powers of any quantum correlation measure. With Rajagopal-Ren- 
dell quantum deficit as the measure of quantum correlations for symmetric 3-qubit pure states, 
we illustrate that monogamy inequality is satisfied for higher powers of quantum deficit. We dis-
cuss the drawbacks of this inequality in quantification of correlations in the state. We also prove a 
monogamy inequality in higher powers of classical mutual information and bring out the fact that 
such inequality needs not necessarily imply restricted shareability of correlations. We thus dis-
prove the utility of higher powers of any correlation measure in establishing monogamous nature 
in multiparty quantum states. 
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1. Introduction 
It is well known that classical correlations are infinitely shareable whereas there is a restriction on the share- 
ability of quantum entanglement amongst the several parts of a multipartite quantum state [1]-[4]. The concept 
of monogamy of entanglement and monogamy of quantum correlations has been studied quite extensively [1]- 
[23] and it is shown that the measures of quantum correlations such as quantum discord [24], quantum deficit 
[25] are not monogamous for some category of pure states [16] [17]. The polygamous nature of quantum 
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correlations other than entanglement has initiated discussions on the properties to be satisfied by a correlation 
measure to be monogamous [21] and it is shown that a measure of correlations is in general non-monogamous if 
it does not vanish on the set of all separable states [21]. 

While it has been shown that [22] square of the quantum discord obeys monogamy inequality for 3 -qubit 
pure states, an attempt to show that all multiparty states can be made monogamous by considering higher 
integral powers of a non-monogamous quantum correlation measure has been done in Ref. [23]. It is shown that 
(See Theorem 1 of Ref. [23]) if Q  is a non-monogamous correlation measure and is monotonically decreasing 
under discarding systems, then nQ , 2,3,n = 

 can be a monogamous correlation measure for tripartite states 
[23]. With quantum work-deficit wdQ  as a correlation measure, it is numerically shown that almost all 3 -qubit 
pure states become monogamous when the fifth power of wdQ  is considered [23]. 

In this work, we analyze the implications of the proposition [23] that higher integral powers of a quantum 
correlation measure reveal monogamy in all multiparty quantum states. Towards this end we first verify the 
above proposition by adopting quantum deficit [25], an operational measure of quantum correlations for our 
analysis. Quantum deficit has been shown to be, in general, a non-monogamous measure of correlations for 3 - 
qubit pure states [17]. In Ref. [17], the monogamy properties (with respect to quantum deficit) of symmetric 3 - 
qubit pure states belonging to 2 -, 3 -distinct Majorana spinors classes [26]-[28] has been examined and it has 
been shown that all states belonging to the 2 -distinct spinors class (including W -states) are polygamous. It 
has also been shown [17] that the superposition of W , obverse W  states, belonging to the SLOCC class of 
3-distinct Majorana spinors [26]-[28], are polygamous with respect to quantum deficit. Here we consider both 
these classes of states and illustrate that they can be monogamous with respect to higher powers of quantum 
deficit. We examine the possibility of quantification of tripartite correlations using monogamy relation in higher 
powers of a quantum correlation measure and illustrate that such an exercise is unlikely to yield fruitful results. 

In order to analyze the relevance of monogamy with respect to higher integral powers of a quantum correla- 
tion measure, we bring forth a monogamy-kind-of-an-inequality in higher powers of classical mutual informa- 
tion [29]. The possibility of a monogamy relation in higher powers of a classical correlation measure even in the 
arena of classical probability theory raises questions regarding the meaning attributed to such an inequality. We 
discuss this aspect and bring out the fact that monogamy in higher powers of a quantum correlation measure 
needs not necessarily imply limited shareability of correlations.  

2. Monogamy of 3-Qubit Pure States with Respect to Higher Powers of  
Quantum Deficit 

Quantum deficit, a useful measure of quantum correlations was proposed by Rajagopal and Rendell [25] while 
enquiring into the circumstances in which entropic methods can distinguish the quantum separability and 
classical correlations of a composite state. It is defined as the relative entropy [29] of the state ABρ  with its 
classically decohered counterpart d

ABρ . That is,  

( ) ( ) ( )ln ln .d d
AB AB AB AB AB AB ABD S Tr Tr= = −ρ ρ ρ ρ ρ ρ                        (1) 

is the quantum deficit of the state ABρ  and it determines the quantum excess of correlations in ABρ  with  
reference to its classically decohered counterpart d

ABρ . As d
ABρ  is diagonal in the eigenbasis { }a , { }b  of 

the subsystems Aρ , Bρ  (common to both ABρ , d
ABρ ) one can readily evaluate ABD  as [17]  

( ) ( )
,

ln ln ln ln ,d
AB AB AB AB AB i i ab ab

i a b
D Tr Tr P Pλ λ= − = −∑ ∑ρ ρ ρ ρ                          (2) 

where iλ  are the eigenvalues of the state ABρ  and , ,ab ABP a b a b= ρ  denote the diagonal elements of 
d
ABρ . Through an explicit evaluation of the quantum deficit ABD , the polygamous nature (with respect to 

quantum deficit ABD ) of two SLOCC inequivalent classes of symmetric 3 -qubit pure states has been 
illustrated in Ref. [17]. In particular, it is shown that [17] the monogamy relation 

:AB AC A BCD D D+ ≤                                         (3) 

is not satisfied for symmetric 3 -qubit states with 2 -distinct Majorana spinors [26]-[28]. Amongst the 3 -qubit 
GHZ and superposition of W , obverse W  states, the monogamy inequality (3) is satisfied by the GHZ states 
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while the superposition of W  and obverse W  states does not obey it [17] inspite of both the states belonging 
to the SLOCC family of 3 -distinct spinors [28]. 

In the following we illustrate that symmetric 3 -qubit pure states obey monogamy relation in higher powers 
of quantum deficit ABD . The states of interest are given by,  

100 010 001
   and   

3 2

W W
W WW

++ +
= =                       (4) 

where 
011 101 110

3
W

+ +
=  is the obverse W  state. 

The reduced density matrices of the 3 -qubit W  state are given by  

1 0 0 0
0 1 1 0 2 01 1;     
0 1 1 0 0 13 3
0 0 0 0

AB AC A B C

 
    = = = = =      
 

ρ ρ ρ ρ ρ                      (5) 

With ( )1 1,0χ = , ( )2 0,1χ =  being the eigenvectors of Aρ , the decohered counterpart d
ABρ  of ABρ  is 

obtained as [17]  

( )11 22 33 44
1 1 1diag , , , diag , , ,0 ;    , , ;
3 3 3

d d
AB AC ii i i AB i iP P P P P χ χ χ χ = = = = 

 
ρ ρ ρ               (6) 

As 1
2
3

λ = , 2
1
3

λ =  are the non-zero eigenvalues of ABρ , we obtain the quantum deficit ABD  to be, 

2 2 1 1 1ln ln ln 0.462
3 3 3 3 3ABD = + − ≈                                 (7) 

An evaluation of the eigenvectors jη , 1, 2,3, 4j =  of the bipartite subsystems AB AC=ρ ρ  of the state W  
allows us to find out the decohered counterpart :

d
A BCρ  of the state ABCρ  and we have  

( ): 11 12 13 14 21 22 23 24
2 1diag , , , , , , , diag 0,0, ,0,0,0,0, ;
3 3

, , ,    .

d
A BC

ij i j W i j W

P P P P P P P P

P W Wχ η ρ χ η ρ

 = =  
 

= =

ρ
               (8) 

The quantum deficit :A BCD  of the W  state is thus obtained as,   

:
2 2 1 10 ln ln 0.636.
3 3 3 3A BCD  = − + ≈ 

 
 

It is easy to see that   

:2 2 0.462 0.636AB AC AB A BCD D D D+ = ≈ × > ≈                                (9) 

and the monogamy inequality (3) is not obeyed [17]. 
For the state WW , the reduced density matrices are  

1 1 1 0
1 2 2 1 3 21 1;    
1 2 2 1 2 36 6
0 1 1 1

AB AC A B C

 
    = = = = =      
 

ρ ρ ρ ρ ρ                          (10) 

and their common non-zero eigenvalues are 1
2
3

λ = , 2
1
3

λ = . The decohered density matrices d
ABρ , :

d
A BCρ  are 

respectively given by [17]  

:
3 1 1 1 5 1diag , , ,    and   diag ,0,0,0,0, ,0,0
4 12 12 12 6 6

d d
AB A BC

   = =   
   

ρ ρ                    (11) 

The quantum deficit ( )AB ACD D=  and :A BCD  are therefore obtained as  



P. J. Geetha et al. 
 

 
1297 

:

2 2 1 1 3 3 3 1ln ln ln ln 0.386
3 3 3 3 4 4 12 12

5 5 1 10 ln ln 0.45.
6 6 6 6

AB

A BC

D

D

 = + − + ≈ 
 

 = − + ≈ 
 

                           (12) 

Here too we have 

:2 2 0.386 0.45AB AC AB A BCD D D D+ = ≈ × > ≈                              (13) 

and the monogamy inequality (3) is not obeyed [17]. 
Having illustrated the polygamous nature of the states W , WW  with respect to quantum deficit, we 

wish to see whether higher powers of quantum deficit indicate monogamy in these and if so for what powers. In 
Table 1, we have tabulated n

ABD , :
n
A BCD  and the value of : 2n n

A BC ABD D− , 1n ≥  for both W  and WW . 
It can be readily seen from the table (Table 1) that though the 3 -qubit states W  and WW  are poly- 

gamous with respect to quantum deficit, its third power satisfies monogamy inequality for W  whereas fifth 

power of quantum deficit is required for making the state WW  monogamous. 

We have also examined the monogamy with respect to ( )n n
AB ACD D= , :

n
A BCD  for an arbitrary symmetric 3- 

qubit pure state belonging to the family of 2 -distinct spinors [17]. The state is given by [17]   

100 010 001
cos 000 sin

2 2 3
θ θψ

 + + 
≡ +  

 
                          (14) 

with 0 θ π< <  and for θ π= , we get the W  state. An explicit evaluation of ABD , :A BCD , as a function of 
θ , has been done in Ref. [17] and the state is seen to be polygamous for all values θ . But in higher powers of

ABD :, A BCD , monogamy inequality is satisfied and as the power n  increases more states become monogamous. 
Figure 1 illustrates this feature. Notice that the state is not monogamous in terms of quantum deficit as can be 
seen through the negative values of : 2n n

A BC ABD D− , throughout the whole range, when 1n = . When 1n > , more 
states become monogamous as can be seen through the non-negative values of  : 2n n

A BC ABD D−  for 5n =  and 
10n = . 

At this juncture, it would be of interest to know whether quantification of non-classical correlations in a 
tripartite state is possible through the monogamy inequality in higher powers of the correlation measure. Notice 
that monogamy inequalities in squared concurrence [1], squared negativity [5] have been useful in quantifying 
the tripartite correlation through concurrence tangle [1] and negativity tangle [5]. A systematic attempt to quan- 

 
Table 1. Monogamy w.r.t integral powers of Quantum Deficit for 3-qubit pure symmetric states.             

State Powers ( )n  
Quantum Deficit  

( )n n
AB ACD D=  :

n
A BCD  : 2n n

A BC ABD D−  

3-qubit W  

1 0.462 0.636 −0.287 

2 0.213 0.405 −0.022 

3 0.098 0.257 0.060 

4 0.045 0.164 0.072 

5 0.021 0.104 0.062 

3-qubit WW  

1 0.386 0.450 −0.322 

2 0.149 0.203 −0.095 

3 0.057 0.091 −0.023 

4 0.022 0.041 −0.003 

5 0.008 0.018 0.0013 
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Figure 1. The plot of ( ) ( ): 2n n
A BC ABD D−  versus θ  for 3-qubit 

pure states with 2-distinct spinors.                            
 

tify the correlations in 3 -qubit pure states using square of quantum discord as the measure of quantum 
correlations has been done in Ref. [22]. We observe here that in order to quantify the tripartite correlations using 
monogamy inequality in nQ , one has to consider the non-negative quantity :

r r r
q A BC AB ACQ Q Qτ = − − , where 

1r ≥  is the minimum degree at which the state becomes monogamous. But there immediately arise questions 
regarding whether the minimum degree r  of Q  has any bearing on the amount of non-classical tripartite 
correlations in the state. In fact, every correlation measure requires a different integral power r  to reveal 
monogamous nature in a 3 -qubit state [23]. Whereas fifth power of quantum discord is sufficient to make 
almost all 3 -qubit pure states monogamous [23], we have seen here that one requires still higher powers in 
quantum deficit ( )10r ≥  (See Figure 1) for some pure symmetric 3 -qubit states. As such there does not 
appear to be any relation between the non-classical correlations in the state and the minimum degree r  of a 
correlation measure. For instance, we have (See Table 1)  

:

:

0.06  for    when  3

0.0013  for    when  5.

r r r
A BC AB AC

r r r
A BC AB AC

D D D W r

D D D WW r

− − = =

− − = =  

Also, as : 1A BC AB ACD D D− − =  for 3 -qubit GHZ state [17], we have : 1r r r
A BC AB ACD D D− − =  at 1r =  for 

GHZ state. It is not apparent whether states having higher correlations possess larger r  with smaller value of 
qτ  or vice versa. Whichever be the case, the way in which r  can be accommodated in finding the tripartite 

correlations is not evident even in these simplest examples. Also, the monogamy relation in higher powers of a 
correlation measure Q  will not have the physical meaning of restricted shareability of correlations if rQ  is 
not established as a proper correlation measure satisfying essential properties such as local unitary invariance. 
The tripartite correlation measure qτ  should also be established as a valid correlation measure1 for each r . 
Without addressing these issues, a mere quantification of tripartite correlations through qτ  may not yield 
justifiable results. 

3. Monogamy-Kind of Relation in Higher Powers of Mutual Information 
We now go about exploring the meaning associated with monogamy in positive integral powers of a correlation 
measure. Towards this end, we prove a monogamy-kind-of-a relation in higher powers of classical mutual 
information and investigate its consequences. 

From the strong subadditivity property of Shannon entropy [29], we have, 

( ) ( ) ( ) ( ), , , , .H X Y Z H Y H X Y H Y Z+ ≤ +                            (15) 

Casting Equation (15) in terms of the mutual information [29]  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

: , ,

, : .

H X Y H X H Y H X Y

H Y Z H Y H Z H Y Z

= + −

= + −
 

we obtain  

 

 

1For square of quantum discord, qτ  is shown to satisfy all properties of a correlation measure in Ref. [22]. 
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( ) ( ) ( ) ( ) ( ) ( ), , : : .H X Y Z H X Y H X H Y H Z H Y Z+ − ≤ + −  

and this implies 

( ) ( ) ( ) ( ) ( ) ( ): : , , .H X Y H Y Z H X H Y H Z H X Y Z+ ≤ + + −                      (16) 

In view of the fact that   

( ) ( ) ( ) ( ): , , ,H Y XZ H Y H X Z H X Y Z= + − , 

where ( ):H Y XZ  denotes the mutual information between the random variables Y , XZ , we make use of the 
relation ( ) ( ) ( ) ( ), , , :H X Y Z H Y H X Z H Y XZ= + −  in Equation (16) to obtain  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

: : , :

                                  , : .

H X Y H Y Z H X H Y H Z H Y H X Z H Y XZ

H X H Z H X Z H Y XZ

+ ≤ + + − + −  
≤ + − +

 

As ( ) ( ) ( ) ( ): ,H X Z H X H Z H X Z= + − , ( ) ( ): :H X Y H Y X=  we obtain the relation   

( ) ( ) ( ) ( ): : : :H Y X H Y Z H Y XZ H X Z+ ≤ +                               (17) 

obeyed by the trivariate joint probability distribution ( ), ,P X Y Z  indexed by the random variable XYZ . 
Notice that the relation  

( ) ( ) ( ): : :H Y X H Y Z H Y XZ+ ≤                                  (18) 

represents a monogamy relation between the random variables X , Y  and Z . But this inequality is not true 
due to the existence of the non-negative term ( ):H X Z  on the right hand side of Equation (17). That is we 
have,  

( ) ( ) ( ): : :H Y X H Y Z H Y XZ+ ≥                                  (19) 

According to Theorem 1 of Ref. [23], a non-monogamous measure of correlations satisfies monogamy 
inequality in higher integral powers when the measure is decreasing under removal of a subsystem. Thus, in 
order to prove the monogamy relation in higher powers of mutual information, we need to establish that  

( ) ( ) ( ) ( ): : ,    : : .H Y X H Y XZ H Y Z H Y XZ≤ ≤  

We show in the following that mutual information indeed is non-increasing under removal of a random 
variable. 

On making use of the relations  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

: , ,

: , , ,

H X Y H X H Y H X Y

H Y XZ H Y H X Z H X Y Z

= + −

= + −
 

we have,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

: : , , , ,

                                    , , , , .

H Y XZ H X Y H Y H X Z H X Y Z H X H Y H X Y

H X Y H X Z H X H X Y Z

− = + − − + −  
= + − −

         (20) 

As ( ) ( ) ( ), , ,H Z XY H X Y Z H X Y= − , ( ) ( ) ( ),H Z X H X Z H X= −  denote the respective conditional 
entropies, Equation (20) simplifies to 

( ) ( ) ( ) ( ): : .H Y XZ H Y X H Z X H Z XY− = −  
Using the fact that conditioning reduces entropy, i.e., ( ) ( )H Z XY H Z X≤ , we readily have  

( ) ( ) ( ) ( )0  or  : :H Z X H Z XY H Y X H Y XZ− ≥ ≤                           (21) 

One can similarly show that   

( ) ( ): : .H Y Z H Y XZ≤                                       (22) 

We are now in a position to prove the monogamy relation   
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( ) ( ) ( ): : :   for  n n nH Y X H Y Z H Y XZ n r+ ≤ >                         (23) 

based on the proof of Theorem 1 of Ref. [23]. Here 1r >  is the lowest integer for which the above equality is 
satisfied. 

Denoting 
( ) ( ) ( ): ,   : ,   :H Y XZ x H Y X y H Y Z z= = =                            (24) 

we have x y z< +  (See Equation (19)), 0x y> > , 0x z> >   (See Equaitons (21), (22)) and hence 0 1y x< < , 
0 1z x< <  which follow from the non-negativity of mutual information and from Equaitons (19), (21), (22). 
This implies ( )lim 0m

m y x→∞ = , ( )lim 0m
m z x→∞ =  and hence 0ε∀ >  there exist positive integers ( )1n ε , 

( )2n ε  such that,  

( ) ( )
( ) ( )

1

2

   positive integers ,

    positive integers .

n

n

y x n m

z x n m

ε ε

ε ε

< ∀ ≥

< ∀ ≥
                            (25) 

With a choice of 1
1
2

ε ε= <  we get ( ) 10 ny x ε< <  and ( ) 10 nz x ε< < , ∀  positive integers ( )1n m ε≥ , 

where ( ) ( ) ( ){ }1 1 1 2 1max ,m m mε ε ε=  we readily obtain the inequality  

( ) ( ) ( )11  n ny x z x n m ε+ < ∀ ≥                                (26) 

which is essentially the monogamy relation Equation (23). 
Having established the monogamy relation in higher powers of classical mutual information (See Equation 

(23)), we now examine its implications. In fact, we are interested in knowing whether the monogamy relation in 
higher powers of a correlation measure (classical/quantum) reflects restricted shareability of correlations. 
Towards this end we raise the following questions. 

a) Does Equation (23) imply that the distribution of bipartite correlations between X , Y  and Y , Z  are 
restrictively shared among the random variables X , Y , Z  in the trivariate probability distribution 
( ), ,P X Y Z ?  

b) If a classical correlation measure satisfies monogamy inequality in its higher powers, does it mean 
limited shareability of classical correlations in a quantum state?  

c) What does the monogamy relation satisfied by higher power of a non-monogamous measure of quantum 
correlations mean?  

An affirmative answer to (a) and (b) negates the unrestricted shareability of classical correlations. But it is 
well known that classical correlations in a multiparty quantum state can be distributed at will amongst its parties. 
This implies we need to negate both the statements (a) and (b). Now it is not difficult to see that negation of (a) 
and (b) immediately provides an answer to (c). 

Existence of a monogamy relation in higher powers of any correlation measure (classical or quantum) does 
not necessarily mean restricted shareability of correlations in a multiparty state. 

4. Conclusion 
In conclusion, we have illustrated that monogamy relation satisfied in higher powers of a non-monogamous 
correlation measure is not useful either to quantify the correlations or to signify that all mutiparty states have re- 
stricted shareability of correlations. We hope that this work is helpful in clarifying whether or not higher powers 
of quantum correlation measure are to be taken up for examining the monogamous nature of quantum states. 
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