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Abstract 

In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pul-
sating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass be-
tween ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the 
change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive is-
sue for studying stability of such objects. In our computations, we keep rotational perturbation 
terms of up to second order in the angular velocity. 
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1. Introduction 
According to “Hartle’s perturbation method” (also called “Hartle-Thorne perturbation method”; [1] [2]), we 
treat rotating relativistic neutron stars as perturbative solutions of the Einstein’s field equations, which describe 
a static spherically symmetric relativistic model. Our aim here is to compute, based on the work of Hartle et al. 
[3] and also of Hartle and Friedmann [4], the zeroth- and second-order eigenfrequencies of the lowest three  

modes of radial pulsation for general-relativistic polytropic models. The zeroth-order eigenfrequencies, 
( )02σ   , 
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are the eigenfrequencies of the nonrotating model, while the second-order ones, 
( )22σ   , are the rotation-  

induced changes in the eigenfrequencies. 
In this study, we use “gravitational units” (abbreviated “gu”; see [5] and [6]), also called “geometrized units”. 

In these units the speed of light, c , and the gravitational constant, G , are equal to unity, 1gu guc G= = , and 
the length is the unique “base unit”, measured in centimeters (abbreviated “cm”). On the other hand, the well- 
known “centimeter-gram-second units” (abbreviated “ cgs ”) have three base units: the length measured in cm, 
the mass measured in grams (abbreviated “ g ”), and the time measured in seconds (abbreviated “ s ”). 

2. The Nonrotating Model 
The Schwarzschild metric for a nonrotating spherical object, expressed in polar coordinates, is given by the 
relation ([1], Equation (25))  

 ( )2 2 2 2 2 22d e d e d d d ,sins t r rν λ θ θ φ= − + + +  (1) 

where ν  and λ  are metric functions of r . The exponential functions eν  and eλ  represent the fluctuations 
in the time rate flow and the divergence from the Euclidean geometry, respectively. The gravitational potential 
Φ  is usually defined as (see e.g. [5], Equation (2)) 

 ,
2
ν

Φ =  (2) 

and the metric function λ  by (see e.g. [5], Equation (5))  

 
12e 1 ,m

r
λ

−
 = − 
 

 (3) 

where ( )m r  is the mass-energy of the star. 
A relativistic neutron star obeys the Tolman-Oppenheimer-Volkoff (TOV) equations of (i) hydrostatic 

equilibrium ([1], Equation (28))  

 
( )( )

( )

34πd ,
d 2

E P m r PP
r r r m

+ +
= −

−
 (4) 

and (ii) mass-energy ([1], Equation (29a))  

 2d 4π ,
d
m r E
r
=  (5) 

fulfilling the initial conditions  

 ( ) ( ) ( ) ( )0 , 0 , 0 0,c c c cP P P E E E m m= = = = =  (6) 

where ( )P r  is the pressure and ( )E r  the mass-energy density. 
To treat numerically the system (4)-(5), we need an equation relating P  to E , ( )P P E= , that is, an 

“equation of state” (EOS). In this study, we consider the polytropic EOS (see e.g. [7], Equation (3); see also [8], 
Section II)  

 ( )1 1 .nP K ρ +=  (7) 

The parameters K  and n  are the so-called “polyropic constant” and “polytropic index”, respectively. The 
so-called “adiabatic index”, Γ , is defined as (cf. [3], Equation (2.3))  

 
constant entropy

d ,
d

E P P
P E
+  Γ =  

 
 (8) 

and, in general, is associated with perturbations about equilibrium under constant entropy. On the other hand, 
the so-called “adiabatic index associated with the equation of state”, γ , is defined as (cf. [3], Equation (3.12))  
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equation of state

d .
d

E P P
P E

γ +  =  
 

 (9) 

In the polytropic EOS (7), ( )rρ  is the rest-mass density, related to the mass-energy density via the equation 
([6], Equation (9))  

 .E nPρ= +  (10) 

To solve the system (4)-(5), we write the two equations as ([6], Equations (8) and (9), respectively)  

 
( ) ( )
( )( )

( ) ( )
( )

3 3

1

1 4π 1 4 πd ,
d 2 d d 2 n

n P m r P K n m K r

r r r m P K r r m

ρ ρ ρ ρρ
ρ ρ

Γ Γ + + + + + +    = − = −
− Γ −

 (11) 

 ( ) ( )2 2d 4π 4π .
d
m r nP r Kn
r

ρ ρ ρΓ= + = +  (12) 

The initial conditions are now  

 ( ) ( )0 , 0 0.c mρ ρ= =  (13) 

To complete the study of the nonrotating model, we need to solve the differential equation for the 
gravitational potential Φ  ([1], Equation (29b)) 

 
( )

3d 1 d 4π ,
d d 2

P m Kr
r E P r r r m

ρΓΦ +
= − =

+ −
 (14) 

obeying the boundary condition at the surface of the star (cf. [6], Equation (30))  

 1 2ln 1 .
2R

M
R

 Φ = − 
 

 (15) 

3. Rigid Rotation 
When a star is rotating, its shape deviates from sphericity. Furthermore, when the star is in equilibrium state, 
there is a balance between the pressure forces, the gravitational forces, and the centrifugal forces. Assuming that 
the star is rotating rigidly and slowly (see however the starting remark in Section 7), the perturbed metric is 
given by ([2], Equation (4))  

 
( ) ( ) ( )

( ) ( ) ( )

0 2 22 2 2
0 2 2

22 2 2 3
2 2 2

1 2 2
d e 1 2 d d

1 2

         1 2 d sin d d ,

m m P r m
s h h P t r

m r

r h P t

ν

υ θ θ φ ω

+ + −
 = − + + +  −

 + + − + − + Ω     
 (16) 

where ( )cosl lP P θ=  are Legendre polynomials; the perturbation functions 0m , 0h , 2m , 2h , and 2υ  are 
radial functions proportional to 2Ω ; the centrifugal forces depend on the angular velocity Ω  relative to a 
distant observer, as well as on the angular velocity ϖ  relative to the local inertial frame, these two angular 
velocities connected via the relation ([2], Equation (6))  

 ,ϖ ω= Ω−  (17) 

where ω  is the angular velocity of the local inertial frame. To calculate ϖ , we solve the so-called “frame- 
dragging equation” ([2], Equation (9))  

 4
4

1 d d 4 d 0,
d d d

jr j
r r r rr

ϖ ϖ  + = 
 

 (18) 

where ([2], Equation (10)) 

 
1 22e 1 .mj

r
−Φ  = − 
 

 (19) 

Outside the star, ϖ  takes the form ([2], Equation (13b))  
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 3

2 ,J
r

ϖ = Ω−  (20) 

where J  is the total angular momentum of the star, given by ([2], Equation (13a))  

 41 d ,
6 d r R

J R
r
ϖ

=

 =  
 

 (21) 

where R  is the radius of the star. 
To solve Equation (18), we integrate from the center of the star outwards, imposing the initial conditions  

 
d, 0,
dc r
ϖϖ ϖ= =  (22) 

where the constant cϖ  is chosen arbitrarily. Since, due to Equation (20), the angular velocity arbΩ  corres- 
ponding to the arbitrarily chosen initial value cϖ  is equal to 

 ( ) 3

2 ,arb
JR

R
ϖΩ = +  (23) 

and since, in general, the prescribed angular velocity Ω  is different to arbΩ , we must rescale the solution 
( )rϖ  of Equation (18) in order for the prescribed value Ω  to be applied to our model (for details on this 

matter, see [5], Section 5.2),  

 ( ) ( )new .
arb

r rϖ ϖΩ
=
Ω

 (24) 

4. Spherical Deformation 
The spherical deformations due to rigid rotation are the mass perturbation function, 0m , and the pressure 
perturbation function, 0p . They are calculated by integrating the “ 0l =  equations of hydrostatic equilibrium” 
([1], Section VII), which become after a long algebra ([2], Equations (15a) and (15b), respectively)  

 ( )
2 2

2 2 4 3 20
0

d d 1 d 1 d4π ,
d d 12 d 3
m E jr E P p j r r
r P r dr

ϖ ϖ = + + − 
 

 (25) 

( )
( )

( )2 22 4 2 3 2 2
00

02

1 8π 4πd 1 d 1 d ,
d 2 12 2 d 3 d 22

m r P E P rp r j r jp
r r m r m r r r mr m

ϖ ϖ+ +   =− − + +   − − − −  
           (26) 

with initial conditions 0 0m =  and 0 0p =  at 0r = . 
The perturbation function 0h  (to be used in Section 5), involved in the metric (16), is defined outside the star 

as ([2], Equation (17a))  

 
( )

2

0 32 2
M Jh

r M r r M
δ

= − +
− −

 (27) 

and inside the star as ([2], Equation (17b))  

 2 2
0 0 0

1 e .
3 ch p r hνϖ−= − + +  (28) 

The constant 0ch  is determined so that 0h  be continuous across the surface (see e.g. [5], Equation (47))  

 ( ) ( ) ( ) ( )22 2
0 0 0

1 1 e .
2 3

R
ch m R p R R R

R M
ϖ− Φ= − + −

−
 (29) 

In these equations, M  is the mass-energy of the star (also called gravitational mass); and Mδ  is the 
increase in the gravitational mass due to spherical deformation, given by ([5], Equation (43))  

 ( )
2

0 3 .JM m R
R

δ = +  (30) 
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5. Quasi-Radial Pulsation 
When a star is rotating rigidly with a small angular velocity Ω  (see however the starting remark in Section 7), 
the squared eigenfrequencies 2σ  of its pulsation modes can be expanded in powers of Ω  ([4], Equation 
(2.1)), 

 
( ) ( )0 22 2 2σ σ σ   = + +      (31) 

where the superscript “ ( )0 ” denotes terms of zeroth order in Ω , and the superscript “(2)” terms of second 
order in Ω . The aim of the present study is to compute the zeroth- and the second-order eigenfrequencies of the 
lowest three pulsation modes. 

Concerning the zeroth-order eigenfrequencies, we begin with the so-called “Chandrasekhar operator” ([3], 
Equation (4.6b)), [ ]U , applied to the so-called “displacement function” ([3], Equations (4.2a, b, c, d)), U , 
and set equal to zero, 

 [ ] ( ) ( ) ( )
02

1 2 3 4 0,U U U Uσ ′  ′= + + − − + =         (32) 

where primes denote differentiation with respect to r , and  

 ( )3 2
1 e ,ν λ+=  (33) 

 2 3

4 ,P
r
′

=  (34) 

 ( )
3 28πe ,

P E P
r

λ +
=  (35) 

 ( )
( )

2

4 2 ,
P

E P r
′

=
+

  (36) 

 1
2 ,
P

r
Γ

=


  (37) 

 
( ) ( )3 2

2

e
.

E P
r

ν λ+ +
=  (38) 

The second-order differential Equation (32), subject to the initial condition ([3], Equation (4.2e))  

 3 near 0U r rα= =  (39) 

(without loss of generality, we can take 1α = ) and to the boundary condition  

 0 at the surface ,PU r R′Γ = =  (40) 

establishes a Sturm-Liouville (SL) boundary value problem with eigenvalues the pulsation eigenfrequencies  
( )02σ   . Equation (32) can be put into the so-called “SL form” (cf. [9], Equation (14))  

 ( ) ( )( )02 0,U Uσ′  ′ + + =     (41) 

where  

 ( )1 2 3 4 .= − − +      (42) 

The SL form (41) can be transformed into a system of two first-order differential equations ([9], Equations 
(18) and (19)),  

 

( )( )02

, ,
U

U
υ σ

υ υ
 ′ + +  

′ ′= =−
  


 (43) 
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subject to the initial conditions 3U r=  and 23rυ =  near 0r = , and to the boundary condition  
0P PUυ ′Γ = Γ =  at the surface (Equation (40)). 

To compute the eigenvalue(s) 
( )02σ   , we work as follows. We start the numerical integration for a trial  

value 2σ  and initial conditions as above. We integrate towards the surface and then check if the resulting solu-  

tion U  satisfies the boundary condition ( ) 0PU R ′Γ = . From the point of view of numerical analysis, this 

boundary condition can be treated as an algebraic equation of the form ( )2 0f σ = ; thus our task, to compute 

the root(s) 
( )02σ    of this equation, can be achieved by a standard numerical method (e.g. the bisection 

method). 
The second-order eigenfrequencies 

( )22σ    are computed by the relation ([3], Equation (4.8))  

 
( ) ( ) ( )

( ) ( )

/2
22 0

2
0

e d
.

d

R

R

U r r r

r U r r

ν λ

σ
+    =    

∫
∫

D


 (44) 

The driving term ( )rD  is defined as (cf. [3], Table 4) 

( ) ( ) ( )

( )

04 2 2 1 5 3 2 2
0 0 1 0 0 0

4 2 1 2 2 2
0 1 2 3

2e e e 2 e
3

1 2 2       e 4 e e e ,
3 3 3

U m r E P r P U m r h r E P

p E P r r E P P r

λ λ λ λ

λ λ λ

ϖ σ

ϖϖ ϖ ϖ

− +Φ − −Φ − +Φ − −Φ

− +Φ − −Φ −Φ − −Φ

   ′= × Γ + + + Γ × + × × + +      
 ′ ′+ + × + + + Γ + × + ×  

  

D   

  

 

(45) 
where, in turn,  

( ) ( ) ( ) ( ) ( )
2

3 2
0 0

21 2 1e 1 e e e
2 3 12

PE P Ep E P r E P r E P
P P E P

λ λ ϖϖ ϖ
γ

− +Φ − −Φ −Φ
  Γ + ′ ′ = Γ + × − − − Γ + + − Γ +   +     

  

(46) 

 
( ) ( ) ( )1

2

1 1 1 13e 1 1 5e 1 e 1
2 2 2

14π 1 e

E P P
P E P

P Pr P r
E P E P

λ λ λ

λ

γ

γ

− − −

−

 + Γ= − − + − + Γ − −  +  
′  Γ + Γ − + −  + +  



              (47) 

 

( ) ( ) ( )

( )

( ) ( ) ( )

2 2 4 2
0

2 2 4 2

202 2

1 1 e 4π 1 2e 64π
2

11 3e 16π 1 e 64π
2

e 1 8π 2 e

E P r P r P

E P P r P r P

r P r P E P r

λ λ

λ λ

λ λ νσ

− −

− −

− − −

  = Γ + − − + + +   
  + + + Γ − − − + −    

 ′+ Γ + − +   



                  (48) 

 

( ) ( )( ) ( )( )

( ) ( ) ( ) ( )( ) ( )

20 2 3 2
1

2 2 2

1e 1 e 1 7e 4π e 2π 1 e 2
4

1 1       8π 1 2π 1 e 1 e 2 8π 1 1 ,

E P E r Pr Pr
P P

r P E P r Pr

λ ν λ λ λ λ

λ λ

σ
γ

γ γ

− − − − −

− −

 +    ′= − − − − + + Γ − + + Γ       
  + + Γ − + − Γ + + −Γ + −Γ +     



 (49) 

 ( ) ( )( ) ( )( )2 2 2
2

1 1 1 1π 1 π 1 e 1 7e e ,
2 16 8 8

r P E P r P E P E P P r Pλ λ λ− − −   ′= − Γ + + Γ + Γ + − + + + Γ + − Γ    
  (50) 

and 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

20 2
3

2 2 2 2 4 2

31 5 1 1 11 3 1e e e e 1 e e
4 2 4 2 4 2 4

1         4π 3 e 1 4π 1 e 16π e 1 e .
2

E P P r E P P

r E P P r P r P E P P r P

ν λ λ λ λ λ

λ λ λ λ

σ − − − −

−

     = − + −Γ + + − − + Γ − + Γ − + +         
  ′+ + + Γ − + Γ + + Γ − + + Γ + Γ      



(51) 

6. The Computations 
In this study, to compute nonrotating models (Section 2), rigid rotations (Section 3), and spherical deformations 
(Section 4), we use the corresponding numerical methods described in very detail in [5] (Sections 5.1 and 5.2). 
We then combine these methods with the numerical framework described in Section 5 for computing the zeroth- 
and second-order eigenfrequencies of pulsation. 

To implement all the required methods, and thus to compute the results presented here, we have written and 
used a Mathematica® program. 

7. Numerical Results and Discussion 
To begin with, it is worth remarking here that, as it has been verified by several authors (see e.g. [10], Sections 4 
and 7; see also [11], Section 5.3; for differentially rotating neutron stars, see [5], Section 6), Hartle’s pertur- 
bation method gives remarkably accurate results even when applied to rapidly rotating neutron stars, although 
this method has been developed as a slow-rotation perturbation method. 

As discussed in [4] (Section I), pulsars are identified as rotating neutron stars and, therefore, there is a strong 
interest in studying the influence of a rigid rotation on the properties of such relativistic objects. In particular, it 
is of great interest to compute the pulsation frequencies of the quasi-radial modes (i.e. modes which would be 
radial in the absence of rotation) for several models and thus to have a measure of the effect of general relativity 
on these frequencies. To that purpose, we have computed, and present in this section, relevant numerical results. 

Regarding our computations, we resolve four nonrotating general-relativistic polytropic models with polytropic 
indices 1.0, 1.5,  2.0,n =  and 2.5 . Each model is resolved for five central mass-energy densities: 1310cE = , 

133.16 10× , 1410 , 143.16 10× , and 1510  cgs. These values have been chosen to be below and relatively close to 
the “maximum-mass densities” of the corresponding models, being in fact the more interesting ones when 
considering neutron stars. It is worth mentioning here that the total mass M  of a model, treated as a function 
of the central density cE , ( )cM M E= , obtains a maximum value maxM  for a specific value max

cE ; such a 
model is called “maximum-mass model”, and the central density of this model is called “maximum-mass 
density”. The maximum-mass densities of our models, computed by a method described in [6] (Section 4), are 

max 153.793 10cE = × , 154.890 10× , 154.656 10×  and 153.489 10×  cgs, respectively ([6], Tables 2-5, respective- 
ly). All models, studied here, have max 155 10cE < ×  cgs. Accordingly, in our computations the sequence of cen- 
tral mass-energy densities is terminated at 1510cE =  cgs. 

Next, each density case is resolved for the three lowest modes of pulsation: Mode 0, Mode 1, and Mode 2. For 
each mode, we compute a rigidly rotating configuration with angular velocity equal to the corresponding 
Keplerian angular velocity, KΩ . Hartle’s perturbation method uses proper expansions in the rotation parameter  

maxε = Ω Ω , where 3
max GM RΩ =  is the angular velocity for which mass shedding starts occuring at the  

equator of a star. Thus maxΩ  describes the Newtonian balance between centrifugal and gravitational forces. 
However, this Newtonian upper bound appears to be a rather overestimated limit for neutron stars. For such 
relativistic objects, the appropriate upper bound is KΩ . Hence, if the angular velocity is slightly greater than 

KΩ , then mass shedding occurs at the equator of a neutron star. KΩ  can be computed by several methods (for 
a discussion on this matter, see [11]; for a detailed description of such a method, see [12]; see also [13], and 
references therein, for results concerning general-relativistic polytropic models). In this study, the Keplerian 
angular velocities given in Tables 1-4 have been computed by using the well-known “Rotating Neutron Stars 
Package” (RNS) [14]. 

Furthermore, we assume that the adiabatic indices Γ  (Equation (8)) and γ  (Equation (9)) do coincide for 
the polytropic models under consideration,  

 .γΓ =  (52) 
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Table 1. Central mass-energy density and rest-mass density, gravitational mass, and radius of a nonrotating 
general-relativistic polytropic model with polytropic index 1.0n =  and polytropic constant                   

5 1210  cgs 1.499 10  guK = = × . The Keplerian angular velocities, appearing here, have been computed by RNS.    

cE  (cgs) cρ  (cgs) M  (gu) R  (gu) KΩ  (gu) 

1.00 (13) 9.99 (12) 3.38 (3) 1.52 (6) 1.98 (−8) 

3.16 (13) 3.15 (13) 1.04 (4) 1.52 (6) 3.51 (−8) 

1.00 (14) 9.89 (13) 3.09 (4) 1.49 (6) 6.24 (−8) 

3.16 (14) 3.06 (14) 8.02 (4) 1.41 (6) 1.10 (−7) 

1.00 (15) 9.08 (14) 1.56 (5) 1.23 (6) 1.92 (−7) 

 
Table 2. Central mass-energy density and rest-mass density, gravitational mass, and radius of a nonrotating 
general-relativistic polytropic model with polytropic index 1.5n =  and polytropic constant                   

75.380 cgs 3.389 10  guK = = × . The Keplerian angular velocities, appearing here, have been computed by RNS.   

cE  (cgs) cρ  (cgs) M  (gu) R  (gu) KΩ  (gu) 

1.00 (13) 9.96 (12) 1.58 (4) 3.13 (6) 1.42 (−8) 

3.16 (13) 3.13 (13) 2.73 (4) 2.56 (6) 2.52 (−8) 

1.00 (14) 9.80 (13) 4.54 (4) 2.08 (6) 4.46 (−8) 

3.16 (14) 3.04 (14) 7.08 (4) 1.66 (6) 7.81 (−8) 

1.00 (15) 9.22 (14) 9.84 (4) 1.29 (6) 1.35 (−7) 

 
Table 3. Central mass-energy density and rest-mass density, gravitational mass, and radius of a nonrotating 
general-relativistic polytropic model with polytropic index 2.0n =  and polytropic constant                       

12 510  cgs 1.291 10  guK = = × . The Keplerian angular velocities, appearing here, have been computed by RNS.    

cE  (cgs) cρ  (cgs) M  (gu) R  (gu) KΩ  (gu) 

1.00 (13) 9.93 (12) 2.61 (4) 4.59 (6) 9.96 (−9) 

3.16 (13) 3.12 (13) 3.38 (4) 3.43 (6) 1.76 (−8) 

1.00 (14) 9.78 (13) 4.29 (4) 2.52 (6) 3.10 (−8) 

3.16 (14) 3.04 (14) 5.27 (4) 1.87 (6) 5.41 (−8) 

1.00 (15) 9.36 (14) 6.13 (4) 1.37 (6) 9.32 (−8) 

 
Table 4. Central mass-energy density and rest-mass density, gravitational mass, and radius of a nonrotating 
general-relativistic polytropic model with polytropic index 2.5n =  and polytropic constant                     

13 31.500 10  cgs 2.980 10  guK = × = × . The Keplerian angular velocities, appearing here, have been computed by 
RNS.                                                                                         

cE  (cgs) cρ  (cgs) M  (gu) R  (gu) KΩ  (gu) 

1.00 (13) 9.93 (12) 1.96 (4) 5.31 (6) 6.74 (−9) 

3.16 (13) 3.13 (13) 2.16 (4) 3.76 (6) 1.19 (−8) 

1.00 (14) 9.84 (13) 2.36 (4) 2.55 (6) 2.10 (−8) 

3.16 (14) 3.08 (14) 2.54 (4) 1.82 (6) 3.67 (−8) 

1.00 (15) 9.60 (14) 2.68 (4) 1.29 (6) 6.38 (−8) 
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In addition, a second step towards simplification is to assume, as several authors do (see e.g. [4]; for a 
different view, on the other hand, see e.g. [9]), that Γ  is associated with the polytropic index n  via the poly- 
tropic relation (cf. [6], Equation (5))  

 
11 .
n

Γ = +  (53) 

In all tables of the present paper, parenthesized (positive or negative) integers following numerical values 
denote powers of ten. For example, the entry ( )3.16 13  is equal to 133.16 10×  and the entry ( )3.51 15−  is 
equal to 153.51 10−× . 

For the five density cases with polytropic index 1.5n = , we can compare our results in Table 5 with 
respective results in Table 3 of [4]. To the purpose of such comparisons, we have written Table 5 in exactly the 
same format with that of Table 3 of [4]. We find excellent agreement between respective results, except for two  

eigenfrequencies 
( )22σ    belonging to Mode 2. The first one arises when 1410 cgscE =  and leads to a differ-  

ence ~4% (our result is “−15.95”, while the result in [4] is “−16.6”); and the second one occurs when 
1510 cgscE =  and leads to a difference 3%  (our result is “−14.15”, while that in [4] is “−13.7”). Since all 

other results do almost coincide, it seems that these two differences are of rather minor significance. 
Our main remarks on the numerical results presented in Tables 5-8 have as follows. First, in all cases ex-  

amined, the eigenfrequencies 
( )02σ    and 

( )22σ    increase in absolute value with the central density. Equi-  

valently, since (for the cases examined) increasing central density implies increasing gravitational mass, all the 
eigenfrequencies increase in absolute value with the gravitational mass. In addition, since increasing central 
density does also imply increasing Keplerian angular velocity for a rotating configuration, all the eigenfrequen-  

cies 
( )22σ    increase in absolute value with the Keplerian angular velocity. 

 
Table 5. Eigenfrequencies of the lowest three modes of a nonrotating and a rotating general-relativistic polytropic 
model with polytropic index 1.5n = , and polytropic constant and Keplerian angular velocities as in Table 2.     

 Mode 0 Mode 1 Mode 2 

cE  (cgs) ( )02σ    (gu) 
( )22

2

σ  
Ω

 
( )02σ    (gu) 

( )22

2

σ  
Ω

 
( )02σ    (gu) 

( )22

2

σ  
Ω

 

1.00 (13) 1.35 (−15) −0.33 6.36 (−15) −7.40 1.35 (−14) −17.27 

3.16 (13) 4.07 (−15) −0.32 1.96 (−14) −7.25 4.17 (−14) −17.17 

1.00 (14) 1.16 (−14) −0.31 5.87 (−14) −6.96 1.26 (−13) −15.95 

3.16 (14) 2.98 (−14) −0.28 1.66 (−13) −6.65 3.59 (−13) −15.51 

1.00 (15) 5.88 (−14) −0.22 4.27 (−13) −5.97 9.38 (−13) −14.15 

 
Table 6. Eigenfrequencies of the lowest three modes of a nonrotating and a rotating general-relativistic polytropic 
model with polytropic index 1.0n = , and polytropic constant and Keplerian angular velocities as in Table 1.      

 Mode 0 Mode 1 Mode 2 

cE  (cgs) ( )02σ    (gu) ( )22σ    (gu) ( )02σ    (gu) ( )22σ    (gu) ( )02σ    (gu) ( )22σ    (gu) 

1.00 (13) 3.51 (−15) −3.72 (−16) 1.50 (−14) −3.38 (−15) 3.19 (−14) −7.77 (−15) 

3.16 (13) 1.08 (−14) −1.12 (−15) 4.66 (−14) −9.23 (−15) 9.94 (−14) −1.64 (−14) 

1.00 (14) 3.18 (−14) −3.74 (−15) 1.41 (−13) −3.28 (−14) 3.01 (−13) −7.43 (−14) 

3.16 (14) 7.99 (−14) −1.13 (−14) 3.87 (−13) −9.62 (−14) 8.37 (−13) −2.19 (−13) 

1.00 (15) 1.33 (−13) −2.70 (−14) 8.68 (−13) −2.40 (−13) 1.92 (−12) −5.47 (−13) 
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Table 7. Eigenfrequencies of the lowest three modes of a nonrotating and a rotating general-relativistic polytropic 
model with polytropic index 2.0n = , and polytropic constant and Keplerian angular velocities as in Table 3.      

 Mode 0 Mode 1 Mode 2 

cE  (cgs) ( )02σ     (gu) ( )22σ    (gu) ( )02σ    (gu) ( )22σ    (gu) ( )02σ    (gu) ( )22σ    (gu) 

1.00 (13) 5.20 (−16) 4.07 (−18) 2.84 (−15) −7.02 (−16) 5.98 (−15) −1.69 (−15) 

3.16 (13) 1.54 (−15) 1.44 (−17) 8.72 (−15) −2.16 (−15) 1.84 (−14) −5.21 (−15) 

1.00 (14) 4.35 (−15) 6.89 (−17) 2.63 (−14) −6.02 (−15) 5.60 (−14) −1.15 (−14) 

3.16 (14) 1.10 (−14) 2.64 (−16) 7.62 (−14) −1.85 (−14) 1.63 (−13) −4.07 (−14) 

1.00 (15) 2.24 (−14) 1.13 (−15) 2.09 (−13) −5.25 (−14) 4.52 (−13) −1.24 (−13) 

 
Table 8. Eigenfrequencies of the lowest three modes of a nonrotating and a rotating general-relativistic polytropic 
model with polytropic index 2.5n = , and polytropic constant and Keplerian angular velocities as in Table 4.      

 Mode 0 Mode 1 Mode 2 

cE  (cgs) ( )02σ    (gu) ( )22σ   (gu)  ( )02σ    (gu) ( )22σ    (gu) ( )02σ    (gu) ( )22σ    (gu) 

1.00 (13) 1.62 (−16) 1.57 (−17) 1.25 (−15) −3.24 (−16) 2.59 (−15) −7.89 (−16) 

3.16 (13) 4.72 (−16) 5.03 (−17) 3.85 (−15) −1.00 (−15) 8.02 (−15) −2.44 (−15) 

1.00 (14) 1.31 (−15) 1.69 (−16) 1.19 (−14) −2.25 (−15) 2.59 (−14) −2.76 (−15) 

3.16 (14) 3.23 (−15) 5.26 (−16) 3.54 (−14) −8.09 (−15) 7.53 (−14) −1.32 (−14) 

1.00 (15) 6.16 (−15) 1.68 (−15) 1.03 (−13) −2.52 (−14) 2.18 (−13) −4.95 (−14) 

 

Second, all eigenfrequencies 
( )02σ    are positive, thus representing stable nonrotating pulsating configu- 

rations. Likewise, the eigenfrequencies 
( )22σ    are positive for Mode 0 and for the soft polytropic EOSs 

2.5n =  and 2.0n = . Consequently, the effect of rotation is to stabilize such rotationally perturbed configu- 

rations. On the other hand, the eigenfrequencies 
( )22σ    are negative for Modes 1 and 2 of the soft EOSs  

2.5n =  and 2.0n = , as well as for the three modes of the stiff EOSs 1.5n =  and 1.0n = , thus turning to 
destabilize the corresponding rotating configurations. It is worth mentioning here that, among the members of a 
collection of EOSs, the EOS deriving the larger value P  for a given E  is the “stiffest” EOS in the collection; 
while the EOS leading to the smaller value P  for the same E  is the “softest” EOS in this collection. Note 
that, for increasing polytropic index n , the polytropic EOSs are getting softer; equivalently, for decreasing n , 
the polytropic EOSs become stiffer. 

Finally, in all cases examined, the zeroth-order eigenfrequencies 
( )02σ    are ~one order of magnitude  

greater than the respective squared Keplerian angular velocities 2
KΩ ; this inequality is in fact a necessary 

condition for the perturbation theory developed in [3] and [4] to be valid, as discussed in detail in [4] (Section II). 
Consequently, all the cases examined lie within the domain of applicability of the theory, and, especially, of  

Equation (31) for computing the second-order eigenfrequencies 
( )22σ    which represent the rotationally in-  

duced changes in the pulsation eigenfrequencies. 
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