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Abstract 
In this paper, we have developed estimators of finite population mean using Mixture Regression 
estimators using multi-auxiliary variables and attributes in two-phase sampling and investigated 
its finite sample properties in full, partial and no information cases. An empirical study using nat-
ural data is given to compare the performance of the proposed estimators with the existing esti-
mators that utilizes either auxiliary variables or attributes or both for finite population mean. The 
Mixture Regression estimators in full information case using multiple auxiliary variables and 
attributes are more efficient than mean per unit, Regression estimator using one auxiliary varia-
ble or attribute, Regression estimator using multiple auxiliary variable or attributes and Mixture 
Regression estimators in both partial and no information case in two-phase sampling. A Mixture 
Regression estimator in partial information case is more efficient than Mixture Regression esti-
mators in no information case. 
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1. Introduction 
The history of using auxiliary information in survey sampling is as old as the history of survey sampling. The 
work of Neyman [1] may be referred to as the initial work where auxiliary information has been used to estimate 
population parameters. Hansen and Hurwitz [2] also suggested the use of auxiliary information in selecting the 
sample with varying probabilities. The concept of ratio estimation was introduced in sample survey by Cochran 
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[3]; it is preferred when the study variable is highly positively correlated with the auxiliary variable. Watson [4] 
used the regression estimator of leaf area on leaf weight to estimate the average area of the leaves on a plant. 
Olkin [5] was the first person using information on more than one supplementary character, which is positively 
correlated with the variable under study, using a linear combination of ratio estimator based on each auxiliary 
variable. Raj [6] suggested a method of using multi-auxiliary information in sample survey.  

The concept of double sampling was first proposed by Neyman [1] in sampling human populations when the 
mean of auxiliary variable was unknown. It was later extended to multiphase by Robson [7]. Abdul, Zahoor and 
Hanif [8] also developed a generalized multivariate regression estimator for multi-phase sampling using multi- 
auxiliary variables. Zahoor, Abdul, and Muhhamad [9] suggested a generalized regression-cum-ratio estimator 
for two-phase sampling using multiple auxiliary variables. It is advantageous when the gain in precision is sub-
stantial as compared to the increase in the cost due to collection of information on the auxiliary variate for large 
samples. It was proved that optimum estimator in the proposed class of estimators was approximately equally 
efficient with the usual biased linear regression estimator. Samiuddin and Hanif [10] introduced ratio and re-
gression estimation procedures for estimating population mean in two-phase sampling for different three situa-
tions depending upon the availability of information on two auxiliary variables for population. They considered 
three situations, first when information on both auxiliary variables was not available, second when information 
on one auxiliary variable was available and third, when information was available on both auxiliary variables. 

Jhajj, Sharma and Grover [11] proposed a family of estimators using information on auxiliary attribute. They 
used known information of population proportion possessing an attribute (highly correlated with study variable 
Y). The optimum estimate of the proposed family of mean was less biased and more efficient than mean per unit 
estimator. The attribute is normally used when the auxiliary variable is not available e.g. an amount of milk 
produced and a particular breed of cow or an amount of yield of wheat and a particular variety of wheat. The es-
timator performed better than the usual sample mean and Naik and Gupta [12] estimator. Rajesh Pankaj, Nirma-
la and Florentins [13] used the auxiliary attribute in regression-ratio type exponential estimator following the 
work of Bahl and Tuteja [14]; the estimator was more efficient compared to mean per unit, ratio and product 
type exponential estimator as well as Naik and Gupta [12] estimator. 

Hanif, Haq and Shahbaz [15] proposed a general family of estimators using multiple auxiliary attribute in sin-
gle and double phase sampling. The estimator had a smaller MSE compared to that of Jhajj, Sharma and Grover 
[11]. They also extended their work to ratio and regression estimator which was generalization of Naik and 
Gupta [12] estimator in single and double phase sampling with full information, partial information and no in-
formation. Moeen, Shahbaz and HanIf [16] proposed a class of mixture ratio and regression estimators for single 
phase sampling for estimating population mean by using information on auxiliary variables and attributes si-
multaneously. Kung’u and Odongo [17] and [18] proposed ratio-cum-product estimators using multiple aux-
iliary attributes in single and two-phase sampling. 

In our paper, we will extend the mixture regression estimator proposed by Moeen, Shahbaz and HanIf [16] to 
two-phase sampling under full, partial and no information case strategies introduced by Samiuddin and Hanif 
[10] and also incorporate Arora and Bansi [19] approach in writing down the mean squared error. 

2. Preliminaries 
2.1. Notation and Assumption 
Consider a population of N units. Let Y be the variable for which we want to estimate the population mean and 

1 2,  , , pX X X  are p auxiliary variables. For two-phase sampling design let 1n  and ( )2 2 1  n n n<  are sample 
sizes for first and second phase respectively. ( )1ix  and ( )2ix  denote the thi  auxiliary variables form first and 
second phase samples respectively and 2y  denote the variable of interest from second phase. iX  and 

ixC  
denote the population means and coefficient of variation of thi  auxiliary variables respectively and 

iyxρ  de-
notes the population correlation coefficient of Y and iX . 

Further, let  

( )

( ) ( ) ( )
( )( )

2 1 2

1 2 2 1
1 2

(2) (1) (2)

1 1 1 1         

,   and  1, 2, ,
i iy i i x i i x

n N n N

y Y e x X e x X e i p

θ θ θ θ
   

= − = − <   
   

= + = + = + = 

              (1.0) 
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where 
2ye , 

( )1ixe
 

and 
( )2ixe

 
are sampling error and are very small. We assume that 

( ) ( )( ) ( )( )2 1 2
0

i iy x xE e E e E e= = =                              (1.1) 

Consider a sample of size n drawn by simple random sampling without replacement from a population of size 
N. Let jy  and denotes the observations on variable y and r respectively for the thj  unit where 1,2, ,j n=  .  

In defining the attributes we assume complete dichotomy so that; 
1,     if   unit of population possess  auxiliary attribute
0,     otherwise

th th

ji
j i

τ


= 


                (1.2) 

Let 
1

N

i ji
j

A τ
=

= ∑  and 
1

n

i ji
j

a τ
=

= ∑  be the total number of units in the population and sample respectively pos- 

sessing attribute iτ . Let i
i

A
P

N
=  and ( )2

i
i

a
p

n
=  be the corresponding proportion of units possessing a specific  

attributes iτ  and y  is the mean of the main variable at second phase. Let ( )1ip  and ( )2ip  denote the thi  
auxiliary attribute form first and second phase samples respectively and 2y  denote the variable of interest from 
second phase. The mean of main variable of interest at second phase will be denoted by 2y . Also let us define 

( ) ( ) ( ) ( )2 1 12 1 1,   ,   
i iy i ii ie y Y e p P e p Pτ τ= − = − = −                        (1.3) 

The coefficient of variation and correlation coefficient are given by  
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Then for simple random sampling without replacement for both first and second phases we write by using phase 
wise operation of expectations as:
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( ) ( )1 T d1
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 Arora and Lai [19]                         (1.6) 
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The following notations will be used in deriving the mean square errors of proposed estimators 

pyxR


 Determinant of population correlation matrix of variables 1 2 1,  ,  , ,   and q qy x x x x− . 

i q
yx yx

R


 Determinant of thi  minor of 
pyxR


 corresponding to the thi  element of 
iyxρ . 

2
ryxρ  Denotes the multiple coefficient of determination of y on 1 2 1,  , ,   and r rx x x x− .  

2
qyxρ


 Denotes the multiple coefficient of determination of y on 1 2 1,  ,  , ,   and q qy x x x x− . 

rxR


 Determinant of population correlation matrix of variables 1 2 1,  , ,   and r rx x x x− . 

pxR


 Determinant of population correlation matrix of variables 1 2 1,  , ,   and p px x x x− . 

i ry xR


 Determinant of the correlation matrix of 1 2 1,  ,  , ,   and i r ry x x x x− . 

i py xR
⋅


 Determinant of the correlation matrix of 1 2 1,  ,  , ,   and i p py x x x x− . 

i j ry y xR
⋅ ⋅



 Determinant of the minor corresponding to  
i jy yρ  of the correlation matrix of 1 2 1, , , , ,i j ry y x x x −  

and ( )r i jx ≠ . 

i j py y xR
⋅ ⋅



 Determinant of the minor corresponding to  
i jy yρ  of the correlation matrix of 

( )1 2 1, , , , ,  and  i j p q i jy y x x x x− ≠                               (1.7) 

2.2. Mean per Unit in Two-Phase Sampling 
The sample mean 2y  using simple random sampling without replacement in two phase sampling is given by is 
given by,  

2

2
12

1 n

i
j

y y
n =

= ∑                                     (2.0) 

While its variance is given, 

( ) 2 2
2 2Var yy Y Cθ=                                   (2.1) 

2.3. Regression Estimators Using One and Multiple Auxiliary Variables and Attributes  

Let 
2

2
12

1 n

j
j

y y
n =

= ∑  and ( )

2

1 2
12

1 n

j
j

x x
n =

= ∑  be the unbiased estimator of sample means of Y  and X  respectively  

in two phase sampling. The simple regression estimator for known X suggested by Watson [4] is, 

( )( )REX 2 1 1 2t y X xβ= + −                                (2.2) 

Its mean squared error is given by,  

( ) ( )2 2 2
REX 2MSE 1y yxt Y Cθ ρ= −                             (2.3) 

In case of multiple auxiliary variables, regression estimator is given by,  

( )( )MREX 2 1 2
1

k

i i
i

t y X xα
=

= + −∑                             (2.4) 

Its mean squared error is given by,  

( ) ( )2 2 2
MREX 2MSE 1

ky yxt Y Cθ ρ= −


                           (2.5) 

Naik and Gupta [12] defined Regression estimator of population when the prior information of population 
proportion of units, possessing the same attribute is variable as, 
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( )( )REP 2 1 1 1 2t y P pα= + −                                 (2.6) 

Its mean squared error is given by,  

( ) ( )1

2 2 2
REP 2MSE 1y yt Y C τθ ρ= −                              (2.7) 

1

1

1
1

y b

r

YC
C P

ρρα =  are optimum for Regression estimator. 
1

yr
Pb

y r

S
S S

ρ =  is the bi-serial correlation coefficient.  

In case of multiple auxiliary variables, regression estimator is given by,  

( )( )MREP 2 2
1

k

i i i
i

t y P pα
=

= + −∑                               (2.8) 

Its mean squared error is given by,  

( ) ( )2 2 2
MREX 2MSE 1

ky yt Y C τθ ρ= −


                            (2.9) 

The mixture ratio estimator based on multiple auxiliary variables and attributes by Moeen, Shahbaz and HanIf 
[16] is given by:  

( ) ( )REXP
1 1

k k

i i i i i i
i i k

t y X x P pα β
= = +

= + − + −∑ ∑                        (3.0) 

It is normally known that the above estimators are biased but the bias being of the order 1n− , can be assumed 
negligible in large samples. It is assumed that the sample of size n is large enough so that the biases of these es-
timators are negligible. 

Our project will extend the mixture regression estimator proposed by
 
Moeen, Shahbaz and Hanif [16] to two- 

phase sampling under full, partial and no information case strategies introduced by Samiuddin and Hanif [10]. 

3. Methodology  
3.1. Proposed Mixture Regression Estimator in Two-Phase Sampling (Full Information 

Case)  
If we estimate a study variable when information on all auxiliary variables and attributes is available from pop-
ulation, it is utilized in the form of their means. By taking the advantage of Mixture Regression estimator tech-
nique for two-phase sampling, a generalized estimator for estimating population mean of study variable Y with 
the use of multi auxiliary variables and attributes is suggested as:  

( ) ( )( ) ( )( ) ( )( )(
( )( ) ( )( ) ( )( ))

2 1 1 2 2MR 3.0 1 2 2 2 2

1 1 2 21 2 2 2 2

k k k

k k k k q qk k q

t y X x X x X x

P p P p P p

α α α

β β β+ + + ++ +

= + − + − + + −

+ − + − + + −





            (3.0) 

Substituting Equation (1.0) and (1.3) in (3.0), we get, 

( ) ( ) ( )2 2 2MR 3.0
1 1

i i

qk

y i x i r
i i k

t e Y e eα β
= = +

= + − −∑ ∑                           (3.2) 

The mean squared error of ( )MR 3.0t  is given by 

( )( ) ( )( ) ( ) ( )2 2 2

2
2

2MR 3.0 MR 3.0
1 1

MSE
i i

k h k m

y i x i
i i k

t E t Y E e e eτα β
+ =

= = +

 = − = − − 
 

∑ ∑              (3.3) 

We differentiate the Equation (3.3) partially with respect to ( )1,2, ,i i kα =   and ( )1, 2, ,i i k k mβ = + +   
then equate to zero, using (1.4), (1.5), (1.6) and (1.7), we get 

( ) 11
i k

i p

yxi xy
i

i x x

RYC
X C R

α += −                                (3.4) 
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( ) 11
i h

i h

yi y
i

i

RYC
PC R

τ τ

τ τ

β += − 



                                 (3.5) 

Using normal equation that is used to find the optimum values given (3.3), we can write (3.3) as, 

( )( ) ( ) ( )2 2 2 22MR 3.0
1 1

MSE
i i

h k pk

y y i x i
i i k

t E e e e eτα β
+ =

= = +

  
= − −  

  
∑ ∑                     (3.6) 

( )( ) ( ) ( )( ) ( )( )2 2 22 2

2
2 2 2MR 3.0

1 1
MSE

i i

k h pk

y i y x i y
i i k

t E e E e e E e eτα β
+ =

= = +

= − −∑ ∑                 (3.7) 

Taking expectation in (3.7) and substituting (1.4), we get, 

( )( ) ( ) ( )2 2
2MR 3.0

1 1
MSE 1 1

i ik h
i i i i

iI k h

k h pk yx yi ixy y
y i y x yx i y Pb

ii i ix x

R RYC YC
t Y C X YC C PYC C

R PC RX C

τ τ
τ

τ τ

θ ρ ρ
+ =

= =

 
 = + − + −  
 

∑ ∑ 



  (3.8) 

Or  

( ) ( )2 2
2

1 1
1 1 1

i ik h
i i

k h

k h qk yx yi ix
y yx Pb

i i kx

R R
Y C

R R
τ τ

τ
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  = + − + −      

∑ ∑ 



                   (3.9) 

Or 

( )( ) ( )
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2MR 3.0 ,

1 ,

MSE 1 1
i

q

i i

q

yxq xi
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i x

R
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θ ρ
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∑                     (3.10) 

Or 

( )( )
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Or  
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2
, , , ,MR 3.0 , , ,1,

MSE 1
i i i iq i i

q

q
iy

y x y xx y xix
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R τ ττ τ
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θ
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∑





               (3.12) 

Or 

( )( ) ( )

( )

,2 2
2MR 3.0

,

MSE q

q

y x

y
x

R
t Y C

R
τ

τ

θ= 



                            (3.13) 

Using (1.6) in (3.13), we get 

( )( ) ( )( )2 2 2
2MR 3.0 . ,MSE 1

qy y xt Y C τθ ρ= −
 

                          (3.14) 

3.2. Mixture Regression Estimator in Two-Phase Sampling (Partial Information Case) 
In this case suppose, we have no information on all t auxiliary variables and h auxiliary attributes from popula-
tion. Considering Mixture Regression estimator technique, the population mean of study variable Y can be esti-
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mated for two-phase sampling using multi-auxiliary variables and attributes as: 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )(
( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( )( )

2 1 2 1 1 2 2MR 3.1 1 1 1 2 2 1 2 2 1 2 1 2 2 2
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α α α δ δ

δ α α α

β β β γ
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+ + + +
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+ + − − + − + + −

+ − + − + + − −

+ − + + − +
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q q q
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β
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++ + +− + −

+ + −

  (3.15) 

 

Substituting (1.0) and (1.3) in (3.15), we get, 
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( ) ( ) ( )( )

2 1 2 2 1 2 1 2

2 1 2

1 1 1 1
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− + − 



∑ ∑ ∑ ∑

∑ ∑
        (3.16) 

Mean squared error of ( )MR 3.1t  estimator is given by

 

( )( )
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          (3.17) 

We differentiate the Equation (3.24) with respect to ( )1,2, , ,i i rα =   ( )1,2, , ,i i rβ =   
( )1, 2, , ,i i r r kα = + +   ( )1, 2, , ,i i k k hγ = + +   ( )1, 2, , ,i i k k hλ = + +   ( )1, 2, ,i i h h pγ = + +   and 

equate to zero and use (1.6) and (1.7). The optimum value is as follows, 
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         (3.18) 

Using normal equation that are used to find the optimum values given (3.17) we can write 
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( ) ( )( ) ( ) ( ) ( )( )
2 2 1 2 2 1 2

1 2 2 1 2

1 2 1MR 3.1
1 1 1

1 1 1

MSE
i i ii i

i i ii i

t t k

y y i x x i x i x x
i i i k

g g q

i i r i
i k i k i k

t E E e e e e e e e

e e e e eτ τ τ τ

α δ α

β γ β

= = = +

= + = + = +

 = + − − + − 



+ − − + − 



∑ ∑ ∑

∑ ∑ ∑
       (3.19) 

Or 
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( )( ) ( ) ( ) ( )( )( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( )( )( ) ( ) ( )( )( )

2 2 2 21 2 2 1 2

2 2 21 2 2 1 2

2
2 1 2 1 2 1 2 1MR 3.1

1 1 1

1 2 1 2 1 2 1
1 1 1

MSE

 

i ii i i i

i ii i i i

t t t

y y x x i y x i y x x
i i i

g g q

y x x i y x i y x x
i k i k i g

t E e E E e e e E e e E E e e e

E E e e e E e e E E e e e

α δ δ

α γ δ

= = =

= + = + = +

= + − − + −

+ − − + −

∑ ∑ ∑

∑ ∑ ∑
(3.20) 

Using (1.4) in (3.28) we get,  

( )( ) ( ) ( )

( ) ( )

2 2
2 1 2 2 1 2MR 3.1

1 1 1

1 2 2 1 2
1 1 1

MSE

+

i i i i i i i i

i i i i i i i

t t k

y i y x yx i i y x yx i y x yx
i i i

g g q

i y x Pb i i y x Pb i i y x Pb
i k i k i g

t Y C X YC C X C C X C C

PYC C PC C PC C

θ θ θ α ρ θ δ ρ θ θ α ρ

θ θ β ρ θ γ ρ θ θ β ρ

= = =

= + = + = +

= + − − + −

− − + −

∑ ∑ ∑

∑ ∑ ∑
 (3.22) 

Or 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 12 2
2 1 2 2

1 1

1 1
1 2 1 2

1 1

1
2

1 1

1 1

1

i i ik m t
i i

mp m

ji jq q m
i i

q q m

j
t

m

t tyx yx yxi iyx yx yx
y yx yx

i ixx x

yxgk yx yyx yi i y
yx Pb

i t i kx x

yxi y

R R R
Y C

R RR

RR R

R R R

R

R

ττ τ

τ

τ

τ

θ θ θ ρ θ ρ

θ θ ρ θ θ ρ

θ ρ

+ +

= =

+ +

= + = +

+

  
  = + − − − − −     

 
 

+ − − + − − − 
 
 

− −

∑ ∑

∑ ∑ 









( ) ( ) 1
1 2

1 1
1

j
p

Pb i ii
p

yxg q yi
Pb

i k i h

R

R
τ

ρ
τ

θ θ γ ρ+

= + = +




+ − − 



∑ ∑ 



        (3.23) 

Or  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 12 2
2 1 2 1 2 2

1 1 1

1 1 1
1 2 1 2 1 2

1 1 1

1 1 1

1 1 1

i i ip m t
i i i

p m p

ji jp q m
i i i

p p m

t t tyx yx yxyxi i iyx yx
y yx yx yx

i i ix x x

yxg gk yx yxyx yi i i y
yx Pb Pb

i t i k i kx x

R R R
Y C

R R R

RR R

R R R
τ τ

τ

θ θ θ ρ θ θ ρ θ ρ

θ θ ρ θ θ ρ θ θ ρ

+ + +

= = =

+ + +

= + = + = +


= + − − − − − − −


+ − − + − − − − −

−

∑ ∑ ∑

∑ ∑ ∑





( ) ( ) ( )1 1
2 1 2

1 1
1 1

j j
q q

i i i

q q

yx yxg qy yi i
Pb Pb

i k i g

R R

R R
τ τ

τ τ

θ ρ θ θ γ ρ+ +

= + = +




− + − − 



∑ ∑ 

 

 (3.24) 

Or 

( )( )

( ) ( ) ( ) ( )

( ) ( )

MR 3.1

1 1 12 2
2 1

1 1 1

1 1
1

1 1

MSE

1 1 1 1

1 1 1

ji ip p p

i i i

p p p

ji tr
i i

m m

yxgt kyx yxyx yx yxi i i
y yx yx Pb

i i r i kx x

gt yxyxi i yxyx
yx Pb

i i kx

t

RR R
Y C

R R R

RR

R R

τ

τ

θ θ ρ ρ ρ

θ ρ ρ

+ + +

= = + = +

+ +

= = +

   
   

= − − − + − + −   
      

  
  + − − + −  

   

∑ ∑ ∑

∑ ∑










   (3.25) 

Or 
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( )
( )

( ) ( )
( ) ( )

( ) ( )

( )

, ,, , ,, ,2 12 2 1
, ,,

1 1, , , ,

1 1 1
i ji i p m

i i i iq
q q m m

y xq ty x y xy xi i
y y x y xx

i ix x x x

RR
Y C R

R R R R

ττ ττ
τ ττ

τ τ τ τ

θ θ θρ ρ
= =

      −    = + − + + −              

∑ ∑ 



   

 (3.26) 

Or 

( )( ) ( )
( )

( )

( )

( )

. , . ,2 2
2 1 1MR 3.1

, ,

MSE q m

q m

y x y x
y

x x

R R
t Y C

R R
τ τ

τ τ

θ θ θ
 
 = − +
 
 





 

                  (3.27) 

Using (1.6) in (3.27), we get 

( )( ) ( )( ) ( ) ( )( )( )2 2 2 2 2
2 1MR 3.1 . , . , . ,MSE 1

q q my y x y x y xt Y C τ τ τθ ρ θ ρ ρ= − + −
  

               (3.28) 

3.3. Mixture Regression Estimator in Two-Phase Sampling (No Information Case) 
If we estimate a study variable when information on all auxiliary variables is unavailable from population, it is 
utilized in the form of their means. By taking the advantage of Mixture Regression estimator technique for two- 
phase sampling, a generalized estimator for estimating population mean of study variable Y with the use of multi 
auxiliary variables and attributes is suggested as: 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )(
( ) ( )( ) ( ) ( )( ) ( ) ( )( ))

2 1 2MR 3.2 1 1 1 2 2 1 2 2 1 2

1 21 1 1 2 2 2 2 2 2 2

k k k

k k qk k k k q q

t y x x x x x x

p p p p p p

α α α

β β β+ ++ + + +

= + − + − + + −

+ − + − + + −





         (3.29) 

Substituting equation (1.0) and (1.1) in (3.29), we get, 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 2 1 2MR 3.2 2
1 1

i ii i

qk

i x x iy
i i k

t e Y e e e eτ τα β
= = +

= + + − + −∑ ∑                  (3.30) 

The mean squared error of ( )3.2RPt  is given by,  

( )( ) ( )( )
( ) ( )( ) ( ) ( )( )2 1 2 1 2

2
2

2MR 3.2 MR 3.2
1 1

MSE
i ii i

h k qk

y i x x i
i i k

t E t Y E e e e e eτ τα β
+ =

= = +

 
= − = + − + − 

 
∑ ∑        (3.31) 

We differentiate the Equation (3.32) partially with respect to ( )1,2, ,i i kα =   and ( )1, 2, ,i i k k qβ = + +   
then equate to zero, using (1.4), (1.5), (1.6) and (1.7), we get 

( ) 11
i P

i p

yxi xy
i

i x x

RYC
X C R

α += −                                (3.32) 

( ) 11
i h

i h

yi y
i

i

RYC
PC R

τ τ

τ τ

β += − 



                                (3.33) 

Using normal equation that is used to find the optimum values given (3.31) we can write, 

( )( )
( ) ( )( ) ( ) ( )( )2 2 1 2 1 22MR 3.2

1 1
MSE

i ii i

h k qk

y y i x x i
i i k

t E e e e e e eτ τα β
+ =

= = +

  
= + − + −  

  
∑ ∑           (3.34) 

( )( ) ( )
( ) ( )( ) ( ) ( )( )2 2 21 2 1 2

2
2 2 2MRP 3.2

1 1
MSE

i ii i

k h qk

y i y x x i y
i i k

t E e E e e e E e e eτ τα β
+ =

= = +

   = + − + −   
   ∑ ∑        (3.35) 

Taking expectation and substituting (3.32) and (3.33) and, we get,
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( )( ) ( ) ( )

( ) ( )

2 2
2 2 1MR 3.2

1

2 1
1

MSE 1

1

i k
i i

i k

i h
i i

i h

k yxi yxy
y i y x yx

i i x x

k h q yi yy
i y y

i k i

RYC
t Y C X YC C

X C R

RYC
PYC C

PC R
τ τ

τ τ
τ τ

θ θ θ ρ

θ θ ρ

=

+ =

= +

= + − −

+ − −

∑

∑ 



            (3.36) 

Or  

( )( ) ( ) ( ) ( ) ( )2 2
2 2 1 2 1MR 3.2

1 1
MSE 1 1

i ik h
i i

k h

k h qk yx yi iyx y
y yx Pb

i i kx

R R
t Y C

R R
τ τ

τ

θ θ θ ρ θ θ ρ
+ =

= = +

 
 = + − − + − −  
 

∑ ∑ 



    (3.37) 

Or  

( )( ) ( )
( )

( )

. ,2 2
2 1 1MR 3.2

,

MSE q

q

y x

y
x

R
t Y C

R
τ

τ

θ θ θ
 
 = − +
 
 





                     (3.38) 

Using (1.6) in (3.38), we get,  

( )( ) ( ) ( )( )( )2 2 2
2 1 1MR 3.2 . ,MSE 1

qy y xt Y C τθ θ ρ θ= − − +


                    (3.39) 

Simplifying (3.38) we get, 

( )( ) ( )( ) ( )( )2 2 2 2
2 1MR 3.2 . , . ,MSE 1   

q qy y x y xt Y C τ τθ ρ θ ρ= − +
 

                   (3.40) 

3.4. Bias and Consistency of Mixture Regression Estimators 
These mixture regression estimators using multiple auxiliary variables in two phase sampling are biased. How-
ever, these biases are negligible for moderate and large samples. It’s easily shown that the mixture regression 
estimators are consistent estimators using multiple auxiliary variables since they are linear combinations of con-
sistent estimators it follows that they are also consistent. 

4. Result and Discussion 
In this section, we carried out some data analysis using R statistical package to compare the performance of 
mixture regression estimators with already existing estimator in two-phase sampling for finite population that 
uses one or multiple auxiliary variables or attributes.  

In the natural population, the study variable was body fat and auxiliary variables are Thigh circumference and 
chest circumference while attributes were abdomen and hip circumference.  

 252  80  50N n n′= = =  

1 1 1 2
0.5596  0.7026  0.5035  0.6862yx yx Pb Pbρ ρ ρ ρ= = = =  

Population: The simulated population was a normally distributed with the following parameters  600N = , 
90n′ = , 36n =  mean = 75 standard deviation = 5 

1 1 1 2
0.7616  0.6437  0.7020  0.6005yx yx Pb Pbρ ρ ρ ρ= = = =  

All the results were obtained after carrying out several random sample and taking the average. 
In order to evaluate the efficiency gain we could achieve by using the proposed estimators, we have calcu-

lated the variance of mean per unit and the mean squared error of all estimators we have considered. We have 
then calculated percent relative efficiency of each estimator in relation to variance of mean per unit. We have 
then compared the percent relative efficiency of each estimator, the estimator with the highest percent relative 
efficiency is considered to be the most efficient than the other estimator. The percent relative efficiency is cal-
culated using the following formulae. 



J. Kung’u et al. 
 

 
365 

( ) ( )
( )
ˆVarˆeff 100
ˆMSE

y
Y

Y
= ∗                                (4.0) 

The Table 1 shows percent relative efficiency of proposed and existing estimator with respect to mean per 
unit estimator for two phase sampling. It is observed that Regression estimators using one auxiliary variables 
and attributes are more efficient than mean per unit in the two populations. Again, Regression estimators using 
multiple auxiliary variables and attributes are more efficient than mean per unit and Regression estimators. 
Finally, Mixture Regression estimators using multiple auxiliary variables and attributes is the most efficient of 
the five estimators in the two populations since it has the highest percent relative efficiency. 

Finally, Table 2 compares the efficiency of full information case and partial case to no information case and 
full to partial information case. It is observed that the full information case and partial information case are more 
efficient than no information case because they have higher percent relative efficiency than no information case. 
In addition, the full information case is more efficient than the partial information case because it has a higher 
percent relative efficiency than partial information case. 

5. Conclusions 
The percent relative efficiency is used in sample survey to compare the efficiency of different estimators. The 
estimator with the highest percent relative efficiency with respect to mean per unit is normally considered to be 
more efficient compared to the other estimators. 

According to Table 1, the proposed Mixture Regression estimators using multiple auxiliary variables and 
attributes in two-phase sampling has the highest percent relative efficiency compared to mean per unit, Regres-
sion estimators using one auxiliary variable and attributes, Regression estimators using multiple auxiliary va-
riables and attributes. This means that the ratio-cum-product estimator in two-phase sampling is the most effi-
cient estimator compared to the estimators that utilize auxiliary variables and attributes. 

The Mixture Regression estimators were then extended to two-phase sampling in partial and no information 
case. In Table 2, we compared the efficiency of full and partial information case to no information case and  
 

Table 1. Relative efficiency of suggested estimator with respect to 
mean per unit estimator for two phase sampling. 

Estimators 

Relative efficiency of suggested estimator  
with respect to mean per unit estimator  

for two phase sampling 

Population I Population II 

2y  100 100 

REXt  135 140 

REPt  127 130 

MREXt  199 183 

MREPt  183 175 

( )MR 3.0t  (proposed) 211 274 

 
Table 2. Comparisons of full, partial and no information cases for proposed mixture regression estimator. 

Population Percent relative efficiency of full and partial  
to no information 

Percent relative efficiency of full  
to partial in formation case 

Estimators ( )MR 3.2t  ( )MR 3.1t  ( )MR 3.0t  ( )MR 3.1t  ( )MR 3.0t  

1 100 122 158 100 130 

2 100 131 163 100 134 
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found that the two are more efficient than the no information case. We also compared the efficiency of full in-
formation case to partial information case and found that the full information case is more efficient than the par-
tial information case.  

The proposed Mixture Regression estimator using multiple auxiliary variables and attributes in two-phase 
sampling is recommended to estimate the finite populations mean for full information case as it outperforms all 
the other existing estimators for full information using one auxiliary or multiple auxiliary variables and attributes. 
It also outperforms Mixture Regression estimators using multiple auxiliary variables and attributes in partial and 
no information cases. 

When some auxiliary variables are unknown, the two-phase sampling is recommended. If some auxiliary va-
riables are known, the Mixture Regression estimators using multiple auxiliary variables and attributes in partial 
information case should be used but if all the auxiliary variables and attributes are unknown. Mixture Regression 
estimators using multiple auxiliary variables in no information case should be used to estimate the finite popula-
tion mean.  
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