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Abstract 
In an agricultural field, monitoring the temporal changes in soil conditions can be as important as 
understanding spatial heterogeneity when it comes to determining the locally-optimized applica-
tion rates of key agricultural inputs. For example, the monitoring of soil water content is needed to 
decide on the amount and timing of irrigation. On-the-go soil sensing technology provides a way to 
rapidly obtain high-resolution, multiple data layers to reveal soil spatial variability, at a relatively 
low cost. To take advantage of this information, it is important to define the locations, which 
represent diversified field conditions, in terms of their potential to store and release soil water. 
Choosing the proper locations and the number of soil monitoring sites is not straightforward. In 
this project, sensor-based maps of soil apparent electrical conductivity and field elevation were 
produced for seven agricultural fields in Nebraska, USA. In one of these fields, an eight-node wire-
less sensor network was used to establish real-time relationships between these maps and the 
Water Stress Potential (WSP) estimated using soil matric potential measurements. The results 
were used to model hypothetical WSP maps in the remaining fields. Different placement schemes 
for temporal soil monitoring sites were evaluated in terms of their ability to predict the hypothet-
ical WSP maps with a different range and magnitude of spatial variability. When a large number of 
monitoring sites were used, it was shown that the probability for uncertain model predictions was 
relatively low regardless of the site selection strategy. However, a small number of monitoring 
sites may be used to reveal the underlying relationship only if these locations are chosen carefully. 
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1. Introduction 
When pursuing site-specific crop management, temporal variability in soil water content is frequently as impor-
tant as spatial variability. Thus, in order to optimize irrigation water management, one should combine the 
knowledge of changes of soil water holding capacity across a field with temporal monitoring of the actual water 
content available to plants during the most critical phases of crop production. Implementing this “precision irri-
gation” strategy means optimizing both the quantity and the timing of irrigation that may vary across a field due 
to different soil and growing conditions. Using traditional soil analysis practices, without considering soil spatial 
heterogeneity, is not optimal when it comes to site-specific water management. 

Proximal soil sensing technology makes it possible to obtain high-resolution maps pertaining to different soil 
properties at a relatively low cost [1]. Unfortunately, the relationships between the data detected on-the-go and 
agronomic soil parameters such as water content are frequently site-specific. In addition, the amount of water 
stored in the soil profile changes not only spatially, but also temporally. Therefore, sensor-based maps have been 
used to define the spatial variability of soil properties influencing water movement and storage across a land-
scape, and this information has been used to define relatively homogeneous management zones that have been 
evaluated separately [2]. 

Increasingly, wireless technology is used to achieve temporal monitoring of soil conditions. Such systems al-
low the producer to obtain information about soil water content, temperature, and other properties in real-time 
from a remote location [3]. This technology greatly improves the convenience of monitoring soil water for the 
producer. Irrigation system managers have employed the data to optimize the use of resources in response to 
dynamic changes in soil water content and to reduce the risk of crop water stress [4]-[6].  

Selecting a number of strategic locations within the field is not trivial and is mostly subjective. Practitioners 
who use high-resolution data layers apply the following general rules: 1) cover the entire range of data from 
each source, 2) avoid field boundaries and other transition zones, and 3) spread locations over the entire field.  
Quality coverage of the entire data space is important to make sure that both dry and wet field locations are mo-
nitored. Boundary and transition areas are avoided to make sure monitoring locations and spatially variable field 
characteristics represent the same local conditions. Finally, the geographic spread is needed to account for any 
additional uncertainties, such as possible spatially variable amounts of rainfall.  

While the criteria listed above are useful, they do not translate into an operational algorithm and, therefore, 
can produce numerous solutions with different degrees of satisfaction. In principle, this process is similar to 
prescribing targeted sampling locations to either calibrate high-resolution data, or to quantify the agronomic soil 
attributes of established management zones [7]-[11]. Determination of the number of target sampling locations 
is another critical task.  

With an ultimate goal of developing an algorithm for optimization of a wireless sensor network design, the 
objective of this study was to quantify the influence of the number and locations of temporal soil-water moni-
toring sites on the quality of water stress potential predictions within a set of hypothetical fields representing 
different levels of spatial variability. 

2. Materials and Methods 
2.1. Experimental Data 
Seven agricultural fields in Nebraska (Figure 1) were mapped using on-the-go sensing technology with a Veris® 
3150 or 3100 unit (Veris Technologies, Inc., Salina, Kansas)1 equipped with an RTK-level global navigation sa-
tellite system (GNSS) receiver. Apparent soil electrical conductivity (ECa) and field elevation (altitude) were 
used to assess the spatial variability for soil water storage. In one of these fields (a 37-ha field at the Agricultural  

 

 

1Mention of a trade name, proprietary product, or company name is for presentation clarity and does not imply endorsement by the authors, 
the University of Nebraska-Lincoln, or McGill University, nor does it imply exclusion of other products that may also be suitable. 
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                   Figure 1. Research fields in Nebraska, USA.                            
 
Research and Development Center (ARDC) near Mead, Nebraska, USA), eight locations under a center-pivot ir-
rigator were selected for monitoring the soil matric potential and the temperature using wireless sensor technol-
ogy [12]. For each location, the Water Stress Potential (WSP), originally called Water Stress Index, was calcu-
lated as: 

4

1
1i

i
i i

WSP w  
ψ
ψ=

 
= ⋅ − ′ 
∑                                      (1) 

where wi is the weighting factor for water extracted in the plant root zone for depth increment i; Ψi is the soil 
matric potential measurement at the ith depth, kPa; and iψ ′  is the soil-specific soil matric potential at certain 
threshold level of soil water depletion (25% depletion was used in this research as half of the most frequently 
cited percent depletion causing water stress in corn) at the ith depth, kPa.  

The following regression model [12] was used to define time-specific relationships between the high-density 
spatial data and WSP: 

0 1 2 3a aWSP β β EC β Elev β EC Elev = + ⋅ + ⋅ + ⋅ ⋅                          (2) 

where ECa is apparent soil electrical conductivity, mS/m; Elev is field elevation, m; β0, β1, β2, β3 are model coef-
ficients. 

Since a different set of regression coefficients was established for any point in time, it was possible to gener-
ate WSP maps using each new regression model. Thus, 99 sets of regression model coefficients were determined 
for every day of the 2009 growing season in the ARDC field (Figure 2). July 30th, 2009 (day 33) was chosen as 
an example of a regression equation that linked WSP, ECa and field elevation in the middle of the growing season:  

139.52 27.82 0.40 0.08a aWSP EC Elev EC Elev = − ⋅ − ⋅ + ⋅ ⋅                  (3) 

This equation can be generalized by using relative field elevations (obtained by subtracting the median eleva-
tion) instead of the original field elevation values:  

0.26 0.13 0.40 0.08a rel a relWSP EC Elev EC Elev  = − − ⋅ − ⋅ + ⋅ ⋅                 (4) 

where Elevrel is the relative field elevation. 
To evaluate the quality of the WSP prediction using different distributions of temporal monitoring stations, it 

is important to know the WSP value in every location in the field, or at least, across a substantial number of va-
lidation locations. Unfortunately, this is not practical because of the high cost of temporal monitoring locations 
and numerous uncertainties at a fine scale. Therefore, an alternative analytical approach has been used in this 
study. Equation (4) was assumed to be valid for the other six fields (BR, HS, HU, KR, LU, and RU), which 
would allow modeling hypothetical maps of WSP at the same resolution as soil ECa and field elevation maps. 
These new fields represented diversified conditions in terms of field topography and soil heterogeneity (Table 1). 
In each case, both ECa and elevation data were interpolated (Inverse Distance Weighting) using a 10 × 10 grid, 
and corresponding maps were obtained for the calculated WSP values (Figure 3). Each of these maps is a hypo-
thetical representation of what could be the WSP distribution across a given field at a specific time, assuming the 
regression Equation (4) has a perfect fit. 

HS
KR

BR ARDC
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Figure 2. Coefficients of determination and field average WSP from Pan et al. [12].                                  
 
Table 1. Field description.                                                                                

Field ID ARDC (Day 33) BR HS HU KR LU RU 

Field area (ha) 37 27 47 72 57 49 49 

Number of point measurements 8 7477 10,171 14,988 13,547 16,020 11,364 

Field elevation (m) 

Average 351 517 583 563 507 1202 564 
Standard Deviation 5.63 0.53 2.25 1.62 5.97 2.26 4.00 

Min 342 516 577 559 499 1195 559 
Max 359 519 589 568 529 1212 577 

Range 17.0 3.4 11.8 8.4 29.9 16.8 18.1 

Shallow (0 - 30 cm) soil ECa (mS/m) 

Average 6.28 0.76 2.3 7.2 2.5 6.2 4.0 
Standard Deviation 4.46 0.37 0.90 2.02 1.79 2.00 1.80 

Min 0.68 0.22 0.7 2.4 0.4 1.6 0.2 
Max 12.94 3.72 9.9 14.0 9.9 15.1 11.3 

Range 12.27 3.50 9.2 11.6 9.5 13.4 11.1 

Calculated WSP 

Average −0.25 −0.37 −0.6 −1.3 −0.4 −1.0 −0.6 

Standard Deviation 0.78 0.16 0.55 0.48 1.16 0.49 0.73 

Min −0.71 −1.05 −2.2 −3.7 −5.7 −4.3 −3.3 

Max 1.61 −0.02 1.2 −0.1 4.8 1.3 4.0 

Range 2.32 1.03 3.4 3.7 10.5 5.6 7.3 

2.2. Error Simulation 
Since in reality the regression model linking the WSP with ECa and elevation is an approximation, the actual WSP 
map is different from the calculated WSP. To model a WSP map that could represent the actual state-of-nature, 
three different error simulation strategies were used to represent different degrees of spatial structure. Table 2 
summarizes the spatial structure used to simulate error surfaces. All three surfaces had the same total variance 
(sill = 0.04), which was similar to what had been observed in the ARDC field, and a mean error equal to zero, 
which was used to avoid bias between different modeled WSP maps (Figure 4). The first surface was assumed to 
have no spatial structure, while the second surface was simulated using an arbitrary spherical variogram model 
with a zero nugget effect and 300-m range of spatial dependency. The third surface was an intermediate case with 
a range two times smaller and a partial sill equal to the nugget effect. 

Figure 5 illustrates three simulated WSP maps obtained for the HS field. Such error surfaces covering the ex-
tents of each field were superimposed on the calculated WSP maps. Then, these error surfaces were clipped to the  
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                         Figure 3. Maps of field elevation, soil ECa, and calculated WSP. 
 
Table 2. Variogram parameters for three error surfaces (ES 1-3).                                                  

Variogram Parameters ES 1 ES 2 ES 3 

Average 0 0 0 

Nugget effect 0.04 0 0.02 

Partial sill 0 0.04 0.02 

Sill 0.04 0.04 0.04 

Range (m) 0 300 150 

 
actual field shape and re-scaled to maintain a zero-mean error and the simulated spatial structure. Each of the 
resulting maps was an example of the hypothetical WSP distribution across the landscape that could have ac-
tually taken place in a given field at a specific time. Predicting these maps with the least possible error would 
require an optimal network of temporal monitoring stations. 

2.3. Soil-Water Monitoring Site Selection 
In practice, the definition of the optimum-guided sampling scheme is rather vague. There are many parameters 
that can quantify 1) spatial separation, 2) spread across both sets of measurements (in this case, ECa and field 
elevation), and 3) local homogeneity within each set of measurements. Furthermore, there are several different  

0 500 m

576

560

3

-3

11

1

RU

0 500 

500 0

525

500

1212

1196

9

1

14

2

1

-4

4

-5

0 500 

500 0

588

578

567

560

9

1

13

3

-0.5

-3.5

1

-2

HS

5000

519

516

3.5

0.5

-0.1

-1

Field elevation, m Soil ECa, mS/m Calculated WSP

BR

HU

LU

KR



L. Pan et al. 
 

 
966 

 
                         Figure 4. Maps and semivariograms of simulated error surfaces. 
 

 
Figure 5. Maps of three simulated error surfaces clipped to the 
HS field shape and the resultant simulated WSP maps.          

 
ways to derive the overall objective function as a combination of these parameters. In this study, the criteria used 
by Adamchuk et al. [11] were applied. These criteria included: 1) complete spatial field coverage using the S op-
timality criterion [13]; 2) even distributions throughout both data layers (in this case, ECa and field elevation) us-
ing the D optimality criterion [13]; and 3) the relative homogeneity of the selected sites using the sum of squared 
differences between the measurements obtained in each location and those of the nearest neighbors. While 
S-optimality seeks to maximize the harmonic mean distance between each monitoring location in relation to all 
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other monitoring locations, D-optimality increases with greater coverage of the range of soil ECa and field eleva-
tion maps. The overall objective function was the geometric mean of these criteria normalized against the median 
of a large number of random selections. The optimized set of monitoring sites with the overall objective function 
closest to one was selected among 1000 randomly selected sets. In practice, the results of this optimization can be 
achieved through a hypercube sampling with an added requirement of geographic spread and a penalty for select-
ing monitoring sites in field locations with highly variable ECa or field elevation. Although alternative site section 
algorithms could be acceptable, typically, they rely on either design-based, or model-based, inference [9]; in fact, 
both can be important. 

To compare different site selection strategies, the performance of 100 randomly selected sets of soil-water 
monitoring sites were evaluated along with the optimally selected placements of these sites. This was repeated for 
each field and the number of potential soil-water monitoring locations varied from 1 to 10. Figure 6 illustrates the 
relationship between ECa and field elevation for the entire field, and indicates the best set of five (Set A) and the 
second-best set of five (Set B) soil-water monitoring locations chosen using a semi-automatic optimization 
process. Therefore, two optimized monitoring site selections with 5 (using Set A) and 10 (using Sets A & B) were 
assessed by comparing them to multiple random selections with the same number of monitoring sites. 

Similar to the ARDC field, regression analysis was used to predict the simulated WSP values using ECa and 
field elevation data that corresponded to locations dedicated to soil-water monitoring. This was done with Equa-
tion (4) modified for less than 4 soil-water monitoring sites as follows: 

0 1 2 3

0 1 2

0 1

0

for 4
for 3

  
for 2
for 1

a rel rel

a rel

a

β β EC β Elev β EC Elev N
β β EC β Elev N

WSP
β β EC N

β N

+ ⋅ + ⋅ + ⋅ ⋅ ≥
 + ⋅ + ⋅ ==  + ⋅ =
 =

                (5) 

It is necessary to mention that when N was equal to 2, either β1 or β2 could be left within the equation (de-
pending on which data layer was more influential, ECa or Elevrel). In this study, a change of ECa appeared to have 
more effect on WSP than field elevation. These regression equations were applied to the six test fields to produce 
predicted WSP maps. The Mean Squared Error (MSE) between WSP predictions and modeled WSP values was 
assumed to be a primary indicator of water stress prediction quality. Finally, the percentage of randomly selected 
sets of soil-water monitoring locations with MSE higher than the MSE calculated for the optimized set of moni-
toring locations provided an estimated probability of acceptable quality of water stress prediction using a random 
selection of monitoring sites. 

3. Results and Discussion 
Table 3 summarizes MSE estimates for each field. The results, based on the WSP surface with random error 
(ES 1) and with spatially distributed error (ES 2), are shown in Figure 7. The main difference is that a smaller 
number of soil-water monitoring sites resulted in a higher MSE. This increase was moderate for the most suc-
cessful random monitoring site selection (min MSE) and for the optimized selection, but the chance of the ran-
dom site selection producing a high MSE increased with a decreasing number of sites. Based on Table 4, simu-
lating WSP using a random error (ES 1) resulted in 87% - 100% of random site selections producing MSE val-
ues greater than for the five-site optimized selection. However, this number ranged between 48% and 83% when 
the proportion of monitoring locations was doubled. This means that the use of a large number of sites reduces 
the chance of randomly selecting the wrong soil-water monitoring locations. However, the relatively high cost of 
equipment does not allow for an extensive temporal, soil water monitoring network to be in place. 

Although similar results were obtained with a spatially structured simulated error surface, it appeared that our 
optimized selection could not always be ranked low in terms of the MSE when compared with the most suitable 
random selection. This is most obvious for field HU, where the MSE for the optimum selection was close to the 
median value of the MSE’s for random selections. This suggests once again that the spatial spread of monitoring 
sites across the field can avoid bias in regression analysis due to monitoring only for overestimated, or underes-
timated, parts of the field. 

In addition, it should be noted that when the number of parameters was lower than four (reduced model), the 
maximum MSE value was lower as compared to the full model. This means that a small number of parameters 
could reduce the overall error when these parameters have a high level of uncertainties. From a practical point of  
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                   Figure 6. Maps relationship between ECa and field elevation for six fields.    
 
Table 3. Summary of MSE estimates.                                                                        

  BR HS HU KR LU RU 
ES 1 and 5 monitoring locations 

Random 
Selection 

Min 0.05 0.04 0.04 0.04 0.05 0.05 
Median 0.59 0.19 0.15 0.41 0.21 0.61 

Optimized Selection 0.07 0.06 0.10 0.06 0.07 0.06 
ES 1 and 10 monitoring locations 

Random 
Selection 

Min 0.04 0.04 0.04 0.04 0.04 0.04 
Median 0.08 0.07 0.07 0.08 0.06 0.07 

Optimized Selection 0.07 0.05 0.06 0.05 0.06 0.06 
ES 2 and 5 monitoring locations 

Random 
Selection 

Min 0.04 0.05 0.04 0.04 0.04 0.04 
Median 0.48 0.22 0.18 0.34 0.16 0.28 

Optimized Selection 0.08 0.05 0.19 0.05 0.08 0.04 
ES 2 and 10 monitoring locations 

Random 
Selection 

Min 0.04 0.04 0.04 0.04 0.04 0.03 
Median 0.07 0.06 0.06 0.07 0.06 0.07 

Optimized Selection 0.04 0.05 0.05 0.05 0.04 0.05 
ES 3 and 5 monitoring locations 

Random 
Selection 

Min 0.05 0.04 0.04 0.04 0.05 0.05 
Median 0.36 0.17 0.16 0.39 0.22 0.33 

Optimized Selection 0.09 0.07 0.06 0.05 0.14 0.05 
ES 3 and 10 monitoring locations 

Random 
Selection 

Min 0.04 0.04 0.04 0.04 0.04 0.04 
Median 0.06 0.07 0.07 0.08 0.07 0.07 

Optimized Selection 0.06 0.05 0.05 0.05 0.05 0.04 
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Table 4. Percentage of random selections with higher MSE as compared to the optimized selection.                      

  BR HS HU KR LU RU 
Five (Set A) soil water monitoring sites 

ES 1 91 94 87 91 100 94 
ES 2 86 100 48 95 80 95 
ES 3 80 77 91 98 65 100 

Ten (Set A & B) soil water monitoring sites 
ES 1 75 64 63 82 83 48 
ES 2 90 84 91 75 85 69 
ES 3 51 89 76 88 85 93 

 

 
Figure 7. Summary of MSE values for random selection and optimized 
selection methods for all six fields using simulated surfaces based on error 
surface (ES 1 and ES 2).                                                
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view, this conclusion means that even a small number of monitoring sites can result in a quantification of soil 
water stress of relatively good quality in every part of the field, as long as these sites are selected carefully and 
water stress response to soil texture and/or landscape position is well defined. On the contrary, using a small 
number of monitoring sites to define parameters of a complex regression model greatly increases the chance of 
errors in estimating these parameters which would lead to lower WSP predictability. 

Depending on the cost of added monitoring sites and the profit-reducing effect of WSP prediction errors, the 
optimum number of these sites will be different. Thus, errors in estimating water stress levels will lead to yield 
loss due to water stress and/or the extra cost of unnecessary water supply. Based on Equation (5), we anticipate 
that a single monitoring site placed in the most representative part of the field is a valid starting point. When soil 
variability, or field topography, presents a case for a substantial differences in expected plant available water 
storage, two monitoring locations are required. Once both soil ECa and field elevation change substantially and 
do not correlate, three monitoring locations are needed. Once the interaction between the two high-density data 
layers is also influential, this supports the addition of a fourth monitoring site. However, due to the fact that the 
relationship between high-resolution data and WSP (Equation (5)) is not certain, extra monitoring sites could 
assure a more accurate definition of regression parameters, which should be fewer in number than the number of 
monitoring locations. 

Based on this research, the greater the number of monitoring locations that can be equipped, the lower proba-
bility of selecting a set of locations with poor quality of regression parameters prediction will be. Once the 
number of monitoring locations is large, it is not as critical to seek the most appropriate locations as compared to 
a low number of such sites. With a relatively small number of temporal soil water monitoring sites (due to eco-
nomic restrictions), the optimized site selection strategy described above can be used as a starting point when 
developing practical algorithms for irrigators pursuing the benefits of site-specific water management. However, 
the actual network design algorithm must involve the node communication capabilities, landscape topography, 
irrigation system geometry, and other infrastructure-based constraints. Some of these network architecture con-
straints are discussed in [14]. 

4. Conclusion 
In this study, apparent soil electrical conductivity and field elevation data layers were mapped using on-the-go 
soil sensing technology. Both data layers were associated with soil water holding capacity. To assess the effect 
of monitoring site selection, various model WSP surfaces were obtained by adding up the calculated WSP and 
an error simulated according to different spatial distribution patterns. The random selection method and the op-
timized selection method based on specified criteria were applied and compared on the basis of the MSE com-
puted from the predicted versus simulated WSP surfaces. The optimized selection of monitoring sites was help-
ful in reducing the chance of selecting monitoring sites with a poor capacity to recover the WSP regression 
model. Our results highlight the importance of covering the entire range of spatial data indicating water storage 
with a high resolution and spreading the sites across the field to account for any additional factors affecting wa-
ter storage predictability. 
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