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Abstract 
In this paper, we study the connectivity of multihop wireless networks under the log-normal sha-
dowing model by investigating the precise distribution of the number of isolated nodes. Under 
such a realistic shadowing model, all previous known works on the distribution of the number of 
isolated nodes were obtained only based on simulation studies or by ignoring the important 
boundary effect to avoid the challenging technical analysis, and thus cannot be applied to any 
practical wireless networks. It is extremely challenging to take the complicated boundary effect 
into consideration under such a realistic model because the transmission area of each node is an 
irregular region other than a circular area. Assume that the wireless nodes are represented by a 
Poisson point process with density n over a unit-area disk, and that the transmission power is 
properly chosen so that the expected node degree of the network equals ( )lnn n+ ξ , where ( )nξ  
approaches to a constant ξ  as n →∞ . Under such a shadowing model with the boundary effect 
taken into consideration, we proved that the total number of isolated nodes is asymptotically 
Poisson with mean { }e −ξ . The Brun’s sieve is utilized to derive the precise asymptotic distribu-
tion. Our results can be used as design guidelines for any practical multihop wireless network 
where both the shadowing and boundary effects must be taken into consideration. 
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1. Introduction 
Connectivity is one of the most fundamental properties of multi-hop wireless networks. It is the premise for 
enabling a network with proper functions. The path-loss model (also known as the unit-disk communication 
model) of wireless networks assumes that the received signal strength at a receiving node from a transmitting 
node is only determined by a deterministic function of the Euclidean distance between the two nodes. Under 
such a simple communication model, two nodes are directly connected if and only if their Euclidean distance is 
no more than a given threshold, and network connectivity has been well studied in the literature (e.g., [1]-[7]). 
However, in reality, the received signal strength often shows probabilistic variations induced by the shadowing 
effects that are unavoidably caused by different levels of clutter (e.g., ubiquitous background noises and ob-
structions such as buildings and trees) on the propagation path. In order to better capture physical reality, the 
variations of the received signal strength should be considered. It has been shown that a more accurate and rea-
listic modeling of the physical layer is indeed important for better understanding of wireless multi-hop network 
characteristics [8] [9]. This generalized radio propagation model is referred to as the log-normal shadowing 
model which has been widely used in the literature [10]-[15]. The generalized shadowing model provides a good 
abstraction of large scale wireless multi-hop networks, and is a realistic model for many types of wireless mul-
tihop network applications such as sensor wireless networks for bush fire monitoring, ocean temperature moni-
toring, volcano monitoring, etc. 

The study of multihop wireless networks with the log-normal shadowing model can date back to the early of 
1980s [11] [12]. Under such a realistic model, researchers have investigated fundamental problems related to 
network connectivity such as the largest connected component in the network, the relation between having a 
connected network and having no isolated node, etc. [10] [13]-[15]. But most of the known results on network 
connectivity were obtained only based on simulation studies or ignoring the important boundary effect to avoid 
the challenging technical analysis under, and thus cannot be applied to any practical wireless networks. It is ex-
tremely challenging to take the complicated boundary effect into consideration under such a realistic shadowing 
model because the transmission area of each node is an irregular region other than a circular area. To the best of 
our knowledge, under such a realistic shadowing model, there are no theoretical results obtained by rigorous 
analytical studies in multihop wireless networks when the important boundary effect is taken into consideration. 

In this paper, we assume that the wireless networking nodes are represented by a Poisson point process with 
density n  over a unit-area disk   on the plane 2 , and that the transmission power is properly chosen so 
that the expected node degree of the network is equal to ( )ln n nξ+ , where ( )nξ  approaches to some con-
stant ξ  as n →∞ . We derive the precise asymptotic distribution of the number of isolated nodes in the net-
work under the log-normal shadowing model, taking the complicated boundary effect into consideration. The 
Brun’s sieve is utilized to derive the precise asymptotic distribution. 

The vanishing of isolated nodes is not only a prerequisite but also a good indication of network connectivity. 
Under the path-loss model, it is well-known that the probability of having a connected network equals the prob-
ability of having no isolated nodes in the network as the node density n →∞  (see Penrose [16]). With the log- 
normal shadowing model, such a result is predicted and has been verified by simulation studies (see Bettstetter 
et al. [10]). Therefore, it is of importance to study the asymptotic distribution of the number of isolated nodes in 
the network under such a realistic shadowing model. The results obtained in this paper can be used as design 
guidelines for any practical multihop wireless network where both the shadowing and boundary effects must be 
taken into consideration. 

In what follows, o  is the origin of the Euclidean plane 2 , and 2⊂   is the unit-area disk centered at 
o . We assume that n  is the Poisson point process over   with density n . The Euclidean norm of a point 

2x∈  is denoted by x , and the Euclidean distance between two points u  and v  is denoted by uv . The 
Lebesgue measure (or area) of a measurable set 2A ⊂   is denoted by A . The disk of radius r  centered at 
x  is denoted by ( ),D x r . 

The remaining of this paper is organized as follows. In Section 2, we give a literature review for related work 
of our paper. The log-normal shadowing model is introduced and explained in Section 3. In Section 4, we give 
some definitions and geometric results that will be used to prove the main result of this paper. In Section 5, we 
derive the precise asymptotic distribution of the number of isolated nodes in the network under the log-normal 
shadowing model. Finally, we conclude our paper in Section 6. 
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2. Related Work 
Under the unit-disk communication model, network connectivity has been extensively studied, and a huge num-
ber of existing research work are available in the literature [1]-[7]. Gupta et al. [3] showed that if each node uses 
the transmission radius  

( ) ( )log
,

π
n c n

r n
n
+

=  

where ( )c n  is a positive parameter depending only on n , then the network is connected a.a.s. if and only if 
( )c n →∞ , assuming the n  nodes are uniformly distributed in a disk on the plane. M. Penrose proved that the 

longest edge of the minimum spanning tree (MST) equals the critical transmission range for connectivity [16], 
he then derived in [17] the asymptotic distribution of the longest edge of the MST. Xue et al. obtained in [6] 
several results including a sufficient condition on the average node degree for connectivity. They proved that 
every node must connect to at least ( )log nΘ  closest neighbors if the network is to be connected as n →∞ , 
assuming that the n  nodes are randomly and uniformly distributed in a unit square on the plane. Phillips et al. 
in [4] provided a necessary condition on the average node degree (i.e. the expected number of neighbors of an 
arbitrary node) required for connectivity and showed that the average node degree must grow logarithmically 
with the area of the network to ensure that the network is connected, assuming that the networking nodes are 
represented by a Poisson point process with density n  in the plane. 

The log-normal shadowing model is a much more realistic radio propagation model and has been widely used 
by many researchers for network connectivity [10] [13]-[15]. Hekmat et al. investigated in [13] the largest con-
nected component in wireless ad-hoc networks through simulations, where the n  nodes are uniformly distri-
buted in a bounded region on the plane. In this paper the authors proposed a formula to evaluate the size of the 
largest connected component on average. In [10], Bettstetter et al. investigated a relation between the probability 
of having a connected network and the probability of having no isolated node, where the wireless devices are 
represented by a Poisson point process with density n . The authors verified by using simulation that the two 
probabilities are approximately equal when n  is sufficiently large. In [14], Mukherjee et al. studied the proba-
bility distribution for the minimal number of hops required to connect an arbitrary source node to a destination 
node by ignoring the complicated boundary effect. Through simulation studies, Stuedi et al. investigated in [15] 
how the transmission range affects the end-to-end connection probability in a log-normal shadowing model and 
compared the results to theoretical bounds and measurements in the path-loss model. In [18], with the compli-
cated boundary effect taken into consideration, Wang et al. first derived an explicit formula for the expected 
number of the isolated nodes in the network under such a realistic shadowing model, then obtained an upper and 
a lower bound for the critical transmission power to ensure that the vanishing of isolated nodes is asymptotically 
almost sure (abbreviated as a.a.s.). The upper and lower bounds for the critical transmission power obtained in 
[18] are almost tight. 

Most of the results in these known works were obtained only based on simulation studies or ignoring the im-
portant boundary effect to avoid the rigorous analysis by assuming the toroidal metric as done in the literature. 
To the best of our knowledge, there are no theoretical results on asymptotic distribution of the number of iso-
lated nodes in the network obtained by rigorous analytical studies with the realistic log-normal shadowing model 
when the complicated boundary effect is taken into consideration. 

3. The Log-Normal Shadowing Model 
With the path-loss model, the received power levels decrease as the distance between the transmitter and the re-
ceiver increases. Attenuation of radio signals due to path-loss effect has been modelled by averaging the meas-
ured signal power over long times and distances around the transmitter. The averaged power at any given dis-
tance r  to the transmitter is referred to as the area mean power ( )amp r . Based on the path-loss model, the 
area mean power ( )amp r  is expressed as  

( ) 0 ,am tr
d

p r cp
r

α
 =  
 

 

where c  is a constant depending on the receiver and transmitter antenna gains and the wavelength, trp  is the 
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transmission power used by each node, α  is the path-loss exponent which indicates the rate at which the re-
ceived signal strength decreases with distance, and 0d  is a close-in reference distance such that 0d uv≤  for 
any two nodes u  and v  in the network. The value of α  depends only on the environment and terrain struc-
ture and can vary between 2 in free space and 6 in heavily built urban areas. The values of 0d  and trp  depend 
on the density n . Under the path-loss model, the communication range of each node is a perfect circular disk 
(see Figure 1(a)). The node A  can directly communicate with all other nodes that are within its communica-
tion range. 

But the path-loss model could be inaccurate because in reality the received power levels may show significant 
variations around the area mean power value. Due to these variations, short links could disappear while long 
links could merge. The log-normal shadowing model allows for random power variations around the area mean 
power. With the log-normal shadowing model, the received mean power taken over all possible locations that 
are at distance r  to the transmitter is equal to the area mean power. However, it is further assumed that the 
time averaged received power varies from location to location in an apparently random manner [19]. 

Assume that links are symmetric and the received power at node v  from node u  is equal to the received 
power at node u  from node .v  For any given Euclidean distance ,r  let ( )rvp r  denote the received power 
strength between any two nodes separated by the distance r  under the log-normal shadowing model. The basic 
assumption in this realistic shadowing model is that the logarithm of ( )rvp r  is normally distributed around the 
logarithm of the area mean power ( )amp r . That is,  

( ) ( )10 1010 log 10log ,rv amp r p r Zσ= +                             (1) 

where Zσ  is a zero-mean Gaussian (normal) distributed random variable (in dB) with standard deviation σ  
(also in dB). The standard deviation σ  is a nonnegative value and, in case of severe signal fluctuations due to 
irregularities in the surroundings of the receiving and transmitting antennas, measurements indicates that it can 
be as high as 12 dB [20]. 

For any two nodes separated by the Euclidean distance r , there exists a link between them if and only if the 
received power ( )rvp r  under such a model is not less than some given threshold thp  (also in dB milliwatts) 
that is assumed to be a constant in this paper, i.e.  

( ) .rv thp r p≥                                       (2) 

And we say that any two nodes are directly connected if and only if there exists a link between them. 
Define 0r  as the Euclidean distance where the area mean power ( )0amp r  is equal the given threshold 

power .thp  That is, ( )0 .am thp r p=  Then  

0 0 .tr

th

cp
r d

p
α α=                                       (3) 

If both sides of Equation (1) minus 1010log ,thp  since ( )0 ,am thp r p=  we have  

0
10 10 10 10

0

( ) ( ) ( )
10log 10log 10log 10 log .

( )
rv am am

th th am

p r p r p r r
Z Z Z

p p p r rσ σ σα= + = + = +  

Then Equation (2) is equivalent to  

( )10 010 log .Z r rσ α≥                                  (4) 

Thus for any two nodes separatedy the Euclidean distance ,x  let ( ),f x n  denote the probability that there 
is a link between the two nodes. Then  

( ) { }( ) ( ){ }
( ){ }10 0

, Pr a link of length exists Pr

Pr 10 log .
rv thf x n x p x p

Z x rσ α

= = ≥

= ≥
                 (5) 

When 0,σ =  there is no shadowing (i.e., 0Zσ = ). Then  

( ) 0

0

0 for all ,
Pr a link of length exists when 0

1 for all .
r r

x
r r

σ
>

= =  ≤
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Thus, any two nodes are directly connected if and only if their Euclidean distance is at most 0r . In such a case, 
the channel model is reduced to the simple unit-disk communication model and 0r  is the maximum transmis-
sion radius of each node. 

When 0σ > , the existence of a link is determined by both a deterministic function of the link length r and 
the shadowing effect represented by σ . The transmission area of each node is no longer a circular area under 
the log-normal shadowing model. Under the log-normal shadowing model, the communication range of each 
node is an irregular region other than a circular area (see Figure 1(b)). In this figure, the node C  is closer to 
node A than node D, the nodes A and D are directly connected, but the nodes A and C are not because of the 
shadowing effect between the nodes A and C. In real applications, σ is larger than zero, hence, the communica-
tion model with shadowing is more realistic than that without shadowing.  

The following lemma demonstrates how the probability ( ),f x n  changes when the link length x , or the 
density ,n  or the transmission power trp  changes. 

Lemma 1. When n  and trp  are fixed, the probability ( ),f x n  decreases as x  increases; when n  and 
x  are fixed, the probability ( ),f x n  increases as trp  increases.  

Proof. According to Equation (5), 0r  is fixed when n  and trp  are fixed, since ( )10 0log x r  increases as 
x  increases, it is easy to see that the probability ( ),f x n  is a decreasing function of the link length x , which 
accords with intuition. When the density n  and the link length x  are fixed, as trp  increases, 0r  increases 
and ( )10 0log x r  decreases. Therefore, the probability ( ),f x n  increases as trp  increases, which also accords 
with intuition. Thus, the lemma is proved.  

4. Preliminaries 
In this section, we shall give some definitions that will be used to prove our main result of this paper. The results 
in this section are purely geometric, with no probabilistic content. Let r  be the maximum transmission radius 
of the nodes. For any finite set of nodes { }1, , kx x  in  , we use ( )1, ,r kG x x  to denote the r -disk graph 
over { }1, , kx x  in which there is an edge between two nodes if and only if their Euclidean distance is at most 
r . For any positive integers k  and m  with 1 m k≤ ≤ , let kmC  denote the set of ( )1, , k

kx x ∈   satisfying 
that ( )2 1, ,r kG x x  has exactly m  connected components. 

For the given maximum transmission radius r, the unit-area disk   is partitioned into three regions, ( )0 , 

( )1  and ( )2  as shown in Figure 2: ( )0  is the disk of radius 1 π r−  centered at the origin; ( )1  is 

the annulus of radii 1
π

r−  and 21
π

r−  centered at the origin; and ( )2  is the annulus of radii 21
π

r−  

and 1 π  centered at the origin.  
Then we have  

( ) ( )2
0 1 π ,r= −  ( ) 11 2π ,

π
r r 

= − 
 

  ( ) 22 π .r=
 

 

 
(a)                                 (b) 

Figure 1. (a) Unit-disk communication model; (b) Log-normal shadowing model.    
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Figure 2. Partition of the unit-area disk  .                                   

5. Precise Asymptotic Distribution of the Number of Isolated Nodes 
In this section, we assume that all the nodes transmit at a uniform power trp . We derive the precise asymptotic 
distribution of the number of isolated nodes in the network under the log-normal shadowing model with the 
complicated boundary effect taken into consideration. 

We use the same notations as in Section 3. Recall that ( ),f x n  denotes the probability that any two nodes 
separated by the distance x  are directly connected. Then by Equation (5), we have  

( ) ( ){ } ( )

2

2

10 0

2
10 0 10 log

1, Pr 10 log e d .
2π

u

x r
f x n Z x r uσ

σ α
α

σ

−+∞
= ≥ = ∫                    (6) 

Let  

( )
0

2 π , d .nM n f x n x x
∞

= ∫                                    (7) 

Refer to the discussions in [10] and [21], nM  is actually the expected node degree of the network. By 
Equations (6) and (7)  

( ) ( )10 0

2

22
0 0 10 log

2π2 π , d d e d .
u

n x r

nM n f x n x x x x uσ
ασ

−∞ ∞ ∞
= =∫ ∫ ∫                       (8) 

Based on our assumptions, 0r  is a function of n  and trp  (see Equation (3)). Therefore, nM  depends 
only on n  and trp . When n  is fixed, it is easy to see that the value of nM  increases as trp  increases from 
Equation (8). 

Let 

( ) ln .nn M nξ = −                                      (9) 

Then, when n  is fixed, ( )nξ  also increases as trp  increases. 
In this paper, we make the following two assumptions: 
1) ( ),f x n  has bounded support w.r.t. ;x  i.e., there is a positive parameter nR  (depending only on n  

and trp ) such that  

( ), 0 whenever .nf x n x R= >                             (10) 

2) the transmission power trp  is properly chosen so that ( )lim
n

nξ ξ
→∞

=  for some constant ξ  (including 
+∞ ). 

The main theorem of this paper is stated below: 
Theorem 2. Under the two assumptions given above, the total number of the isolated nodes in the network is 

asymptotically Poisson with mean e .ξ−   
Remarks. If the probability ( ), 1f x n =  (i.e., the shadowing model is reduced to the path-loss model), then 

Equation (9) is reduced to  

( )ln
,

πn

n n
R

n
ξ+

=                                    (11) 
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where nR  is the minimal transmission radius of each node (determined by the minimal transmission power) 
required for connectivity of multihop wireless networks under the path-loss model (see Gupta et al. [3] or 
Penrose [16]). 

If the probability ( ),f x n p=  for some constant 0 1p< <  (i.e., the shadowing model is reduced to the 
unreliable link model used in [22] with all nodes active and 1 1p = ), then Equation (9) is reduced to  

( )ln
,

πn

n n
R

pn
ξ+

=  

where nR  is the maximum transmission radius of each node used to derive the precise asymptotic distribution 
of the number of isolated nodes in the network with the unreliable link model defined in [22]. Therefore, our 
Theorem 2 above is the generalization of the main theorem in [22] to the more realistic lognormal shadowing 
model. 

Theorem 2 will be proved by using the Brun’s sieve in the form described, for example, in [23], Chapter 8, 
which is an implication of the Bonferroni inequalities. 

Theorem 3. (Brun’s sieve) Let n  be a positive integer parameter. Suppose that ( )N N n=  is a non- 
negative integer random variable depending on n , and 1, , NB B  are N  Bernoulli random variables 
depending on n . Assume that for any subset { } { }1, , 1, , ,ki i N⊆   we have  

( ) ( )
1 1Pr Pr .

ki i kB B B B∧ ∧ = ∧ ∧   

If there is a constant µ  such that for every fixed positive integer k ,  

( )1Pr ,k k
kn B B µ∧ ∧   

then 
1

N
ii B

=∑  is asymptotically Poisson with mean µ  (with respect to n →∞ ).  
To apply Theorem 3, let iB  denote the event that the random point iX  is isolated for 1 i N≤ ≤  and Y  

be the number of iB  that holds. Then Y  is exactly the total number of isolated nodes. Clearly, for any subset 
{ } { }1, , 1, , ,ki i N⊆    

( ) ( )
1 1Pr Pr .

ki i kB B B B∧ ∧ = ∧ ∧   

Therefore, in order to prove Theorem 2, it is sufficient to show that for any fixed positive integer ,k  when 
the conditions of Theorem 2 hold, we have  

( )1Pr e .k k
kn B B ξ−∧ ∧                                 (12) 

The proof of this asymptotic equation will use the following lemmas. 
Lemma 4. Assume the conditions of Theorem 2 hold. Then there exist a sufficiently large constant 1K >  

and a sufficiently small constant 0 1q< <  (both independent of n ) satisfying that the probability ( ),f x n q≥   

for all 10 .nx R
K

< ≤   

Proof. We prove the lemma by contradiction and assume the contrary is true. Then for any arbitrarily large 
1K >  and any arbitrarily small 0 1Kε< <  such that 0Kε →  as ,K →∞  there is an 0x  (with  
00 nx R K< ≤ ) satisfies that ( )0 , .Kf x n ε<  Since ( ),f x n  is a decreasing function of ,x  we have 

( ) ( )0, , Kf x n f x n ε≤ <  for all 0 .x x≥  Note that ( ), 1.f r n ≤  Then by Equation (7), for any fixed ,n  we 
have  

( ) ( ) ( )0

0

0

0

0 0

2 2
00

2
2

2 π , d 2 π , d

π 2 d π 2 d π π

π π .

n n

n

R x R
n x

x R
K K nx

n
K n

M n f r n r r n f r n r r

n r r n r r n x n R

R
n n R

K

ε ε

ε

= = +

≤ + ≤ +

 ≤ + 
 

∫ ∫ ∫

∫ ∫  

The above inequality holds for any arbitrarily large 1K >  when n  is fixed. Fix n  and let ,K →∞  we 
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have 0.nM ≤  Therefore, 0.nM =  This contradicts with Equation (9). Therefore, the lemma is proved.  

The following lemma shows that nR  has the order ln n
n

 
Θ  
 

 when the conditions of Theorem 2 hold. 

Lemma 5. Assume the conditions of Theorem 2 hold. Then we have ln
n

nR
n

 
= Θ  

 
 and  

( ) ( )ln ln
,

π πn

n n n n
R K

n qn
ξ ξ+ +

≤ ≤  

where K  and q  are the two constants obtained in Lemma 4.  
Proof. Note that ( ), 1.f r n ≤  By Equation (9) and Equation (7),  

( ) ( ) 2
0

ln
2 , d .

π
nR

n

n n
f r n r r R

n
ξ+

= ≤∫  

By Lemma 4, there exist a sufficiently large constant 1K >  and a sufficiently small constant 0 1q< <   

(both independent of n ) satisfying that ( ),f x n q≥  for all 10 .nx R
K

< ≤  Thus, we have  

( ) ( ) ( )
2

0 0

ln
2 , d 2 , d .

π
n nR R K nn n R

f r n r r f r n r r q
n K
ξ+  = ≥ ≥  

 
∫ ∫  

Thus, the lemma is proved.  
Next we introduce a lemma that has only one event involved and has been proved in [18] (see Equation (10) 

and Equation (12) in [18]). 
Lemma 6. For any ,x∈  we have  

( ) ( ) ( ){ }
( ) ( ){ }

1 1 ,

,

Pr exp , d d

exp , d d .

n

n

D x R

n D x R

B X x n f n

M n f n

ρ ρ ρ θ

ρ ρ ρ θ

= = −

= − +

∫∫

∫∫









 

If ( )0 ,x∈  then  

( )1 1Pr e .nMB X x −= =                                 (13) 

Lemma 7. For any 2k ≥  and 1 1,m k≤ ≤ −  there is a constant 0c >  such that for any  
( ) ( )1 2, , , 0 ,k

k kmx x x C∈   we have  

( ) ( )
1Pr , 1 e .nm c M

k i iB B X x i k − +∧ ∧ = ≤ ≤ ≤  

Proof. First we prove the lemma holds when 2k =  and 1.m =  Let 1 2 .s x x= −  Then .ns R≤  We 
consider two cases: 

Case 1. 1 .
2 ns R≥  Let 2B′  denote the event that 2X  does not have links to nodes in  

( ) ( )2 1, , .n nD x R D x R  Then  

( )
( ) ( )

( )

1 2

1 1 1 2 1 1 2 2

2

Pr ,1 2

Pr Pr ,

e Pr ,1 2 .n

i i

M
i i

B B X x i

B X x B X x X x

B X x i−

∧ = ≤ ≤

′≤ = = =

′= = ≤ ≤

 

It remains to show that there is a constant 0c >  such that  

( )2Pr ,1 2 e .ncM
i iB X x i −′ = ≤ ≤ ≤  

For any [ ]0, ,nr R∈  let ( ),s rθ  denote the angle of the arc of ( )2 ,D x r∂  not contained in ( )1, .nD x R  
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Since ( ),s rθ  is increasing w.r.t. ,s  we have 

( ) ( ) ( ) ( ) ( ) ( )
0 2 2

, , d , , d , 2, d .n n n

n n

R R R
nR R

f r n s r r r f r n s r r r f r n R r r rθ θ θ≥ ≥∫ ∫ ∫  

Let  

( ) ( ) ( ) ( )( )2 0
, 2, d π , , d .n n

n

R R
nR

c f r n R r r r f r n s r r rθ θ′ = ∫ ∫  

Apply the same approach in deriving the probability for ( )Pr isolatedX X x=  (see Equation (10) and 
Equation (12) in [18]), we have 

( ) ( ) ( ){ }
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Case 2. 1 .
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Note that the inequality still holds for annuli not fully contained in ( )2 , .nD x R  Therefore, 
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Thus,  

( ) { } ( )1
1 2 1 1 2 2Pr , exp e .nc M

n nB B X x X x M c M ′′− +′′∧ = = ≤ − − =  

The lemma holds for the constant { }min , 0.c c c′ ′′= >  Thus, the lemma is proved when 2k =  and 1m = . 
When 1m = , for any 3,k ≥  since there always exist two overlapping disks (the distance between the two  

centers is at most nR ) in the components ( )=1 , ,k
i ni D x R



 the lemma can be proved by following similar steps  
as the case for 2k = . 

Next we assume 1 1m k< ≤ −  and 3.k ≥  For any ( )1 2, , , ,k kmx x x C∈  the set { }1 2, , , kx x x  is parti- 
tioned into exactly m  subsets 1 2, , , mK K K  such that for each 1 ,j m≤ ≤  the subgraph of  

( )2 1 2, , ,
nR kG x x x  induced by only the nodes in jK  forms a connected component. Let j jn K=  for each  
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Thus, the lemma is proved.  
Now we are ready to prove the asymptotic Equation (12). The proof of this asymptotic equation is divided 

into three lemmas. The case for 1k =  is proved in Lemma 8. The case for any 2k ≥  and 
( )1 2, , , k kmX X X C∈  ( )1 1m k≤ ≤ −  will be proved in Lemma 9. The case for any 2k ≥  and 
( )1 2, , , k kkX X X C∈  will be verified in Lemma 10. Thus, the asymptotic Equation (12) holds for any 2k ≥  
since 
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For the integral over ( )0 ,  by Equation (13) we have 
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For the integral over ( )2 ,  by Equation (13) we have 
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Next we calculate the integral over ( )1 .  For any ( )1 ,x∈  let y  be the point on ∂  such that 
( )1 π ,x xy− =  and ab  the diameter perpendicular to xy  (see Figure 3). Let axb  denote the half 
disk contained in ( ), nD x R  . Then  

( ), .naxb aby D x R∆ ⊂                                  (17) 

Therefore, by Equation (7) and Equation (17)  
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( ){ }, d .nD x R K aby A∆

 

To complete the proof of the lemma, it is sufficient to prove that this integral over ( )1  is asymptotically 
vanishing as n →∞ . We consider two cases. 

Case 1. ( ), ny D x R K∈ . Then  

( ) 1 2 1 1, .
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K K
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Thus,  
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Figure 3. ( ), .naxb aby D x R∆ ⊂                 
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Therefore, the lemma is proved.  
Lemma 9. For any 2k ≥  and 1 1,m k≤ ≤ −  we have  

( )( ) ( )1 1 2Pr and , , , 1 .k
k k kmn B B X X X C o∧ ∧ ∈  

 

Proof. By Equations (15) and (16), it is straightforward to verify that the lemma holds when  
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where the second last equation holds from Lemma 5. 
Next we assume 2 1.m k≤ ≤ −  For any ( )1 2, , , ,k kmx x x C∈  the set { }1 2, , , kx x x  is partitioned into 

exactly m  subsets 1 2, , , mK K K  such that for each 1 ,j m≤ ≤  the subgraph of ( )2 1 2, , ,
nR kG x x x  

induced by only the nodes in jK  forms a connected component. Let j jn K=  for each 1 ,j m≤ ≤  and let  
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where the last equation holds by following the similar arguments as the case 1.m =  
This completes the proof of the lemma.  
Lemma 10. For any 2,k ≥  we have  

( )( )1 1 2Pr and , , , e .k k
k k kkn B B X X X C ξ−∧ ∧ ∈  

 

Proof. For any ( )1 2, , , ,k kkx x x C∈  the k  disks ( ) ( ) ( )1 2, , ,
n n nR R R kD x D x D x  are disjoint. Thus, 

1 2, , , kB B B  are independent. Therefore, 
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Next we calculate the two integrals 1I and 2I  separately.  
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the last equation holds by following the same steps as we used in the proof of Lemma 8. 
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where the last equation holds from Lemma 9. 
This completes the proof of the lemma.  

6. Conclusion 
In this paper, we assume that the wireless nodes are represented by a Poisson point process with density n over a 
unit-area disk, and that the transmission power is properly chosen so that the expected node degree of the 
network equals ( )ln n nξ+ , where ( )nξ  approaches to a constant ξ  as ∞→n . We also assume that the 
probability that a pair of nodes separated by a Euclidean distance x  are directly connected has bounded 
support w.r.t x . Under the log-normal shadowing model with the boundary effect taken into consideration, we 
proved that the total number of isolated nodes is asymptotically Poisson with mean { }e ξ− . 
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