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Abstract 
In this paper, we will see that some k -Fibonacci sequences are related to the classical Fibonacci 
sequence of such way that we can express the terms of a k -Fibonacci sequence in function of some 
terms of the classical Fibonacci sequence. And the formulas will apply to any sequence of a certain 
set of k -Fibonacci sequences. Thus we find ′k -Fibonacci sequences relating to other k -Fibonacci 

sequences when ′σ k  is linearly dependent of 
2 4

2k
k k+ +

=σ . 
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1. Introduction 

k -Fibonacci sequence { }, 0k n n
F

≥
 was found by studying the recursive application of two geometrical trans- 

formations used in the well-known four-triangle longest-edge (4TLE) partition. This sequence generalizes the 
classical Fibonacci sequence [1] [2]. 

1.1. Definition 
For any positive real number k , the k -Fibonacci sequence, say { },k n n N

F
∈

 is defined recurrently by 
, 1 , , 1k n k n k nF kF F+ −= +  for 1n ≥  with initial conditions ,0 ,10,  1k kF F= = . 
From this definition, the polynomial expression of the first k -Fibonacci numbers are presented in Table 

1: 
If 1k = , the classical Fibonacci sequence { }0,1,1,2,3,5,8,  appears and if 2k = , the 2-Fibonacci se- 
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Table 1. Polynomial expression of the first k-Fibonacci numbers.                                                  
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k

k

k

k
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F k

F k

F k k

F k k

=

=

= +

= +

= + +

  
 
quence is the classical Pell sequence { }0,1,2,5,12,29,70, .  

1.2. Metallic Ratios 
The characteristic equation of the recurrence equation of the definition of the k -Fibonacci numbers is 

2 1 0r kr− − =  and its solutions are 
2 4

2k
k kσ + +

=  and 
2 4

2k
k kσ − +′ = . 

As particulars cases [3]: 

1) If 1k = , then 1
1 5

2
σ +

=  is known as Golden Ratio and it is expressed as Φ . 

2) If 2k = , then 2 1 2σ = +  is known as Silver Ratio. 

3) If 3k = , it is 3
3 13

2
σ +

=  and it is known as Bronze Ratio. 

From now on, we will represent the classical Fibonacci numbers as nF  instead of 1,nF . 

Binet identity takes the form [1] 
( )

,

nn
k k

k n
k k

F
σ σ
σ σ

′−
=

′−
 with 2 4k k kσ σ ′− = + . 

1.3. Theorem 1 
Power k

nσ  for 1n ≥  is related to kσ  by mean of the formula  

, , 1
n
k k n k k nF Fσ σ −= +                                       (1) 

Proof. By induction. For 1n = , it is obvious. Let us suppose this formula is true until: , , 1
n
k k n k k nF Fσ σ −= + . 

Then, and taking into account 2 1 0k kkσ σ− − = : 

( )1
, , 1

, , 1 , , 1 ,

n n
k k k k n k k n k

k n k k n k k n k n k k n

F F

kF F F F F

σ σ σ σ σ

σ σ σ

+
−

− +

= ⋅ = +

= + + = +
 

Obviously, the formulas found in [1] [2] can be applied to any k -Fibonacci sequence. For example, the Iden- 
tities of Binet, Catalan, Simson, and D’Ocagne; the generating function; the limit of the ratio of two terms of the 
sequence, the sum of first “ n ” terms, etc. However, we will see that some k -Fibonacci sequences are related to 
a first k -Fibonacci sequence so that we will can express the terms of a k -Fibonacci sequence according to 
some terms of an initial k -Fibonacci sequence. And the formulas will be applicable to any sequence of a given 
set of k -Fibonacci sequences. For instance, we will express the terms of the 4-Fibonacci sequence in function 
of some terms of the classical Fibonacci sequence and these formulas will be applied to other k -Fibo-naccise- 
quences, as for example if 11,29,76,199,k =   

2. ′k -Fibonacci Sequences Related to the k -Fibonacci Sequence 
In this section, we try to find the relationships that can exist between the values of k ′  and the coefficients “ a ” 
and “ b ” such that k ka bσ σ′ = + . 

We can write this last equation as 
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( )

( ) ( )

2 2
2 2

2 2 2 2 2 2

4 4 4 2 4
2 2

2

4 4 4 4

k
k k k ka b k k a b k k

k a bk

k b k k b k

σ
′ ′+ + + +′ ′ ′= = + → + + = + + +

′ = +→  ′ ′+ = + → + − =

 

because k ′∈ . 
Main problem is to solve the quadratic Diophantine equation ( )2 2 24 4k b k ′+ − =  for “ k ’” and “ b ” for 

each value of “ k ”. 

2.1. Theorem 2 
The positive characteristic root 2 1n

kbσ +  generates new k -Fibonacci sequences, for 1, 2n = , Proof. From 
Formula (1) it is obtained 2 1

,2 ,2 1
n

k k n k n kF Fσ σ+
+= + . 

For 1n =  it is 

( ) ( ) ( )( )
( ) ( )( ) ( )2

2
3 2 2 2 2

,2 ,3

22 2
3

4 11 3 1 4
2 2

1 3 3 4
2

k k k k

k k

k kF F k k k k k k

k k k k

σ σ

σ
+

+ +
= + = + + = + + + +

 
= + + + + = 

 

 

Then, 3
kσ  generates the ( )2 3k k + -Fibonacci sequence. 

In the same way, we can prove that 5
kσ  generates the ( )4 25 5k k k+ + -Fibonacci sequence, 7

kσ  gene- 
rates the ( )6 4 27 14 7k k k k+ + + -Fibonacci sequence, etc. Particularly, ( )  1kΦ =  generates the sequences 

1 4 11 29, , , ,F F F F  . 

2.2. Theorem 3 
For 2n ≥  it is verified  

( )2 1 2 2 1 2 32n n n
k k kkσ σ σ+ − −= + −                              (2) 

Proof. Taking into account both Table 1 and Formula (1), Right Hand Side (RHS) of Equation (2) is  

( ) ( )( ) ( )( )( ) ( ) ( )( )
( )

2 2 2 3 2 2 3 3 2 2 3

2 3 4 2 3 2 1
,4 ,3

2 1 2 1 1 2 1n n n
k k k k k k

n n n
k k k k k k k

RHS k k k k k k

F F

σ σ σ σ σ σ

σ σ σ σ σ

− − −

− − +

= + − = + + − = + + +

= + = =
 

It is worthy of note that Equation (2) is similar to the relationship between the elements of the k -Fibonacci 
sequence ( )2

, 2 , , 22k n k n k nF k F F+ −= + − . Other versions of this equation will appear in this paper. Moreover, if 
we are looking for the characteristic roots of this equation, then we find 

( )
22 4 2 2

2 2
2

12 4 42 1 0 1
2 2 1

k k

k k

kk k k k kr k r r k
k

σ σ

σ σ

 + =+ ± + ± +  − + + = → = = + =  
′ ′+ =  

 

And , 2k nF +  will be function of 2
kσ  with the coefficients depending of initial conditions for 0n =  and 

1n = . 

2.3. k-Fibonacci Sequences Related to an Initial f-Fibonacci Sequence 
From two previous theorems, the k -Fibonacci sequences related to an initial k -Fibonacci sequence have as 
the positive characteristic root 2 1n

kσ
+  or that is the same, the sequence of characteristic roots 

{ } { }2 1 3 5, , ,n
k k k kσ σ σ σ+ =   generates the k -Fibonacci sequences related to the first k -Fibonacci sequence. 
The values of the parameter of these sequences are 

{ } ( ) ( ) ( ){ }2 4 2 5 4 2, 3 , 5 5 , 7 14 7 ,nk k k k k k k k k k k= + + + + + + 
 and Equation (2) for this sequence takes the 
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similar form ( )2
1 12n n nk k k k+ −= + − . 

Next we present the first few values of the parameter nk : 

1
3

2
5 3

3
7 5 3

4
9 7 5 3

5

a)  

b)  3

c)  5 5

d)  7 14 7

e)  9 27 30 9

k k

k k k

k k k k

k k k k k

k k k k k k

=

= +

= + +

= + + +

= + + + +

 

But these polynomials verify the relationship  

,2 ,2 2n k n k nk F F −= +                                        (3) 

where ,k nF  are expressed in Table 1. 
The coefficients of these polynomials generate the triangle in Table 2: 
Last column is the sum by row of the coefficients, and it is a bisection of the classical Lucas sequence 

{ }2,1,3,4,7,11,18,29,47,  and we will see again in this paper. 

If ,r ca  is a term of this table, then , 1, 1 1 ,
0

c

r c r c r j c j
j

a a a− − − − −
=

= +∑ . For instance, 1 5 14 30+ + +  of the second  

diagonal plus 27 of the row 5 is the 77 of the row 6. 
All the first diagonal sequences are listed in [4], from now on OEIS, but the unique antidiagonal sequences 

listed in OEIS are: 

{ }
{ } { }
{ }
{ }

a) 1,1,1,1,1, : 000012

b) 3,5,7,9,11, : 005408 1

c) 5,14,27,44,65, : 014106

d) 7,30,77,156,275, : 030440

A

A

A

A

−









 

From this study, it is easy to find the values of “ b ” mentioned at the beginning of this section, because 
2

,2 12

4
4

n
n k n

k
b F

k −

+
= =

+
. 

Sequence { }nb  also verifies the recurrence law given in Equation (2): ( )2
1 12n n nb k b b+ −= + − . 

In this case, the triangle of coefficients is in Table 3 and the formto generate these numbers is the same as in 
table of nk . This triangle is formed by the odd rows of 2-Pascal triangle of [2]. The sequence of the last column 
is a bisection of the classical Fibonacci sequence { }1,1, 2,3,5,8,13, 21, . 

First diagonal sequences and the antidiagonal sequences are listed in OEIS.  

Finally, for the values of na  is enough to do 
2

n n
n

k b k
a

−
=  and therefore, applying Formula (3) and the de- 

finition of the k -Fibonacci numbers, ,2 2$n k na F −= . 
 
Table 2. Triangle of the coefficients of kn.                                                                    

1      1      1 

2     1  3     4 

3    1  5  5    11 

4   1  7  14  7   29 

5  1  9  27  30  9  76 

6 1  11  44  77  55  11 199 
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In this case, the triangle of the coefficients of the expressions of na  is in Table 4. 
Last column is the other bisection of the classical Fibonacci sequence. 
The diagonal sequence { }1, ,n   indicates the number of terms in the expansion of ( )1 2

j
nx x x+ + +  and 

it is ,

1
j n

n j
a

j
+ − 

=  
 

. 

In this table, it is verified: 

a) , , 1 1, 1
0

r

r c r j c j r c
j

a a a− − − − −
=

= +∑  

b) 2 1 2 0,1, 1n na a+ − = −∑ ∑ , if ( )0,1,2  mod 3n ≡ , respectively. 
c) The diagonal sequences are listed in OEIS. 

d) The elements of rth  diagonal sequence, for 0,1, 2,r = 
 verify the relation ,

2
2 1n r

n r
a

r
+ 

=  + 
 

Then we will apply the results to the k -Fibonacci sequences, for 1, 2,3, 4k = . 

3. k -Fibonacci Sequences Related to the Classical Fibonacci Sequence 
In this section we try to find the relations that could exist between the values of “ k ” and “ a ” and “ b ” in order 
that the positive characteristic root kσ  is k a bσ = + Φ . 

In this case, Equation (2) takes the form 
2 2 2 2

2

4 5 5 4

k a b
k b b k
= +


+ = → − =

. 

3.1. Integer Solutions of Equation 2 25 4b k− =  
The integer solutions of Equation 2 25 4b k− =  are 2 1 2 1,   n n n nb F k L+ += = , being nL  the classical Lucas se- 
quence { }2,1,3,4,7,11,18,29,47, . 

Proof. Applying Binnet Identity, and taking into account ( )1 1
nn

n n n nL F F L −
+ −= + → = Φ + −Φ , it is 

( )( ) ( )

( )( )

22 1 2 12 2 1 4 2 4 2 4 2 4 2

22 12 1 2
2 1

5 4 4 2 1 4 2n nn n n n n

nn
n

b

L

− − ++ + − − + − −

− −+
+

− = Φ − −Φ − = Φ − − +Φ − = Φ − +Φ

= Φ + −Φ =
 

 
Table 3. Triangle of the coefficients of bn.                                                                     

1       1      1 

2      1  1     2 

3     1  3  1    5 

4    1  5  6  1   13 

5   1  7  15  10  1  34 

6  1  9  28  35  15  1 89 

 
Table 4. Triangle of the coefficients of an.                                                                                  

1      1      1 

2     1  2     3 

3    1  4  3    8 

4   1  6  10  4   21 

5  1  8  21  20  5  55 

6 1  10  36  56  35  6 144 
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Consequently, the values of the parameter “ k ” can also be expressed as 2 2 2 2 1n n n nk F F L+ += + = . 

Integer solutions of this equation are expressed in Table 5, where 1
1 5

2
σ +

= = Φ  is the Golden Ratio. 

3.2. On the Sequences { }na , { }nb , and { }nk  
We will show some properties of the sequences of Table 5. 
 The sequence of values of “ a ”, { }0,1,3,8,21, , 001906A  is the sequence { }2nF  of even Fibonacci num- 

bers, and is known as Bisection of Fibonacci sequence. Its elements, na , have the property that 25 4na +  are 
perfect squares and these numbers form the sequence { }2,3,7,18,47, , 005248A  that is the Bisection of 
the classical Lucas sequence. The sequence of sums of two consecutive terms of this sequence is 5 times the 
following sequence. 

 The sequence of values of “ b ”, { }1,2,5,13,34, , 001519A  is the sequence of odd Fibonacci numbers, 
{ }2 1nF + , and is also known as Bisection of Fibonacci sequence. The sequence of sums of two consecutive 
terms of this sequence is the preceding sequence { }A005248 2− . 

 The sequence of values of “ k ”, { }1,4,11,29,76, , 002878A  is the sequence of odd Lucas numbers, or, 
that is the same, is the sum of two even consecutive Fibonacci numbers, { }2 2 2n nF F ++  and is known as 
Bisection Lucas Sequence. The sequence of sums of two consecutive terms of this sequence is 5 times the 
preceding sequence { }A001906 0− . 

 All these sequences verify the recurrence law given in Equation (2), 1 13n n np p p+ −= − . 
As a consequence of this situation, if we represent as { }1,n n

σ
∈

 the sequence of values of σ , then, Equation 
(2) is the relation 1. 2 1 2n n nF Fσ σ+= + . 

3.3. Relationships between the k -Fibonacci Sequences If 2 1nk L +=  and the Classical  
Fibonacci Sequence 

Applying Subsection 2.3 when 1k =  in Equation (3), the sequence { } { }3 5 2 1, , , n

n

+

∈
Φ Φ Φ = Φ




 is the se- 

quence { }1 4 11 29, , , ,σ σ σ σ  . 
Consequently: 

( ) ( ) { }

( ) ( ) { }

( ) ( ) { }

33
4 4 3

4, 4
3

55
11 11 5

11, 11
5

77
29 29 7

29, 29
7

1 0,2,8,34,144,
220 2 5

1 0,5,55,610,
5125 5 5

1 0,13,377,10946,
13845 13 5

n nn n
n

n

n nn n
n

n

n nn n
n

n

F
F F

F

F
F F

F

F
F F

F

σ σ

σ σ

σ σ

− −

− −

− −

− − Φ − −Φ
= = = → =

− − Φ − −Φ
= = = → =

− − Φ − −Φ
= = = → =







 

4. k -Fibonacci Sequences Related with the Pell Sequence 
Repeating the previous process, we can solve the Diophantine equation 2 28 4b k− =  and being 

2 2k a b= + . 
 
Table 5. Integer solutions of the Diophantine equation 5b2 – k2 = 4.                                                   

kn = L2n+1 bn = F2n+1 an = F2n σ1,n 

1 1 0 1 10 1σ σ= +  

4 2 1 4 11 2σ σ= +  

11 5 3 11 13 5σ σ= +  

29 13 8 29 18 13σ σ= +  

76 34 21 76 121 34σ σ= +  
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The values obtained are showed in Table 6: 

4.1. On These Quences { }na , { }nb , and { }nk . 
We will show some properties of the sequences of Table 4. 
 { } { }0,2,12,70,408, , 001542na A=   is the sequence of even Pell numbers. Its elements have the property  

that 28 4na + are perfect squares, being { } { }28 4 2,6,34,198,1154, , 003499na A+ =  . The sequence of sums of 

two consecutive terms of this sequence is the sequence { }8 nb .  
 { } { }1,5,29,169,985, , 001653nb A=   is the sequence of odd Pell numbers. Its elements have the proper- 

ty that 22 1np −  are perfect squares. 
 { } { }2,14,82,478,2786, , 077444nk A=  . Its elements are the Pell-Lucas numbers, 2 2 2 2 1n n n nk P P LP+ += + = . 

This sequence can be obtained by summing up two consecutive terms of the sequence A001542. 
 Much more interesting is the sequence obtained by dividing by 2: { }1,7,41,239,1393, , 002315A . This 

sequence has been studied in [5] and has been determined as the values whose square coincide with the sum 
of the 4 1n +  first Pell numbers, 2

4 1
0

n

j n
j

S a+
=

=∑  and it is known as the Newman-Shanks-Williams Primes. It 
verifies the recurrence law 2, 1 2, 2. 16n n na a a+ −= −  with initial conditions 2,1 1a =  and 2,2 7a = . The se- 
quence of sums of two consecutive terms of this sequence is 8 times { }6,35,204,1189, , 001109A . Its ele- 
ments verify the property 28 1ns +  are perfect squares, { } { }17,99,577, , 001541 1,3A − . 

 All these sequences verify the recurrence law (2), 1 16n n np p p+ −= − . 
As in the preceding section, if we represent the sequence of values of “σ ” as { }2,nσ , then these terms verify 

the recurrence relation 2, 2 1 2 2n n nP Pσ σ+= + , being 2 1 2σ = +  the Silver Ratio. 

4.2. Relationships between the k -Fibonacci Sequences for , , , ,2 14 82 478k =  and the 
Pell Sequence 

Taking into account 2
2 22 1 0σ σ− − = , it is easy to prove { }2 14 82 478, , , ,σ σ σ σ   is the geometric sequence 

{ } { }3 5 2 1
2 2 2 2, , , n

n
σ σ σ σ +

∈
=




. 

Consequently: 

( ) ( ) { }

( ) ( ) { }

( )

33
2,314 14 2 2 3

14, 14
2,3 3

55
2,582 82 2 2 5

82, 82
2,5 5

2,7478 478 7
478, 478

2,7 7

1 0,5,70,985,
5200 5 8

1 0,29,2378,195025,
291682 29 8

1 0
169228488

n nn n
n n

n

n nn n
n n

n

nn
n n

n

F P
F F

F P

F P
F F

F P

F P
F F

F P

σ σ σ σ

σ σ σ σ

σ σ

− −

− −

−

− − − −
= = = = → =

− − − −
= = = = → =

− −
= = = → =





{ },169,80782,
 

5. k -Fibonacci Sequences Related to the 3-Fibonacci Sequence 
Repeating the previous process, we can solve the Diophantine equation 2 213 4b k− =  being 2 3k a b= + . 

The values obtained are showed in Table 7. 
 
Table 6. Integer solutions of the Diophantine equation 8b2 – k2 = 4.                                                    

kn = P2n + P2n+2 bn = P2n+1 an = P2n σ2,n 

2 1 0 2 20 1σ σ= +  

14 5 2 14 22 5σ σ= +  

82 29 12 82 212 29σ σ= +  

478 169 70 478 270 169σ σ= +  
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5.1. On These Quences { }na , { }nb , and { }nk  
We will show some properties of the sequences of Table 7. 
 { } { }0,3,33,360,3927, , 075835na A=  , is the sequence of even 3-Fibonacci numbers. Its elements have the 

property that 213 4na +  are perfect squares, { }2,11,119,1298, , 057076A . The sequence of sums of two 
consecutive terms is 13 times the following sequence. 

 { } { }1,10,109,1189, , 078922nb A=  , is the sequence of the odd 3-Fibonacci numbers. 
 { } { }3,36,393,4287,46764,nk =   is the sequence of the odd 3-Lucas numbers 

3,2 3,2 2 3,2 1n n n nk F F L+ += + = . This sequence can also be expressed as 3 times the sequence 
{ }1,12,131,1429,... , 097783A . 

 All these sequences verify the recurrence law (Equation (2)), 1 111n n np p p+ −= − . 

 The sequence { }3,nσ  verify the relationship 3, 3,2 1 3 3,2n n nF Fσ σ+= +  being 3
3 13

2
σ +

=  the Bronze Ratio [3]. 

5.2. Relationships between the k–Fibonacci Sequences for , , , ,3 36 393 4287k =  and the 
3-Fibonacci Sequence 

Taking into account 2
3 33 1 0σ σ− − = , it is easy to prove { }3 36 393 4287, , , ,σ σ σ σ   is the geometric sequence 

{ } { }3 5 2 1
3 3 3 3, , , n

n
σ σ σ σ +

∈
=




. 

Consequently: 

( ) ( ) { }

( ) ( ) { }

{ }

33
3,336 36 3 3

36, 36
3,3

55
3,5393 393 3 3

393, 393
3,5

3,7
4287, 4287

3,3

1 0,10,360,12970,
101300 10 13

1 0,109,11881,
109154453 109 13

1 0,1189,5097243,
1189

n nn n
n

n

n nn n
n

n

n
n

F
F F

F

F
F F

F
F

F F
F

σ σ σ σ

σ σ σ σ

− −

− −

− − −
= = = → =

− − −
= = = → =

= → =







 

6. Conclusions 
There are infinite k -Fibonacci sequences related to an initial k -Fibonacci sequence for a fixed value of “ k ”. 
Between these sequences, the following relations are verified: 
1) The relationship ,k n ka bσ σ= +  is verified if and only if both following relations happen: 

Relationship between “ a ”, “ b ”, and “ k ”: 2nk a kb= +  

Diophantine equation: ( )2 2 24 4k b k+ − =  
2) Relationship between the positive characteristic root ,k nσ  and the k –Fibonacci numbers:  

1
, 1 ,

n
k k n k k nF Fσ σ+

+= +  
3) Second sequence related to the k –Fibonacci sequence: ( )2 3k k k′ = +  
4) Two first values of “ b ” are 1 ,11 kb F= =  and 2

2 ,31 kb k F= + =  
5) Two first values of “ a ” are 0 ,00 ka F= =  and 1 ,2ka k F= =  
6) Recurrence law for the sequences { } { } { }, ,  and n n na b k : ( )2

1 12n n np k p p+ −= + −  
 
Table 7. Integer solutions of the Diophantine equation 13 b2 – k2 = 4.                                                    

kn bn = F3,2n+1 an = F3,2n σ3,n 

3 1 0 3 30 1σ σ= +  

36 10 3 36 33 10σ σ= +  

393 109 33 393 333 109σ σ= +  

4287 1189 360 4287 3360 1189σ σ= +  
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It is worthy of remarking the fact the last sequence { }2 1n
k n

σ +

∈
 indicates the nk -Fibonacci sequence related to  

the initial k -Fibonacci sequence { }1 2 3 4, , , ,F F F F 

 generated by the respective positive characteristic root, 
2 1n
kσ

+ . From this sequence, we can obtain the sequence of k -Fibonacci sequences related to nF : taking into 
account the positive characteristic root of this sequence is 2 1n

kσ
+ , the sequence of r -Fibonacci sequences re- 

lated to this has as positive characteristic root, ( )2 1r n
kσ

+  for 1r ≥ . For instance: from the sequence of k -Fibon- 
acci sequences related with the classical Fibonacci sequence (see Section 2), 1 4 11 29, 76, , , ,F F F F F 

 we can ob- 
tain the sequences of k -Fibonacci sequences related to  
 4-Fibonacci sequence: { }4 76 1364 24476, . , ,F F F F   

 11-Fibonacci sequence: { }11 1364, ,F F   

 29-Fibonacci sequence: { }29 24476, ,F F  . 
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