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Abstract 

Let ω  be a A∞  Muckenhoupt weight. In this paper we get the estimate of rearrangement fω
∗  in 

homogeneous space that is ( ) ( ) ( ) ( ) ( )#2 2 2 0f t M f t f t tω λ ωω

∗∗ ∗≤ + < < ∞ . The similar estimate is ob-

tained only on space of nR . 
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1. Introduction 
We first recall some basic notions about the homogeneous space and the weights we are going to use. 

Definition 1 [1]. (Homogeneous space X). Let X be a set. A function d: [ )0,X X× → ∞  is called a quasi- 
distance on X if the following conditions are satisfied: 

1) for every x and y in X, ( ), 0d x y ≥ , and ( ), 0d x y =  if and only if x = y, 
2) for every x and y in X, ( ) ( ), ,d x y d y x= , 
3) there exists a constant K such that ( ) ( ) ( )( ), , ,d x y K d x z d z y≤ +  for every x, y and z in X. 

Let μ be a positive measure on the σ -algebra of subsets of X generated by the d-balls ( ) ( ){ }, : ,B x r y d x y r= < , 
with x X∈  and r > 0. Then a structure (X, d, μ), with d and μ as above, is called a space of homogeneous type. 

We say that (X, d, μ) is a space of homogeneous type regular in measure if μ is regular, that is for every meas-
urable set E, given 0ε > , there exists an open set G such that E G⊂  and ( )G Eµ ε− < . In what follows we 
always assume that the space (X, d, μ) is regular in measure. 

A non-negative locally integrable on homogeneous space X function ( )xω  is called a weight. With any  
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weight function we call the measure ( ) ( )d
E

E x xω ω= ∫ . Given a measurable function f on homogeneous space  

X, define its non-increasing rearrangement *fω  with respect to a weight ω  similar to (see [1], p. 32). 

( )
( )

( ) ( )( )* sup inf 0 .n

E t
f t f x t Rω

ω
ω

=
= < <                              (1) 

Definition 2 ( A∞  weight) [2]. A weight ω  is in Muckenhoupt’s class A∞  respect to μ if there are positive 
constants C and ε  such that the inequality: 

( )
( )

( )
( )

E E
C

B B

ε
ω µ
ω µ

 
≤   

 
 

holds for every ball B and every measurable set E B⊂ . The infimum of such C will be denoted by [ ]Aω ∞ . 

2. Basic Lemmas 
Denote doubling condition D, a weight Dω∈  if and only if for any ball holds ( ) ( )22B C Bω ω≤ . Clearly if 

Aω ∞∈  then Dω∈ . 
Lemma 1 [3]. Let (X, d, μ) be a space of homogeneous type. Let { }:Bα αΒ = ∈Γ  be a family of balls in X 

such that E Bαα∈Γ
=


 is measurable and ( )Eµ < ∞ . Then there exists a disjoint sequence ( ){ },i iB x r ⊂ Β , 

possibly finite, such that ( )1 ,i iiE B x Cr
=

⊂


 for some constant C. Moreover, every B∈Β  is contained in  
some ( ),i iB x Cr . 

Lemma 2. (C-Z decomposition) [4] [5]. Let (X, d, μ) be a space of homogeneous type such that the open balls 
are open sets. Let f be a nonnegative integrable function defined on X, then for every ( )Xm fλ ≥  ( ( ) 0Xm f =  
if ( )Xω = ∞ ), there exist a sequence of disjoint balls ( ),i i iB B x r=  such that if ( ),i i iB B x Cr= , C is the 
constant in Lemma [1] then 

1) ( )

( )
iBB f

m m fλ≤ < , 
2) ( )B f

m λ≤  for every ball B centered at \ iix X B∈


, holds ( )Bm f λ≤ . 

Lemma 3. Dω∈  and 0 1λ< < , If X is a ball and E X⊂  is an arbitrary measurable set of positive meas-
ure with ( )Eω  ( )Xλω , there exist mutually disjoint balls { }iB X⊂  such that 

Bi cover E and 

( ) ( ) ( ) ( ).i i i iE B B S E B Bω ω ω ω> ≥ 
 

Proof: If  

( ) ( ) ( ) ( ) ( )1 d .
X

mx f f x x x
X

λ ω µ
ω

≥ = ∫  

Letting ( ) ( )f x E xχ= , then  



( ) ( )
i iBm E mB Eχ λ χ≤ <  

then 

( ) ( ) ( ) ( ).i i i iE B B S E B Bω ω ω ω> ≥ 
 

For every ball B centered at \ i ix X U B∈  

( )Bm Eχ λ≤  

i.e. 

( ) ( ) ( ) ( )1 d
B

E x x u x
B

χ ω λ
ω

≤∫ , 

( ) ( ) .E B Bω ω λ≤  
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If 

iiE B⊂


 there exist 0x E∈  and 

0 ix X B∈ − , now exists 0r  such that ( )0 0,B x r E⊂ , then  

( )( )
( )( )
0 0

0 0

,
1

,

B x r E

B x r

ω
λ

ω
= ≤



, 

this is a contradiction. 
Then 

i iE U B⊂  and  

( ) ( ) ( ) ( ),i i i iB E B E B Bλω ω ω λω< ≤ 
. 

3. Inequalities Conclusion 
Theorem 1. ( )1

0, 0, ,A f f L Xω ∞∈ ≥ ∈  then ( ) ( ) ( ) ( )
** # *2 2 2f t M f t f tω λω ωω

≤ +  ( )( )10 5t X Cω< < . 
Proof: The proof is similar to Lerner [5]-[7], 

( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( )
** *inf 1 .BBx B

C f C f B f C B f B
χ ωω ω

ω λω χ λ ω
∈

≤ − + ≤ − + −  

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )( )* ** *2 1 .B B B Bf B f C B C f C B f B
ω ωω ω

χ λω χ λω χ λω χ λ ω≤ − + ≤ − + −  

From [6], We get two collections of balls { }: with , 2,s
iB i N s λ λ∈ =  , then 

( ) ( ) ( ) ( ).s s s s
i i i iE B B S E B Bω ω ω ω> ≥ 

 
 

Fix X, with ( )
2

10
5

t X
C

ω< ≤ , 
2

1 ,
5C

λ <  for all E, ( )E tω =  there is ( ) ( )
2

1
5

E X
C

ω ω≤ , then exist dis- 

joint balls { }s
iB X⊂ , hold 

( ) ( ) ( ) ( ), .s s s s
i i i iE B s B E B s Bω ω ω ω> >   

Which contains 

( ) ( ) ( ) ( )2 2

2 2

1 1, .
10 5i i i iE B B E B B

C C
λ λ λ λω ω ω ω> >   

Then 

( ) ( ) ( )2 2 2
1 5 5 5 .i i ii i iB E B C E B C E C tλ λ λω ω ω ω
λ

≥ ≥ = =∑ ∑ ∑   

Select from iBλ  the balls iB′ , i F∈  which are not contained in Ω ,  
( ) ( )( ){ }# #: 2x X M f x M f tλω λωΩ = ∈ > . That is for all , c

ii F B φ′∈ Ω ≠ . There exist 0 0, ,c
ix B x′∈ ∈Ω  then 

( ) ( ) ( ) ( )*# # #
0inf 2 .

ix B
M f x M f x M f tλω λω λω ω′∈

≤ ≤  

Note that ( ) 2 ,tω Ω ≤  
( ) ( ) ( ) 5 3 2 .i ii iB B t t tω ω ω′ ≥ − Ω ≥ − =∑ ∑  

Since  
 ( ) ( )( ) ( )( ) ( ) .i i i i i F i i F i i F i i F iU B U B U B U B U B U B′∈ ∈ ∈ ∈−Ω = −Ω = −Ω −Ω = −Ω ⊂  

Then 

( ) ( )2 25i ii iC B B C tω ω≥ ≥∑ ∑ , 

i.e. 

( ) 5ii B tω ≥∑ . 
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( ) ( ) ( )* * *

2 2

1 1inf 1 1 3 2 .
5 5i ii

f B B f t f t
C Cω ωω

χ ω
    

′ ′⋅ − ≤ − ≤    
    

 

We have  

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )

*

** # *
2

inf inf inf inf

inf 5 2 2 2 .

i
i ix E i x E B i

i ii

f x f x f B B E

f B B C M f t f t

ω

λω ωω ω

χ ω

χ ω

′∈ ∈
′ ′≤ ≤

′ ′≤ ≤ +





 

Taking supremum over all E X⊂  with ( )E tω = , we get the argument . 
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