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Abstract 
An innovative use of spatial sampling designs is here presented. Sampling methods which consider 
spatial locations of statistical units are already used in agricultural and environmental contexts, 
while they have never been exploited for establishment surveys. However, the rapidly increasing 
availability of georeferenced information about business units makes that possible. In business 
studies, it may indeed be important to take into account the presence of spatial autocorrelation or 
spatial trends in the variables of interest, in order to have more precise and efficient estimates. 
The opportunity of using the most innovative spatial sampling designs in business surveys, in or-
der to produce samples that are well spread in space, is here tested by means of Monte Carlo ex-
periments. For all designs, the Horvitz-Thompson estimator of the population total is used both 
with equal and unequal inclusion probabilities. The efficiency of sampling designs is evaluated in 
terms of relative RMSE and efficiency gain compared with designs ignoring the spatial information. 
Furthermore, an evaluation of spatially balancing samples is also conducted. 
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1. Introduction 
An important fact has recently started to occur in the context of business surveys. More and more official na-
tional business registers in the world have been georeferenced in their entirety. That is, they record the precise 
spatial coordinates (in terms of longitude and latitude) of each single business unit. For example, to name a few, 
one should mention the US Census Bureau’s Longitudinal Business Database (LBD), the OFS Suisse Geo Stat 
STATENT and the Italian Statistical Archive of Active Enterprises (ASIA). This detailed kind of spatial infor-

http://www.scirp.org/journal/ojs
http://dx.doi.org/10.4236/ojs.2014.45034
http://dx.doi.org/10.4236/ojs.2014.45034
http://www.scirp.org/
mailto:mariamichela.dickson@uniroma1.it
http://creativecommons.org/licenses/by/4.0/


M. M. Dickson et al. 
 

 
346 

mation has never been exploited in establishment surveys in order to select spatially balanced samples of firms. 
Literature on sampling, since the seminal paper by Arbia [1], has recognized that spatial heterogeneity in the 

population data and spatial autocorrelation of the target variables, if not properly taken into account, may nega-
tively affect the efficiency and precision of the samples estimates. More recently, a stream of literature proposed 
different sampling procedures which incorporate the spatial location of units into the design and assure that the 
selected samples are spatially balanced, which are well spread over the spatial population. In the context of en-
vironmental data, it has also been proved that spatially balanced samples lead to more efficient estimates than 
samples selected without considering the spatial aspects. 

It is argued that, even in the context of establishment surveys, the feature of spatial dependence is relevant as 
firms located near in space are more similar than those located far apart. Therefore, it is reasonably expected that 
spatial sampling designs should perform better than the non-spatial ones, even when conducting business sur-
veys. In this paper, it is aimed for verifying this hypothesis by means of simulations. In particular, referring to an 
observed population of business units, the purpose is to measure the performance of spatial sampling designs for 
firm data. Furthermore, it is also aimed for individuating which is the most proper spatial sampling design, 
amongst those proposed in the literature, to conduct business surveys. In particular, the population of firms has 
been defined from the Italian ASIA archive in which the target variable is the firm’s sales and the goal is to es-
timate the population total. The different spatial sampling designs under comparison will be the Spatially Corre-
lated Poisson Sampling method (SCPS) by Grafström [2], the Local Pivotal methods (LPM1 and LPM2) by 
Grafström et al. [3], the Balanced Sampling (BS) by Deville and Tillé [4] and the Doubly Balanced Spatial 
Sampling (DBSS) by Grafström and Tillé [5]. For all designs, the Horvitz-Thompson estimator of the population 
total will be used both with equal and unequal inclusion probabilities proportional to the number of employees 
of business units. The performance of the designs will be evaluated in terms of efficiency of the HT estimator. 

The structure of the paper is the following. In Section 2, the spatial sampling designs that have been tested on 
the firm data have been briefly introduced. Section 3 contains the results of the simulation study. Finally, Sec-
tion 4 contains some conclusions and directions for further studies in the field. 

2. Spatial Sampling Designs 
In the last three decades, spatial sampling field has been involved in a flourishing of proposals to incorporate 
spatial information in sampling designs. For example, very ample is literature on the exclusion of contiguous 
units in selecting samples (Hedayat et al., [6] and [7]; Wright and Stufken, [8]). Moreover, another field of re-
search has been concentrating his effort in study how is possible to guide selection of samples giving geographic 
coordinates as part of available information on the study population. The most important turning point is defini-
tively attributable to Stevens and Olsen [9], which proposed an innovative method to select spatial samples.  

The Generalized Random-Tessellation Stratified method (GRTS), proposed by Stevens and Olsen [9], essen-
tially consists on assigning to sampling units an order according to a recursive hierarchical randomization 
process which preserves the spatial relationships of the sample units. Then, the sampling units are arranged in 
order and mapped from two- or multi-dimensional space in one-dimensional space, through a quadrant recursive 
function (Mark, [10]). The samples are selected in one dimension, using systematic πps sampling and then 
mapped back in the original two- or multi-dimension, preserving the spatial order. GRTS design ensures that 
drawn samples are well spread over the space. 

The GRTS has been the most utilized probability-based method to give spatially-balanced sample for data on 
a linear, areal or not contiguous space. GRTS supports sampling with unequal selection probabilities and pro-
duces samples that are much more evenly distributed over space than an ordinary unequal probability design. On 
the other hand, the mapping used in GRTS is not perfect because it does not exclude the possibility that units 
that are close in distance in the original complex space may be mapped rather far apart in the one dimensional 
space where the sampling is made. 

GRTS has been considered as the first success in spatial sampling. Nevertheless, it could result obsolete in 
terms of time of computing and implementation if compared with new methods exposed in prosecution. Due to 
these reasons, it is not implemented in simulation in Section 4.  

2.1. Spatially Correlated Poisson Sampling Method 
The Spatially Correlated Poisson Sampling method (SCPS), proposed by Grafström [2], allows to overcome the 
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problems related to the mapping procedure of GRTS. The SCPS is a modification of Correlated Poisson Sam-
pling (CPS): a list sequential method for real time sampling which provides the selection of units with unequal 
inclusion probabilities (Bondesson and Thorburn, [11]). The CPS visits units one by one and give to every units 
a definite inclusion probability. The inclusion probability assigned to each unit is then updated recursively, 
based on the previous units sampling outcome and in accordance to a specific updating rule characterized by 
some weights that control how the inclusion probabilities for a unit should be affected by the sampling outcome 
for the previous units (Bondesson and Thorburn, [11]).  

It is possible to define the vector of inclusion indicators of a random sample x  as ( )1 2, , , NI I I= I  for a 
population of N units. Given that, the probability function for CPS can be written as 

( ) ( )( ) ( )( ) { }
11 1

1
Pr 1 , 0,1 ,

i iN x x Ni i
i i

i
π π

−− −

=

= = − ∈∏I x x  

where ( )1i
iπ
−  is a function of the first 1i −  components of the vector x  (Grafström, [12]). 

The SCPS design is a modification of CPS, achieved by the introduction of a known distance function 
( ),d i j  between units in the updating rule. It essentially consists on a set of strategies for choosing weights for 

CPS. The distance function may be the Euclidean distance or another general distance measure. Grafström [2] 
proposed maximal weights and Gaussian preliminary weights as strategies for choosing the weights. If the order 
of units in the list is changed, for maximal weights and Gaussian preliminary weights, the second order inclusion 
probabilities may be changed. Differently from GRTS, the order of the units is not relevant since the weights 
depend on distances amongst units. The samples drawn will have sample locations well spread over the popula-
tion, because the efficiency of the method is independent of the ordering of units. The algorithm visit units (one 
by one and all at once) and decide whether or not the unit should be sampled. The final intent is to create corre-
lations between the inclusion indicators. In presence of negative correlation, units that are close in distance rare-
ly appear simultaneously in the sample.  

2.2. Local Pivotal Methods 
The Local Pivotal methods (LPM1 and LPM2), proposed by Grafström et al. [3], are a spatial extension of the 
Simple Pivotal method (Deville and Tillé, [13]). LPM methods draw samples considering distances between 
units and in accordance to the updating rule of the Pivotal method, for two nearby units at each step (see for de-
tails, Deville and Tillé, [13]). To choose the two nearby units i and j, it is possible to choose between LPM1, 
which is more balanced, and the LPM2, which is less balanced but computationally more feasible.  

The LPM1 randomly chooses the first unit i and then the nearest neighbor unit j (if two or more unit have the 
same distance to i, the method randomly choose between them). The inclusion probabilities are updated accord-
ing to the updating rule of pivotal method. If j is not the nearest neighbor of i, the method restart from the begin-
ning. When all units have been visited, the method stops. To select a LPM1 sample, the needed expected num-
ber of iterations is at most proportional to N3.  

The LPM2 works similarly to the LPM1, but the inclusion probabilities are directly updated with the updating 
rule of the pivotal method. The expected number of iterations needed to select a sample is in this case propor-
tional to N2. The Local Pivotal methods give more spatially balanced samples than GRTS or SCPS for some 
populations. They imply a smaller variance when a spatial trend exists (Grafström et al., [3]).  

In case of a high amount of available auxiliary information, Local Pivotal methods allow to select samples 
which are well spread in the space. Moreover, if units near in space have similar values, the estimation could be 
subjected to an improvement. Similarly, it is possible to assign bigger weights to auxiliary variables which have 
a strong relationship with the variable of interest. 

2.3. Balanced Sampling 
Balanced Sampling (BS) is a popular method to select random units from a finite population, taking into account 
a fixed sample size and stratification. Balanced sampling is very important in the case when the auxiliary va-
riables are correlated with the interest variable. A large family of methods to select balanced samples is availa-
ble, which comprehends those proposed by Yates [14], Royall and Herson [15], Deville et al. [16], Hedayat and 
Majumar [17], Breidt and Chauvet [18]. 

However, the Cube method proposed by Deville and Tillé [4] changed completely the perspective of balanced 
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sampling. It is an algorithm to select balanced samples which can use many different auxiliary variables with 
equal or unequal inclusion probabilities. The Cube method, named after a geometric representation of a sam-
pling design, satisfies predefined inclusion probabilities and drawn samples which are better balanced than those 
obtained with other balancing methods. It is based on a random transformation of inclusion probabilities vector 
π to draw a sample s which exactly satisfies the inclusion probabilities and the equation of balancing (see for 
details, Deville and Tillé, [4]). The Cube method is composed by two phases: the flight phase and the landing 
phase. The first one is a random walk which starts on the point of the inclusion probabilities vector and stays 
within the intersection area between the cube and the constraint subspace. The random walk stops when it ar-
rives in a vertex of the subspace. If the sample is not obtained, then a landing phase is applied where the sample 
is selected as near as possible to the constraint subspace. 

The BS method used in the empirical application of this paper is a particular application of the Cube method, 
where geographic coordinates have been used as auxiliary variables. 

2.4. Doubly Spatial Sampling Method 
The Doubly Balanced Spatial Sampling method (DBSS), proposed by Grafström and Tillé [5], combines the 
LPM2 (Grafström et al., [3]) and the Cube methods (Deville and Tillé, [4]; Tillé, [19]). 

DBSS is a method that succeeds in drawing samples which are balanced on auxiliary variables and well 
spread in the topographical space. First of all, this method selects a cluster of units through LPM2. In particular, 
the first unit i is selected randomly with equal inclusion probability and then its nearest unit j is subsequently 
selected. The mean position of the 1j +  units is computed and then the next unit is selected as the nearest to 
the mean position. The procedure is repeated as long as the sum of the squares of the distances between cluster 
units and their mean decreases. When the cluster is selected, DBSS applies the Cube method flight phase on a 
cluster of units near in distance. Then the sampling outcomes are decided for the units according to the balanc-
ing conditions. The second order inclusion probabilities are updated locally. So that they are smaller among 
nearby units because LPM creates negative correlation between inclusion indicators of nearby units. At the end 
of the decision process for sampling outcomes, the landing phase of the Cube method is applied.  

The DBSS provides better balanced samples, as those selected by the Cube method. In addition, at each se-
lected unit, the inclusion probability is updated for the remaining units in a decreasing order based on the dis-
tance between units. It prevents the selection of units near in distance, giving a sample that is well spread in the 
space.  

To implement the DBSS design a vector of geographic coordinates, to spread the population over the space, 
and a vector of auxiliary variables for balancing procedure are required. In the simulation study of this paper, 
geographic coordinates are used both to balance and to spread the population, giving a “dual” spatial connota-
tion to the algorithm. 

3. Data 
The data used in this paper derive from the ASIA archive. This database, which is managed and updated by the 
Italian Institute of Statistics (ISTAT), records the entire population of active enterprises operating in the manu-
facturing and services sectors. It represents the up-to-date reference register for most of the official establish-
ment surveys as it implements the Eurostat’s legislation (art. 1 and 7 of Council Regulation no. 2186/93, [20]) 
about the statistical harmonization of the business registers. For each business unit, the database currently con-
tains yearly information about firm code, sector of activity (according to the NACE, which is the Statistical 
Classification of Economic Activities in the European Community), number of firm’s employees, firm’s sales, 
legal status (according to the current Italian classification), firm’s birth and death dates and the precise spatial 
locations (in terms of GMT longitude and latitude coordinates). 

4. Simulation Study 
In this section the performances, in terms of efficiency and spatial balancing, of the various spatial sampling de-
signs, are assessed in an observed population of business units. The reference population used is a subset of the 
ASIA archive and it is composed by 822 georeferenced non-specialized retail stores located in the Province of 
Trento, Italy, in 2009. It is assumed that the goal of sampling is to estimate the population total of firm’s sales. 
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The number of firm’s employees is available as an auxiliary variable. 
Figure 1 shows the spatial distribution of stores, where it can be clearly noted that the population units are not 

evenly distributed in space but they tend to concentrate in three particular areas, corresponding to the three big-
gest towns of the region. Moreover, Figure 2, which depicts the empirical semivariogram, shows the presence 
of relevant spatial autocorrelation in the stores’ sales. Denoting the store’s sales with y, for any generic stores i  

and j that have a function distance d, the empirical semivariogram ordinate is the quantity ( ) ( )21
2 i jv d y y= − . If  

the sales of neighboring stores are spatially independent, then ( ) 1v d ≅  for all 0ijd > . On the other hand, if 
the values of sales tend to be similar amongst firms located at a distance d, then ( ) 1v d > . Figure 2 shows that
( )v d  has a peak relevantly greater than 1 at 5000d <  meters, indicating that stores’ sales are characterized by  

 

 
Figure 1. Spatial distribution of population units. 

 

 
Figure 2. Empirical semivariogram of sales. 
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a small scale spatial trend which, in turn, suggest that spatial sampling designs may have an important role in 
producing relatively more precise estimates of population total of sales. Note that the semivariogram ordinates 
have been averaged in bins of constant width. 

In this simulation study, the following sampling designs are compared: LPM1, LPM2, SCPS, BS and DBSS. 
Six different scenarios are taken into consideration. Indeed, from the population of size N = 822, samples of size 
n = 50, n = 75 and n = 100 units with both equal and unequal (as proportional to the number of employees) in-
clusion probabilities have been selected. Observing how the results change with respect to the different scena-
rios allows assessing, on one hand, the presence of some trends in the fixed sample size and, on the other hand, 
the ability of sampling designs to exploit auxiliary information. 

For all designs, the Horvitz-Thompson estimator has been used (Horvitz and Thompson, [21]):  

1

ˆ
n

i
HT

i i

yY
π=

=∑  

where iy  and iπ  are the values, respectively, of the target variable and inclusion probability of sample unit i. 
For LPM1, LPM2 and SCPS the Horvitz-Thompson estimator has been also used with calibrated weights 

based on the spatial coordinates taken both in linear and quadratic forms. In the linear case, the calibrating va-
riables are the horizontal and vertical coordinates. The quadratic specification considers also the square of the 
coordinates and their cross product. On the other hand, the spatial coordinates, in the linear and quadratic speci-
fications, are also used as balancing variables for the BS and DBSS designs. All designs have been implemented 
using the R package “Balanced Sampling” (Grafström, [22]). 

A total of 10,000 samples were selected with each design and the relative root mean square error (rRMSE) 
was estimated as 

( )2ˆ 10000
rRMSE ,

jj
Y Y

Y

−
=
∑

 

where Y represents the known population total of firm’s sales and ˆ
jY  indicates the sample estimate of the j-th 

sample.  
The values of the rRMSE of the different sampling designs have also been compared with the rRMSE’s of the 

Simple Random Sampling design (SRS) and the Random Pivotal Method design (RPM) in order to better assess the 
advantage of including space in the sampling procedure. Moreover, it has been computed the following indicator 

( )spatial design

SRS or RPM

rRMSE
1 100 %

rRMSE
  
−     

 

to measure the efficiency gains of spatial designs with respect to SRS or RPM more precisely (see Table 1 and 
Table 2). 

The general indication from Table 1 and Table 2 is that rRMSE’s of spatial designs are lesser than those of 
non-spatial designs.  

In the context of equal inclusion probabilities, DBSS proved to be the most efficient design. Good results are 
also obtained by LPM1, LPM2 and BS, while SCPS has results slightly worse, for all sample sizes. In this con-
text, the calibration of Horvitz-Thompson estimator in quadratic form provided very similar results as those ob-
tained without any calibration or with the linear calibration on the coordinates. Furthermore, balancing on qua-
dratic spatial coordinates has resulted in a high loss in terms of efficiency of sample estimates. 

In the unequal inclusion probability scenario, results are markedly different. Firstly, the efficiency gain of 
spatial designs with respect to RPM design is very high. Secondly, DBSS has been confirmed as the best method 
for establishment surveys, with the efficiency gain that increase with the increasing of sample size. Thirdly, 
LPM1, LPM2 and BS are confirmed as efficient methods also in this case. Finally, the performance of SCPS in-
creases greatly. On the other hand, calibrating and balancing on quadratic spatial coordinates do not produce a 
notable increase in efficiency of estimation. 

Since DBSS is a combination of LPM2 and BS, it shows the theory expressed by Grafström and Tillé [5] and 
by Grafström and Lundström [23], for which samples well spread in the space are also balanced. This is espe-
cially true in the present case, where the “doubly spatial” connotation which has been given to DBSS leads to an 
increase in efficiency, whether in equal or unequal inclusion probability situations. 
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Table 1. Relative root mean square error of population and efficiency gain for equal inclusion probabilities. 

Design 

Equal inclusion probabilities 

Relative RMSE Efficiency gain 

n = 50 n = 75 n = 100 n = 50 n = 75 n = 100 

SRS 2.7492 2.1797 1.8700    

LPM1 2.6296 2.1297 1.8282 4.35% 2.29% 2.23% 

LPM1 (linear calibration) 2.6322 2.1307 1.8287 4.25% 2.25% 2.21% 

LPM1 (quadratic calibration) 2.6238 2.1263 1.8275 4.56% 2.45% 2.27% 

LPM2 2.5829 2.1332 1.8045 6.05% 2.13% 3.50% 

LPM2 (linear calibration) 2.5853 2.1342 1.8050 5.96% 2.09% 3.48% 

LPM2 (quadratic calibration) 2.5747 2.1306 1.8039 6.35% 2.25% 3.53% 

SCPS 2.6891 2.1237 1.8449 2.19% 2.57% 1.34% 

SCPS (linear calibration) 2.6917 2.1246 1.8453 2.09% 2.52% 1.32% 

SCPS (quadratic calibration) 2.6777 2.1202 1.8416 2.60% 2.73% 1.52% 

BS (linear balancing) 2.6097 2.1426 1.8263 5.08% 1.70% 2.33% 

BS (quadratic balancing) 2.6601 2.1472 1.7980 3.24% 1.49% 3.85% 

DBSS (linear balancing) 2.5470 2.0832 1.7808 7.36% 4.42% 4.77% 

DBSS (quadratic balancing) 2.6445 2.0910 1.7783 3.81% 4.07% 4.90% 

 
Table 2. Relative root mean square error of population and efficiency gain for unequal inclusion probabilities. 

Design 

Unequal inclusion probabilities 

Relative RMSE Efficiency gain 

n = 50 n = 75 n = 100 n = 50 n = 75 n = 100 

RPM 0.4580 0.4343 0.4255    

LPM1 0.2399 0.1298 0.0142 47.61% 70.12% 96.67% 

LPM1 (linear calibration) 0.2759 0.1609 0.0712 39.76% 62.95% 83.26% 

LPM1 (quadratic calibration) 0.2933 0.1744 0.0875 35.97% 59.83% 79.44% 

LPM2 0.2398 0.1299 0.0142 47.64% 70.08% 96.66% 

LPM2 (linear calibration) 0.2774 0.1617 0.0716 39.43% 62.77% 83.18% 

LPM2 (quadratic calibration) 0.2951 0.1745 0.0876 35.56% 59.82% 79.40% 

SCPS 0.2406 0.1297 0.0139 47.46% 70.14% 96.73% 

SCPS (linear calibration) 0.2802 0.1619 0.0704 38.82% 62.72% 83.47% 

SCPS (quadratic calibration) 0.3005 0.1775 0.0875 34.39% 59.14% 79.43% 

BS (linear balancing) 0.2397 0.1316 0.0139 47.66% 69.69% 96.73% 

BS (quadratic balancing) 0.2388 0.1325 0.0142 47.85% 69.50% 96.67% 

DBSS (linear balancing) 0.2350 0.1280 0.0139 48.70% 70.53% 96.74% 

DBSS (quadratic balancing) 0.2365 0.1300 0.0138 48.36% 70.06% 96.76% 
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The behavior of simulations using geographic coordinates in quadratic explanation is ascribable to the specif-
ic nature of the present study, where there is not a quadratic relationship between coordinates. Probably in dif-
ferent kinds of studies about firms it is possible to recognize an advantage to consider coordinates in quadratic 
form. 

Concerning the ability of spatial sampling designs to produce well spread samples, the spatial balance has 
been measured following the Voronoi polygons approach suggested by Steven and Olsen [9] and recalled by 
Grafström et al. [3]. Supposing that i s∈  is a sample unit of sample s, the Voronoi polygon is a subarea of the 
space which includes all population units located closer to i than to any other j-th sample unit. Let iv  be the 
sum of the inclusion probabilities of units in the Voronoi polygon of the i-th sample unit, then ( ) 1iE v =  and 

i ji s j Uv nπ
∈ ∈

= =∑ ∑  (Grafström et al., [3], pp. 516-517). To have a spatially balanced sample, all iv  in the 
sample s must be close to 1, and the variance 

( )21 1i
i s

SpB v
n ∈

= −∑  

could be used as a measure of spatial balance for the sample s. Therefore, to assess the ability of spatial sam-
pling designs to produce well spread samples, the mean of SpB over the 10,000 drawn samples has been consi-
dered (see Table 3). Lower is its value, higher is the degree of spatial balance. 

As can be noted from Table 3, in both the contexts of equal and unequal inclusion probabilities, LPM1, 
LPM2, SCPS and DBSS tend to produce samples that are much more spatially balanced than the non-spatial de-
signs (SRS/RPM). On the other hand, performances of BS in terms of spatial balance are in line with SRS/RPM 
results, because spatial coordinates have been used in BS only as auxiliary variables and not as spread variables. 
The results for BS spatial balance could also be explained by the fact that balancing on the geographical coordi-
nates allows only capturing large-scale spatial trend. However, as shown by the empirical semivariogram of 
Figure 2, the data used in this simulation study are characterized by small-scale spatial autocorrelation that, in 
contrast, is perfectly captured by LPM1, LPM2, SCPS and DBSS which are the designs that take into account all 
distances amongst units. 

5. Discussion 
Spatial sampling designs give a new important point of view to economic analysis. As shown, all spatial designs 
proposed have a greater efficiency gain with respect to non-spatial designs. In the context of business surveys, 
results of sampling are strongly related with the peculiarities of the population, wherein it is relevant if there is 
relevant spatial autocorrelation or not.  

Furthermore, a comparison between methods which select samples spread in the space and methods which are 
balanced on geographic coordinates has been conducted. The result tells that the only method which is spread 
and balanced in the same time is more efficient, even in the case where the relationship between geographical 
variables is not linear, i.e. quadratic form. Moreover, if coordinates are used both as spread variables and ba-
lancing variables, results are even more fulfilling in terms of efficiency in estimation. 
 
Table 3. Spatial balance of drawn samples. 

Design 

Spatial balance 

Equal inclusion probabilities Unequal inclusion probabilities 

n = 50 n = 75 n = 100 n = 50 n = 75 n = 100 

SRS/RPM 0.5718 0.5725 0.5672 0.5649 0.5682 0.5604 

LPM1 0.2112 0.2031 0.1980 0.2156 0.2094 0.2055 

LPM2 0.2110 0.2038 0.1983 0.2153 0.2094 0.2053 

SCPS 0.2262 0.2212 0.2191 0.2310 0.2331 0.2322 

BS 0.5304 0.5411 0.5396 0.5310 0.5240 0.5087 

DBSS 0.2086 0.2022 0.1955 0.2675 0.2723 0.2601 
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Future researches in spatial establishment surveys could regard different contexts. It may indeed be possible 
that in other spatial distributions of establishments with different characteristics, the spatial design shows a dif-
ferent behavior. The availability of more complete information about firms could give an improvement in esti-
mation using spatial sampling designs.  
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