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Abstract 
In this paper, the algebraic, geometric and analytic multiplicities of an eigenvalue for linear diffe-
rential operators are defined and classified. The relationships among three multiplicities of an ei-
genvalue of the linear differential operator are given, and a fundamental fact that the algebraic, 
geometric and analytic multiplicities for any eigenvalue of self-adjoint differential operators are 
equal is proven. 
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1. Introduction 
The study of spectral problems for linear ordinary differential equations (more generally, quasi-differential equ-
ations, to be abbreviated as QDE) originated from a series of seminal papers of Sturm and Liouville in [1]-[3], 
while the singular case started with the celebrated work of Weyl in 1910 introducing the limit-point (LP) and 
limit-circle (LC) dichotomy [4]. Another important milestone in this area is the Glazman-Krein-Naimark (GKN) 
theorem [5] in 1950, see also [6] for generalizations (which will be included in the theorem). This theorem gives 
a one-to-one correspondence between the self-adjoint differential operators in a Hilbert function space represent- 
ing a given QDE and the unitary isometries on an appropriate finite-dimensional subspace (or equivalently, cer-
tain Lagrange subspaces of some finite dimensional quotient space, see [7]). In both regular case and singular 
case, the GKN theorem also yields a characterization of the self-adjoint operators in terms of linear complex 
boundary conditions (BC). So, the spectral problem of a linear ordinary differential equation (QDE) with boun-
dary conditions maybe turn to study it of a linear ordinary differential operator [5] [8] [9]. It is well-known that 
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the investigation of different self-adjoint extensions of symmetric operators and the estimation of the location 
and multiplicity of their point spectra are among fundamental mathematical problems arising in any quantum 
mechanical model ([10], Chapter VIII, Section 11). While the eigenvalues of a linear ordinary differential oper-
ator were studied, three kinds of multiplicity (analytic multiplicity, geometric multiplicity and algebraic multip-
licity) of an eigenvalue were defined and accompanied. Three kinds of multiplicity are often confused in some 
paper, and a problem how about the relationships among three kinds of multiplicity of an eigenvalue has arisen. 

The differential equation  

( ) ( ) ( ) ( )( )( )
( )( ) ( ) ( )( )( )

( ) ( )
11 1

0 11 1 , , ,
k kk kk k

kl y p x y p x y p x y wy x a bλ
−− −= − + − + + = ∈       (1.1) 

with boundary conditions  
( ) 0, 1,2, , 2jU y j k= =                                 (1.2) 

will be studied in present paper, where ( )0 0p x >  and ( ) 0w x >  a.e. on ( ),a b , the functions  
( ) ( ) ( ) ( )0 11 , , , ,kp x p x p x w x  are real-valued, measurable over ( ),a b  and Lebesgue integrable on all com-

pact subset of ( ),a b . 
The endpoint a  is said to be regular if a > −∞  and each of the functions ( ) ( ) ( ) ( )0 11 , , , ,kp x p x p x w x  

is integrable in every interval [ ], ,a c c b< ; otherwise a  is said to be singular. Similar definitions apply to 
endpoint b . The differential expression ( )l y  is said to be regular if it is regular at both endpoints, and other-
wise is said to be singular. 

We assume throughout that (1.1) is regular, and the functions ( ) ( )0jp x j k≤ ≤  are sufficiently smooth and 
Lebesgue integrable on ( ),a b , then the boundary conditions may be written as ( )1,2, , 2j k=  :  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 2 1
1 2 1 2 .k k

j j j jk j j jkU y a y a a y a a y a b y b b y b b y b− −′ ′= + + + + + + +   

In the regular case, the GKN characterization of self-adjointness in terms of the complex boundary conditions 
can be simply expressed as the algebraic equation  

( ) ( )1 * 1 *AQ a A BQ b B− −=                               (1.3) 

and ( )Rank 2A B k= , where ( )2 2ij k k
A a

×
=  and ( )2 2ij k k

B b
×

=  which come from the coefficient matrix  

( )A B  of the boundary conditions are 2 2k k×  complex matrices, while ( )Q t  is a fixed matrix for Lagrange 
bilinear form [ ],⋅ ⋅  of differential expression ( )l y  in (1.1). 

Let ( )( ) ( ) ( ) ( ) ( )( )1, , , nC y t y t y t y t−′=  , and ( )( )tC y t  be the transpose of ( )( )C y t , then, for  

, Mf g D∈  (the domain of maximal operator generated by ( )l y ),  

( )( ) ( )( ) [ ] [ ]( ) [ ]( ), , , , , ,b

al f g f l g f g f g b f g a− = = −  

[ ]( ) ( )( ) ( ) ( )( ), ,tf g x C g x Q x C f x=  

and following results are true (see [5] [6] [8]): 

1) ( ) ( )*Q t Q t= − ; 

2) ( )( ) ( )( ) ( )
* 11 * 1Q t Q t Q t

−− −= = − . 

It is well-known that the spectrum of such a problem consists of an infinite number of real eigenvalues and 
has no finite accumulation point. The eigenvalues are precisely the zeros of an entire function ( )λ∆ , called the 
characteristic function of the problem. The analytic multiplicity of an eigenvalue is the order of the eigenvalue as 
a zero of ( )λ∆ , the geometric multiplicity of an eigenvalue is the number of linearly independent eigenfunc-
tions for the eigenvalue, and the algebraic multiplicity of an eigenvalue is the dimension of its root subspace (a 
subspace is spanned by the eigenvectors and its associated vectors). 

The analytic multiplicity of an eigenvalue gives the maximum number of new eigenvalues into which the 
original eigenvalue can split when the spectral problem involved. So, it is natural to use the analytic multiplicity 
to count eigenvalues, and the analytic multiplicity plays an important role in the study of the dependence of the 
eigenvalues of a spectral problem on the differential equation boundary value problem (see, for example, [5] 
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[11]-[14]). The geometric multiplicity is always defined and is more widely used in spectral theory (see [4] [5] 
[8]-[10] [15]). However, the algebraic multiplicities and associated vectors (functions) of an eigenvector (eigen-
function) are used for the completeness of eigenvectors (eigenfunctions) of non self-adjoint operators (see [15]- 
[17]). Therefore, it is of fundamental interest to compare the three multiplicities of an eigenvalue for differential 
operators. 

Naimark studied the relationship between the algebraic and analytic multiplicities of an eigenvalue of high- 
order linear differential operators in [5], and obtained the equivalence of the algebraic and analytic multiplicities 
of an eigenvalue of high-order linear differential Equation (1.1) with linear boundary conditions (1.2). From 
then, the relationships among the three multiplicities have been payed a good deal of attentions, and have had a 
strong appeal to studying. 

Over the last decades, the fact that the analytic and geometric multiplicities of an eigenvalue of self-adjoint 
Sturm-Liouville problems are equal has been solved ([5] [11]-[14] [18]-[22]). Sturm-Liouville problems (SLP) 
are differential equation:  

( ) ( )on , ,py qy wy a bλ′′− + =                            (1.4) 

with boundary conditions  

( ) ( ) 0,AY a BY b+ =                                (1.5) 

where 0w >  a.e. on ( ),a b , ( ), tY y y′= , A  and B  are 2 2×  matrices, ( ) ( )*
2,4A B M C∈ . 

For the regular SLP, i.e. both endpoint a  and b  are regular ( )( )( ),1 , , , ,a b p q w L a b R−∞ < < < ∞ ∈ , the 

problem (1.4)-(1.5) is a self-adjiont SLP if the coefficients matrixes in (1.5) satisfy (1.3) and ( )Rank 2A B = . 

The equality of the analytic and geometric multiplicities in the case of separated boundary conditions (BC) 
was proved in [13], while the case of coupled BC’s was settled in [18]. The equality of the two multiplicities in 
the case of singular self-adjoint SLP with LC non-oscillatory end points was shown in [19] using a regulariza-
tion; the equality in the case of all singular self-adjoint SLP with LC end points was recently established in [21], 
based on the equality of the regular self-adjoint SLP and certain regular approximations. 

The proof in [18] uses some sophisticated identities involving ( )λ∆  (the function ( )D λ  in [18] differs 
from ( )λ−∆  by a constant) and certain values of a fundamental set of solutions of (1.4). It seems to us that it is 
very hard to find similar identities for a higher order QDE by this way. 

The basic idea of proof in [19] is as follows: for any eigenvalue *λ  of geometric multiplicity 1, they can 
give a smooth curve in the space CB  of self-adjoint BC through the BC A  involved such that the composi-
tion of ( )λ∆  with a continuous eigenvalue branch through *λ  has a non-zero derivative along the curve at 
A , which then implies that ( )λ∆  has a non-zero derivative at *λ . Here, a continuous eigenvalue branch 

through *λ  means a continuous function defined on a neighborhood O of A in CB  such that its value at A 
equals *λ  and its value at each BC O∈B  is an eigenvalue for B . 

In [22], we generalized the proof in [19], and gave a new and unified proof of the equality between the ana-
lytic and geometric multiplicities of any eigenvalue of self-adjoint SLP in the regular case based on the geome-
tric classifications of self-adjoint BC.  

The classifications of self-adjoint BC about higher order differential operator are more complicated in geome-
tric [7], and it seems rather complicated to find similar identities for a higher order QDE by the same method in 
[22]. Recently, this result was generalized to the higher order differential equations with self-adjoint boundary 
conditions in [23], but the proof was not easy. 

In order to classify three multiplicities of an eigenvalue for linear differential operators, to obtain the rela-
tionships among three multiplicities, and to have a short and non-technical presentation so that the main idea of 
the general proof can be made transparent, we only give the general proof for regular self-adjoint QDE in this 
paper. For arbitrary self-adjoint nth-order QDE in singular end points with defect index n, the proof is basically 
the same (with only obvious minor changes), but the introduction of the self-adjoint BC and the definition of the 
characteristic function are more involved (see, for example, [7] or [24]). 

It is the main purpose, therefore, in the present work, to give the definitions of three kinds of multiplicities of 
an eigenvalue for linear differential operators and the relationships among them. In Section 2, we give the defi-
nitions of the geometric and algebraic multiplicities and the relationship between them. The definition of the 
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analytic multiplicity for an eigenvalue of linear differential operators and the relationship between its analytic 
and algebraic multiplicities is given in Section 3. In last section, we have the equalities among three multiplici-
ties of an eigenvalue for a self-adjoint linear differential operator. 

2. Geometric and Algebraic Multiplicities 
The definitions of the geometric and algebraic multiplicities for an eigenvalue of a linear operator are from [15]. 
Recall that a complex number 0λ  is called an eigenvalue of linear operator T  if there exists a non-zero ele-
ment ( )0y D T∈  such that 0 0 0Ty yλ= ; in this case, 0y  is called an eigenfunction of T  for 0λ . The eigen-
functions for 0λ  span a subspace of ( )D T , ( )

0
N Tλ , called the eigenspace for 0λ ; and the geometric 

multiplicity of 0λ  is the dimension of its eigenspace, denoted by ( )
0

n Tλ , i.e.  

( ) ( )
0 0

dim .n T N Tλ λ=  

A non-zero element ( )y D T∈  is called a root vector of T  for a complex number 0λ  if ( )0 0nT I yλ− =  
for some n N∈ . In this case, 0λ  must be an eigenvalue. Together with the vector 0φ = , the root vectors of 

0λ  span a linear subspace of ( )D T , ( )
0

M Tλ , called the root lineal for 0λ ; and the algebraic multiplicity of 
0λ  is the dimension of its root lineal, denoted by ( )

0
m Tλ , i.e. 

( ) ( )
0 0

dim .m T M Tλ λ=  

If an element ( )y D T∈  is not an eigenvector for 0λ , then it is a root vector for 0λ  if and only if there is a 
k N∈  such that 0y  is an eigenvector for 0λ  provided ky y=  and 1 0j j jy Ty yλ− = −  for , ,1j k=  . A 
root vector is called an associated vector (or adjoint vector) if it is not an eigenvector. The theory of associated 
functions (vectors) of differential operator was originated by Keldysh [16]. 

In general, the system of eigenvectors and associated vectors of T  is not complete in Hilbert space H . 
From the definition of the algebraic multiplicities and geometric multiplicity of an eigenvalue of linear operator 
T in H, the eigenvectors of 0λ  belong to root lineal of 0λ  (i.e. ( ) ( )

0 0
N T M Tλ λ⊂  ), so, we have the follow-

ing result: 
Theorem 2.1. The geometric multiplicity of any eigenvalue of linear operator T  in Hilbert space does not 

exceed its algebraic multiplicity. i.e.  

( ) ( )
0 0

.n T m Tλ λ≤                                  (2.1) 

In general, the algebraic multiplicity is grater than the geometric multiplicity of an eigenvalue of operators. 
For example.  

Example 2.2. We consider an operator A  in 2 ,  

0 1
,

1 2
A

− 
=  
 

                                  (2.2) 

1 2 1λ λ= =  are eigenvalues of operator A , ( )T
0 1, 1y = −  is an eigenvector for the eigenvalue 1λ = , and 

the eigenspace ( ) { }0spanN A yλ = . So, the geometric multiplicity of the eigenvalue 1λ =  is equal to 1, i.e. 
( ) 1n Aλ = . But, ( ) 0A I y yλ− =  have solutions 1 2,y y , where ( )T

1 0, 1y = − , ( )T
2 1,0y = − , the associated 

vector of 0y  is ( )T
1 0, 1y = −  or ( )T

2 1,0y = − , and the root lineal ( ) { }0 1span , ,M A y yλ =  or { }0 2span ,y y . 
Thus, the algebraic multiplicity of eigenvalue 1λ =  is equal to 2, i.e. ( ) 2m Aλ = .  

Example 2.3. We consider the differential equation  

( ) ( ) [ ], 0,1y x y x xλ′′− = ∈                              (2.3) 

with boundary conditions  

( ) ( )
( ) ( )2

0 3 1 0

0 cos 1 0

y y

y yλ

 + =


′ ′+ =
                                (2.4) 

in Hilbert space [ ]2 0,1L . After simple calculation, 2λ = π  is an eigenvalue of boundary problem (1.3)-(1.4), 
siny x= π  is corresponding eigenvector, and the eigenspace of 2λ = π  is { }spanN yλ = . So, the geometric 

multiplicity of eigenvalue 2λ = π  is equal to 1, i.e. 1nλ = . But, ( ) 1L I y yλ− =  have solutions 1y , where  
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1
1 3cos cos

2 4
y x x x= π − π

π π
, but ( ) 2 1L I y yλ− =  has not any solutions, the associated vector of y  is 1y  

and the root lineal { }1span ,M y yλ = . Thus, the algebraic multiplicity of eigenvalue 2λ = π  is equal to 2, i.e. 
2mλ = .  

If T  is a spacial operator in Hilbert space H , then the geometric multiplicity of any eigenvalues of linear 
operator T  maybe equal to its algebraic multiplicity, such as: 

Theorem 2.4. If T  is a self-adjoint operator in Hilbert space H , then the geometric multiplicity of any 
eigenvalues of linear operator T  is equal to its algebraic multiplicity. 

Proof: We only need to prove that the eigenspace for an eigenvalue λ  of operator T  is equal to the root 
lineal of λ . 

From the definitions of eigenspace and root lineal of the eigenvalue λ , we have  

( ) ( ) ,N T M Tλ λ⊂  

where ( )N Tλ  and ( )M Tλ  represent the eigenspace and the root lineal of λ , λ  is an (isolated) eigenvalue 
of T , i.e. ( )d Tλ σ∈ . 

If ( ) ( )N T M Tλ λ≠  ( ) ( )( )N T M Tλ λ⊂ , then there exist a associated function 1f  ( ( )M Tλ∈ , ( )1 0f x ≠ ) 

and an eigenfunction f  ( ( )N Tλ∈ , ( ) 0f x ≠ ), such that Tf fλ= , and 1 1Tf f fλ− = . 
From the last equation, we have  

( ) ( ) ( )1 1, , , .f f Tf f f fλ= −                              (2.5) 

By self-adjointness of operator T , the eigenvalue λ  is a real number, and ( ) ( ), ,Tf g f Tg=  for any 
( ),f g D T∈ . Then, 

( ) ( ) ( )1 1, , , 0,f f f Tf f fλ= − =                            (2.6) 

and there is a contradictory to the fact ( ) 0f x ≠ . Therefore,  

( ) ( ) ,N T M Tλ λ=                                  (2.7) 

and the proof is complete. □ 

3. Analytic and Algebraic Multiplicities 
We also introduce some notations here and review some basic facts about the problem of differential Equation 
(1.1) with boundary conditions (1.2). Let ( ) ( ) ( )1 2, , , , , ,ny x y x y xλ λ λ  be the fundamental solution of (1.1) 
satisfying  

( ) ( )1 0,
, , 1, 2, , ,

1,
v

j

j v
y a j v n

j v
λ− ≠

= = =
                       (3.1) 

and ( ) ( )( )1 2, , , , ,nW x W y y y xλ λ=   denote the Wronskian of (1.1) with respect to ( )1 , ,y x λ  ( )2 , , ,y x λ 

( ),ny x λ , then ( ), 1W a λ = . The determinant of matrix ( )( )i j n n
U y

×
 is denoted by ( )λ∆ , i.e.  

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

.

n

n

n n n n

U y U y U y
U y U y U y

U y U y U y

λ∆ =





   



                        (3.2) 

Theorem 3.1. The ( )λ∆  is an entire function of λ , and a complex number λ  is an eigenvalue of the 
boundary value problem consisting of (1.1) and (1.2) if and only if  

( ) ( )( ): det , 0.A BW bλ λ∆ = + =                            (3.3) 

Proof: Simply calculate or see [8] and [5]. 
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The entire function ( )λ∆ , unique up to a non-zero constant multiple, is called the characteristic function for 
the boundary value problem consisting of (1.1) and (1.2). The analytic multiplicity of an isolated eigenvalue is 
the order of the eigenvalue as a zero of ( )λ∆ , denoted by 

0
dλ . 

From the definition of analytic multiplicity, only the eigenvalues of boundary value problems have analytic 
multiplicity. In general, the analytic multiplicity isn’t equal to the other multiplicities for an eigenvalue of some 
boundary value problems.  

Example 3.2. We still study the boundary value problem (2.3)-(2.4) in Example 2.3. The characteristic func- 
tion ( )λ∆  for the boundary value problem (2.3) and (2.4) can be easily obtained after calculating.  

( ) ( )3
1 cos ,λ λ∆ = +                                 (3.4) 

2λ = π  is a 3-order zero of the ( )λ∆ , so, the analytic multiplicity of the eigenvalue 2λ = π  is 3. 
With the results in Example 2.3, we have proven that the geometric multiplicity, algebraic multiplicity and 

analytic multiplicity of the eigenvalue 2λ = π  of boundary value problem (1.3)-(1.4) are 1, 2 and 3, and 
n m dλ λ λ< <  for the eigenvalue 2λ = π  of boundary value problem (1.3)-(1.4).  

But the linear differential Equation (1.1) with linear boundary conditions (1.2), Naimark had the following 
theorem in [5] (Chapter: 18P ). 

Theorem 3.3. The analytic multiplicity of any eigenvalues of the boundary value problem consisting of (1.1) 
and (1.2) is equal to its algebraic multiplicity. i.e.  

0 0
.d mλ λ=                                     (3.5) 

The algebraic multiplicity of an eigenvalue of self-adjoint SLP factually is the analytic multiplicity in [11]- 
[14], because the authors realized that the equivalence of the algebraic and analytic multiplicities for any 
eigenvalues of self-adjoint SLP is a foundational fact.  

4. Equalities among Three Multiplicities of an Eigenvalue of Self-Adjoint  
Differential Operators 

In this section, we first collect some basic statements about higher order differential operator (especially, the 
self-adjoint differential operator with high-order), and then prove the equalities among analytic, algebraic and 
geometric multiplicities. 

For any ,n m∈ , we use ( ),n mM   to denote the vector space of n m×  matrices with complex entries and 

( )*
,n mM   its open subset consisting of the elements with the maximum rank { }min ,n m . ( ),n mM   and 

( )*
,n mM   are defined similarly. When a capital Latin or Greek letter stands for a matrix, the entries of the 

matrix will be denoted by the corresponding lower case letter with two indices. If ( ),n mA M∈  , then tA  and 
*A  are the transpose and the complex conjugate transpose of A , respectively. The general linear group 
( ) ( ),, : n nGL n M=   is a complex Lie group under the matrix multiplication, while the special linear group 

( ),SL n   consists of all elements of ( ),GL n   with determinant 1 and is a Lie subgroup of ( ),GL n  . 

( ),GL n   and ( ),SL n   are defined similarly. Let J  be an open interval, bounded or unbounded. Assume 

that S  is one of the spaces n , n , ( ),n mM   and ( ),n mM  . We denote by ( ),L J S  the space of 

Lebesgue integrable S-valued functions on J , and ( ),locAC J S  the space of S-valued functions which are 
absolutely continuous on all compact subintervals of J . 

For the rest of this paper, we use ( )n ∈  to denote a fixed number satisfying 2n ≥ , and ( ),J a b=  with  
a b−∞ < < < +∞ . When n  is even ( )2n k=  and J  is finite interval, there is a special case of the QDE 

(1.1). This special case was studied by Naimark [5] and Weidman [9]. 
For any ( )0 0p x >  and ( ) 0w x >  a.e. on [ ],a b , ( ) ( ) ( ) ( )0 11 , , , ,kp x p x p x w x  are integrable over  

( ),a b , and ( )jp x  are jk −  ( )0 j k≤ ≤  times continuous differentiable function on ( ),a b , 2n k= . We 
define  
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0

1

1

0 1 0 0

1
10

,
0 1

0
0 1

0 0
k

k

pP
p

p
p

−

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

   

    

   

  

   

     

 

    

                       (4.1) 

then P  also belongs to ( )( ),Ł , n nJ M  . Let ( ) ( ) [ ] [ ] [ ]( )1 2 1, , , ,
tnY x y x y y y −=  , the quasi-derivatives of y  

associated with P  are given by  
[ ] ( ) for 0,1, , 1,j jy y j k= = −  

[ ] ( )
0 ,k ky p y=  

[ ] [ ]( ) ( )1 for 1, , ,j j n j
j ky y p y j k n− −
−

′= − = +   

and  

( )

0 0 0
0 0

,

0 0

W

w x

 
 
 
 =
 
 
 
 

 

  

   

  

 

 

then, ordinary differential Equation (1.1) is equivalent quasi differential equation (QDE)  
[ ] .nnQy i y wyλ= =                                  (4.2) 

Thus, P  and W  can be used as the coefficient matrix of (4.2), (4.2) is equivalent to its matrix form  

( ) on .Y P W Y Iλ′ = −                               (4.3) 

The quasi-differential expression in y  associated with Q  for 2n =  or 4n =  or 6n =  are of special 
interest:  

( )0 1 , if 2,Qy p y p y n′′= − + =  

( )0 1 2 , if 4,Qy f y p y p y n
′ ′′′ ′= − − =  

 

( )0 1 2 3 , if 6,Qy p y p y p y p y n
′ ′  ′′′′ ′′ ′= − + + + =     

 

while, in general, Qy  is equal to  

( ) ( )( ) ( ) ( )1 2
0 1 2 11 .k k k k

k kp y p y p y p y p y− −
−

 ′ ′  ′  ′   ′− − − − − −     
         

   

We now turn to the BVP consisting of the general QDE (1.2) and a (linear two-point) BC defined by  
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( ) ( ) 0,CY a DY b+ =                                   (4.4) 

where ( ),, n nC D M∈   such that ( ) ( )*
,2n nC D M∈  . Note that equivalent linear algebraic equations of the 

form (1.2) define the same BC. Each value of λ  for which the QDE (4.2) has a nontrivial solution satisfying 
the BC (1.4) is called an eigenvalue of the BVP consisting of (4.2) and (4.4), and a solution to this problem is 
called an eigenfunction for this eigenvalue. 

Since (4.2) has exactly n  linearly independent solutions, the geometric multiplicity of any eigenvalue is an 
integer not smaller than 1 and not greater than n . 

Theorem 4.1. A number λ ∈  is an eigenvalue of the boundary value problem consisting of (4.2) and (4.4) 
if and only if  

( ) ( )( ): det , 0.D C D bλ λ= + Φ =                               (4.5) 

where ( ),x λΦ  is the fundamental solution of (1.3) satisfying ( ),a IΦ ⋅ = , I  is the identity matrix. 
Proof: Simply calculate or see [7]. □ 
Theorem 4.2. ( ) ( ).D cλ λ= ∆  
Proof: From the definition of quasi-derives of y  associated with P , we have ( ) ( ) ( )( )tY x M x C y x= , 

where ( ) ( ) [ ] [ ] [ ]( )1 2 1, , , ,
tnY x y x y y y −= 
, ( )( ) ( ) ( ) ( )( )2 1, , , ,

tntC y x y x y y y −′=  , and  

( ) ( )
( ) ( ) ( )

( )
( )

0

1 0 0

1 0

0

1 0 0 0 0
0 1 0 0 0

1
0 ,

0 0
0 0k

k

p xM x
p x p x p x

p p x
p p x

−

 
 
 
 
 
 
 =
 

′− 
 
 
 
 ∗ ∗ 

   

   

     

    

   

    

     

 

    

              (4.6) 

is a inverse matrix function on [ ],a b  because of ( )0 0p x >  over [ ],a b . Let ( ),W x λ  denote the Wronskian 
of (1.1) with respect to ( ) ( ) ( )1 2, , , , , ,ny x y x y xλ λ λ , ( ) ( ) ( ) ( )1, ,x M x W x M aλ λ −Φ = , then  

( ) ( ),A CM a B DM b= = , and ( ),a IλΦ = . Thus, ( ) ( ) ( )1detD P aλ λ −= ∆ ⋅  and ( )1detc P a−= . So, the 
equality in this theorem was proved.  

A coefficient matrix F  is said to be symmetric if  
* 0,FE EF+ =                                    (4.7) 

where  

( )

( )

2

0 0 1

1 0
.

0

1 0 0n

E

− 
 

− 
=  
 
 − 



 

  



                              (4.8) 

The boundary condition (1.4) is said to be self-adjoint if ( )Rank 2C D k=  and  
* *.CEC DED=                                     (4.9) 

Theorem 4.3. The differential operator L  associated with (1.1) and (1.2) (or (4.2) and (4.4)) is a self-adjoint 
operator if the boundary conditions (1.2) (or (4.4)) satisfy (1.3) and ( )Rank 2A B k=  (or is self-adjoint). 

Proof: See [7]. □  
Theorem 4.4. The analytic, algebraic and geometric multiplicity of any eigenvalue for a self-adjoint differ- 

ential operator associated with (1.1) and (1.2) (or (4.2) and (4.4)) are equal. 
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Proof: From Theorem 2.4 and Theorem 3.3, we get the conclusion immediately. □  
Corollary 4.5. The analytic, algebraic and geometric multiplicity of any eigenvalue of the differential 

operator L associated with (1.1) and (1.2) (or (4.2) and (4.4)) are equality when the coefficient matrixes A and B 
satisfy (1.3) (or C  and D  satisfy (4.9)), and equal to the multiplicities of the eigenvalue as a zero point of 
( )λ∆  in (3.3) (or ( )D λ  in (4.5)). 
Example 4.6. We consider the differential equation  

( ) ( ) [ ], 0,1y x y x xλ′′− = ∈                              (4.10) 

with boundary conditions  

( ) ( )
( ) ( )
0 1 0
0 1 0

y y
y y

 − =
 ′ ′− =

                                (4.11) 

in Hilbert space [ ]2 0,1L . After simple calculation, ( )2 24 , 0,1, 2,n nλ = π =   are eigenvalues of boundary 
problem (4.10)-(4.11), 1 sin 2y n x= π  and 2 cos 2y n x= π  are corresponding eigenvectors for 2 24nλ = π , and 
the eigenspace of 2 24nλ = π  is { }1 2span ,N y yλ = . So, the geometric multiplicity of eigenvalue 2 24nλ = π  is 
equal to 2, i.e. 2nλ = . Boundary problem (4.10)-(4.11) is a self-adjoint problem because of boundary con- 
ditions (4.11) satisfying (4.9), so, the algebraic multiplicity of eigenvalue 2 24nλ = π  is also equal to 2, i.e. 

2mλ = . We also have that  

( ) ( )2 1 cos ,λ λ λ∆ = −                            (4.12) 

( )2 24 1,2,n nλ = π =   are 2-order zero of the ( )λ∆ , so, the analytic multiplicity of the eigenvalue 2 24nλ = π  
is 2, i.e. 2dλ = . Thus, the analytic, algebraic and geometric multiplicity of any eigenvalue 2 24nλ = π  for 
boundary problem (4.10)-(4.11) are equal to 2, i.e. 2d m nλ λ λ= = = . 

Funding 
Work partially supported by the National Nature Science Foundation (11171295). 

References 
[1] Liouville, J. and Sturm, J.C.F. (1837) Extrait d’une méemoire sur le développement des fonctions en serie. Journal de 

Mathématiques Pures et Appliquées, 2, 220-223. 
[2] Sturm, J.C.F. (1836) Mémoire sur les équations différentielles linéaires du second ordre. Journal de Mathématiques 

Pures et Appliquées, 1, 106-186. 
[3] Sturm, J.C.F. (1837) Mémoire sur une classe d’équations différentielles partielles. Journal de Mathématiques Pures et 

Appliquées, 2, 373-444. 
[4] Weyl, H. (1910) Üeber gewöhnliche differentialgleichungen mit singularitäten und die zugehörigen entwichlungen 

willkürlicher funktionen. Mathematische Annalen, 68, 220-269. http://dx.doi.org/10.1007/BF01474161 
[5] Naimark, M.A. (1968) Linear Differential Operators. Ungar, New York. 
[6] Everitt, W.N. and Markus, L. (1997) The Glazman-Krein-Naimark Theorem for Ordinary Differential Operators, New 

Results in Operator Theory and Its Applications. Operator Theory: Advances and Applications, 98, 118-130. 
[7] Cao, X. and Wu, H. (2004) Geomtric Aspects of High-Order Eigenvalue Problems I. Structures on Spaces of Boundary 

Conditions. International Journal of Mathematics and Mathematical Sciences, 13, 647-678. 
http://dx.doi.org/10.1155/S0161171204303522 

[8] Coddington, E. and Levinson, N. (1955) Theory of Ordinary Differential Equations. McGraw-Hill, New York. 
[9] Weidmann, J. (1987) Spectral Theory of Ordinary Differential Operator, Lecture Notes in Mathematics, Vl 1258. 

Springer-Verlag, Berlin.  
[10] Reed, M. and Simon, B. (1972) Methods of Modern Mathematical Physics I. Functional Analysis. Academic Press, 

Waltham. 
[11] Kong, Q., Wu, H. and Zettl, A. (1997) Dependence of Eigenvalues on the Problem. Mathematische Nachrichten, 188, 

173-201. http://dx.doi.org/10.1002/mana.19971880111 
[12] Kong, Q., Wu, H. and Zettl, A. (1999) Dependence of the n-th Sturm-Liouville Eigenvalue on the Problem. Journal of 

Differential Equations, 156, 328-354. http://dx.doi.org/10.1006/jdeq.1998.3613 

http://dx.doi.org/10.1007/BF01474161
http://dx.doi.org/10.1155/S0161171204303522
http://dx.doi.org/10.1002/mana.19971880111
http://dx.doi.org/10.1006/jdeq.1998.3613


S. Z. Fu, Z. Wang 
 

 
2194 

[13] Kong, Q., Wu, H. and Zettl, A. (2000) Geometric Aspects of Sturm-Liouville Problems, I. Structures on Spaces of 
Boundary Conditions. Proceedings of the Royal Society of Edinburgh Section A, 130, 561-589. 

[14] Zettl, A. (2005) Sturm-Liouville Theory. Mathematical Surveys and Monographs, Volume 121. American Mathemati-
cal Society.  

[15] Gohberg, I.C. and Krein, M.G. (1969) Introduction to the Theory of Linear Non-Self-Adjoint Operator. Translation of 
Mathematical Monographs 18, American Mathematical Society, Providence. 

[16] Keldysh, M.V. (1951) On Eigenvalues and Eigenfunctions of Some Classes of Non Self-Adjoint Equations. Doklady 
Akademii Nauk SSSR, 77, 11-14. 

[17] Marcenko, V.A. (1963) Expansion in Eigenfuctions of Non-Self-Adjoint Singular Differential Operators of Second 
Order. American Mathematical Society Translations, 25, 77-130. 

[18] Eastham, M., Kong, Q., Wu, H. and Zettl, A. (1999) Inequalities among Eigenvalues of Sturm-Liouville Problems. 
Journal of Inequalities and Applications, 3, 25-43. 

[19] Kong, Q., Wu, H. and Zettl, A. (1999) Inequalities among Eigenvalues of Singular Sturm-Liouville Problems. Dynam-
ic Systems and Applications, 8, 517-531. 

[20] Kong, Q., Wu, H. and Zettl, A. (2001) Sturm-Liouville Problems with Finite Spectrum. Journal of Mathematical 
Analysis and Applications, 263, 748-762. http://dx.doi.org/10.1006/jmaa.2001.7661 

[21] Kong, Q., Wu, H. and Zettl, A. (2004) Multiplicity of Sturm-Liouville Eigenvalues. Journal of Computational and Ap-
plied Mathematics, 171, 291-309. http://dx.doi.org/10.1016/j.cam.2004.01.036 

[22] Wang, Z. and Wu, H. (2005) Equality of Multiplicities of a Sturm-Liouville Eigenvalue. Journal of Mathematical 
Analysis and Applications, 306, 540-547. http://dx.doi.org/10.1016/j.jmaa.2004.10.041 

[23] Shi, D. and Huang, Z. (2010) Relationship of Multiplicities of a High-Order Ordinary Differential Operator Eigenvalue. 
Acta Mathematica Sinica, Chinese Series, 53, 763-772. 

[24] Wang, Z. and Wu, H. (2009) Sturm-Liouville Problems with Limit-Circle End Points. Pacific Journal of Applied Ma-
thematics, 1, 421-447. 

http://dx.doi.org/10.1006/jmaa.2001.7661
http://dx.doi.org/10.1016/j.cam.2004.01.036
http://dx.doi.org/10.1016/j.jmaa.2004.10.041


Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is 
currently publishing more than 200 open access, online, peer-reviewed journals covering a wide 
range of academic disciplines. SCIRP serves the worldwide academic communities and contributes 
to the progress and application of science with its publication. 
 
Other selected journals from SCIRP are listed as below. Submit your manuscript to us via either 
submit@scirp.org or Online Submission Portal. 

 

    

    

    

    

mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper

	Relationships among Three Multiplicities of a Differential Operator’s Eigenvalue
	Abstract
	Keywords
	1. Introduction
	2. Geometric and Algebraic Multiplicities
	3. Analytic and Algebraic Multiplicities
	4. Equalities among Three Multiplicities of an Eigenvalue of Self-Adjoint Differential Operators
	Funding
	References

