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ABSTRACT 

Although mixing formulas for the effective-medium type of approximations for the dielectric permittivities in the 
infi-nite-wavelength (i.e., quasistatic) limit, such as the Maxwell Garnett formula, have been popularly applied in the 
whole spectral range of electromagnetic fields, their magnetic counterpart has seldom been addressed up to this day. 
An effort is thus devoted to the derivation of such an equation to predict the final permeability as the result of mixing 
together several materials. In a similar fashion to the approach leading to the Maxwell Garnett formula, a model is 
adopted wherein an originally isotropic host material is embedded with a cluster of spherical homogeneous magnetic 
particles. It is expected that such obtained formula should find wide applications, and particularly in the light frequency 
domain in this blossomful era of nanometer technology. 
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1. Introduction 

Macroscopic mixing theories have been effectively 
applied in predicting the approximate would-be dielec-
tric properties of the final mixtures without having to 
deal with the microscopic fields in an in-situ manner. 
In the infinite-wavelength approximation, or the so- 
called “quasistatic limit,” the effective electromagnetic 
characteristics of mixtures can be properly described 
by two independent quantities, i.e., a single effective 
permittivity and a single effective permeability, to their 
own entirety. Although it was shown that in the finite- 
wavelength limit (or, termed the “long-wave-length 
limit” by many, e.g., [1]) such kind of partition is in-
applicable, the interest of this current work is in situa-
tions where the mixing of materials is in a practically 
homogeneous manner and thus the infinite-wave- 
length approximation should suffice.  

However, although mixing formulas for the effec-
tive-medium type of approximations for the dielectric 
permittivities in such infinite-wavelength (i.e., qua-
sistatic) limit, such as the Maxwell Garnett formula [2], 
have been popularly applied in the whole spectral range 

of electromagnetic fields, their magnetic counterpart 
has seldom been addressed up to this day. The current 
effort is thus to derive such an equation to approxi-
mately predict the final permeability as the result of 
mixing together several magnetic materials.  

It should be noticed that, unlike Sheng’s et al. [3] 
approach where there are one or several major perma-
nent magnetic moments, this work is aiming at situa-
tions where no such major permanent magnetization 
exists. In addition, following Maxwell Garnett’s [2] 
model in which a host material contained a collection 
of spherical homogeneous inclusions, Bruggeman [4] 
further extended the mixing equation to a more con-
venient form in which the included particles no long 
serve as mere perturbation to the host. Since then, 
various mixing formulas have found a great variety of 
applications in the prediction of mixed dielectric prop-
erties [5,6]. 

Nevertheless, the situation is quite different when it 
comes to predicting mixed magnetic permeabilities. 
Namely, not only the means to calculate magnetic 
permeability are far from rigorous among even the ex-
isting 1st—principle quantum mechanical software (see, 
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e.g., [7], wherein the relative permeability is essentially 
set to unity), but also the crude macroscopic clues to 
follow, like Maxwell Garnett or Bruggeman formulas 
for dielectric, are hard to come by. Thus, at least mac-
roscopically, the authors intend to bring back the due 
balance among the conjugate worlds of dielectrics and 
magnetics by basing their derivation on a similar model 
adopted by Maxwell Garnett and Bruggeman [2,4]. 

2. A Brief Review of the Derivation Leading 
to the Maxwell Garnett and Bruggeman 
Formulas 

Historically, an isotropic host material was hypothesized 
to embed with a collection of spherical homogeneous 
inclusions. With the molecular polarization of a single 
molecule of such inclusions being denoted α, the follow-
ing relation was established within the linear range [8]: 

0mp 


mE                (1) 

where m  was the induced dipole moment and mp


E


 
was the polarizing electric field intensity at the location 
of the molecule. Since the treatment was aiming for uni-
form spherical inclusions, the polarizability became a 
scalar, such that  was expressed as [9]: mE



m p nearE E E E  
   

           (2) 

Here  was the average field within the bulk host, 

p  was the electric field at this molecular location 
caused by all surrounding concentric spherical shells of 
the bulk, and near  was due to asymmetry within the 
inclusion. In those cases of interest where either the 
structure of the inclusion was regular enough, such as a 
cubical or spherical particulate, or all incorporated 
molecules were randomly distributed, near  became 
e . It was further approximated that 
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 [9], to be elaborated later, with P


 
being the polarization density associated with a uni-
formly polarized sphere, and ε0 being the permittivity in 
free space. Hence, given (1), with the number density of 
such included molecules denoted as n, and mpP n

 
 [8], 

the polarization density was further expressed as: 
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own that for isotropic media 
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 where εr stood for the relative permit-
tivity (i.e., the electric field at the center of a uniformly 
polarized sphere (with  being its polarization density) 
was 

P


03P 


). Then, a relation known as the Lorentz- 
Lorenz formula readily followed [10,11]: 
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In those special cases where the permittivity of each 
tiny included particle was εs and the host material was 

vacuum (εr = 1), such that n = V-1 (V being the volume of 
the spherical inclusions), and (4) would have to satisfy 
[2]: 
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Combining (4) and (5) gave the effective permittivity 
(εeff) of the final mixture [2]: 
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with f = nV being the volume ratio of the embedded tiny 
particles (0 ≤ f ≤ 1) within the final mixture. If, instead of 
vacuum, the host material was with a permittivity of εh, 
(6) was then generalized to the famous Maxwell Garnett 
mixing formula: 
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For the view in which the inclusion was no longer 
treated as a perturbation to the original host material, 
Bruggeman managed to come up with a more elegant 
form wherein different ingredients were assumed to be 
embedded within a host [4]. By utilizing (4) and (5), he 
had: 
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         (8) 

where fi and εi are the volume ratio and permittivity of 
the i-th ingredient. 

3. The Magnetic Flux Density at the Center 
of a Uniformly Magnetized Sphere 

In the above, the adopted relation lead Maxwell 
Garnett mixing formula, i.e.,  03mE E P  

  
, was 

achieved by noting that the anti-reactive electric field at 
the center of a uniformly polarized sphere (see, Figure 1) 
was  03P 


. This result can be derived from inte-

grating the positive surface charges on the upper sphere 
and negative surface charges on the lower sphere (see 
Figure 1) [9]. 

In a similar fashion, surface current can be expected to 
appear on t e surface of a uniformly magnetized sphere 
(wherein 

h
M


 is the finalized net anti-responsive mag-
netization vector, ee Figure 2). s

In Figure 2, SK


 is the induced anti-reactive surface 
current density (in A/m) on the sphere’s surface and is 
equal to: 

ˆˆ sinSK M r M   
 

          (9) 

where , r̂ ̂  and ̂  are the three orthogonal base vec- 
tors of the spherical coordinate. According to the Biot- 
Savart law, the differential magnetic flux density at the  
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Figure 1. Situation for calculation of the central electric 
field on a uniformly polarized sphere. 
 

 
Figure 2. Situation for calculation of the central magnetic 
flux density on a uniformly magnetized sphere. 
 
sphere’s center owing to the surface current on a strip of 
width Rdθ is: 
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where dI l


 is the current element on an infinitesimal 
segment of the strip and dSI K R  . C is the path of the 
strip closing around the north-pointing axis and μ0 the 
permeability in free space. With all components cancel-
ling one another except the ones parallel to the 
north-pointing axis, the net induced magnetization den-
sity M


 finally results, as do the associated magnetic 

flux density . By integrating all strips on the sphere’s 
surface the magnetic flux density ( c ) at the center of a 
uniformly magnetized sphere is obtained to be [12]: 
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4. The Mixing Formula for Magnetic  
Permeabilities 

Now, this time consider an isotropic host material em-
bedded with a collection of spherical homogeneous mag- 

netic particles. Given the magnetic flux density at the 
location of a single molecule of the inclusions being mB


, 

the following relation holds in general: 

m c nearB B B B  
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           (12) 

where B


 is the average magnetic flux density within 
the bulk host and nearB


 is due to the asymmetry in the 

inclusion. In those cases of interest where either the 
structure of the included particles is regular enough, such 
as a cubical or spherical particulate, or all incorporated 
molecules are randomly distributed,  can be taken 
as zero. 

nearB


If the magnetic field intensity at the location of the 
molecule is denoted mH


, the induced magnetic dipole 

moment (mm

mH

) is: 
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where m  is th  molecular magnetization of the mole-
cule. Because 

e
M


 equals , we have [8] mnm

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        (14) 

where m  is known as the magnetic susceptibility. 
Hence, mB


 can be further expressed as [8] 
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with μr being the relative permeability. By incorporating 
(12) and (15) into (14) we obtain: 
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Further, for isotropic magnetized materials [8]: 
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Substituting (17) into (16) gives 
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In the special case where the host material is vacuum 
(μr = 1) and the permeability of the spherical particles is 
μs, n = V-1 (V being the volume of a spherical particle), 
and (18) is satisfied by: 
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Combining (18) and (19) gives the effective perme- 
ability (μeff) of the final mixture, i.e., 
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where f = nV is the volume ratio of the embedded parti-
cles within the mixture (0 ≤ f ≤ 1). In the more general 
situations where the host is no longer vacuum but of the 
permeability μh, then the more general mixing formula of 
permeabilities becomes: 
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As with Bruggeman’s approach for dielectrics [4], the 
derived magnetic permeability formula can be genera- 
lized to the multi-component form: 

0 0

0 02 5 2 5
eff i

i
ieff i

f
   
  

 


    
       (22) 

where fi and μi denote the volume ratios and permeabili-
ties of the involved different inclusions, respectively. Or, 
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Although the actual mixing procedures can vary 
widely such that substantial deviations may result be- 
tween the theoretical and measured values, (23) should 
still serve as a valuable guide when designing magnetic 
materials or composites. 

5. Summary and Conclusions 

An effective mixed medium approximation of perme- 
abilities in the infinite-wavelength limit is derived from 
the model describing a host material containing a collec-
tion of spherical homogeneous inclusions. The derivation 
parallels that which had previously led to the famous 
Maxwell Garnett formula for dielectric mixtures. It is 
believed that such approximate magnetic mixing formula 
should find a great many applications in all frequency 
spectra of the general electromagnetic fields. 
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