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Abstract 
 
This article aims at studying one dimensional unsteady planar and cylindrically symmetric flow involving 
shocks under the influence of magnetic field. The method of generalized wavefront expansion (GWE) is em-
ployed to derive a coupled system of nonlinear transport equations for the jump of field variables and of its 
spatial derivatives across the shock, which, in turn determine the evolution of wave amplitude and admit a 
solution that agrees with the classical decay laws of weak shocks. A closed form solution exhibiting the fea-
tures of nonlinear steepening of the wave front. A general criterion for a compression wave to steepen into a 
shock is derived. An analytic expression elucidating how the shock formation distance is influenced by the 
magnetic field strength is obtained. Also, the effects of geometrical spreading and nonlinear convection on 
the distortion of the waveform are investigated in the presence of magnetic field. 
 
Keywords: Magnetogasdynamic Flow, Weak Shock, Induced Discontinuity, Generalized Wavefrontexpansion (GWE) 

1. Introduction 
 
To study the propagation of nonlinear waves, such as 
shock waves and acceleration waves, which belong to the 
singular surface theory, have been, and remain, the topic 
of considerable interest in continuum mechanics [1-6].
This is primarily due to the fact that when the nonlineari-
ties are present in the governing equations, these waves 
can manifest a wide range of behaviors, the most striking 
one is finite time blow up. Thomas [7] appears to have 
been one of the first investigator describing the evolutio-
nary behavior of acceleration waves in flows of inviscid 
ideal gases. Later, Coleman and Gurtin [8] studied the 
problem of acceleration waves and higher order waves 
(or ‘mild discontinuities’ as they are named by the au-
thors) in fluids that exhibit mechanical dissipation via the 
relaxation of internal state variables. However, these au- 
thors went on to conjecture that blow-up of acceleration 
wave implies that a shock wave, which is a propagating 
jump in at least one of the acoustic field variables them-
selves, had in fact formed. Since then extensive investi-
gations on singular surfaces and the phenomena of finite 
time blowup of acceleration waves have been documented 
in the literature of continuum mechanics (see [9-13] and 
those cited therein). Recently, Christov et al. [14] have 
considered the nonlinear acoustic propagation in homen-

tropic prefect gas flow and provided numerical support 
for the shock-conjecture of Coleman and Gurtin [8]. Still 
more recently, Shekhar and Sharma [15] have studied the 
propagation of weak discontinuities in shallow water and 
their subsequent culmination into shock waves. 

In contrast to acceleration wave, which is defined as 
the propagating jump discontinuity in at least one of the 
first derivative of the field variables, with the field va-
riables themselves being continuous, the shock waves are 
very difficult to analyze because their evolutionary beha-
vior is always coupled with that of the higher order dis-
continuities that accompany them. Whereby, the evolu-
tionary behavior of shock amplitude is governed by an 
equation that also involves the amplitude of the accom-
panying second order discontinuity. One can derive ano- 
ther evolution equation for the amplitude of the accom-
panying second order discontinuity, but this equation 
involves the amplitude of the accompanying third order 
discontinuity. This procedure could be carried out to high-
er order derivatives and thus one obtains infinite number 
of transport equations. It was Maslov [16] who proposed 
for the first time the idea of an infinite system of compa-
tibility conditions and provided a rigorous mathematical 
approach to describe the kinematics of a weak shock 
wave propagating through an inviscid, isentropic gas; 
using the theory of generalized functions. He derived an 
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infinite set of identities for the shock amplitude and 
higher order derivatives of field variables which hold 
along the rays. Maslov’s work presents a clear understand-
ing of the problem mathematically and can be regarded as 
a major breakthrough in approximate determination, at 
least in theory, of the shock position. Similar method has 
been developed by Grinfeld [17] to study weak shocks in 
elastic materials. 

Another approximate analytical method for studying 
the kinematics of weak shock, called generalized wave-
front expansion, has been proposed by Anile [18] and is 
based on an asymptotic expansion in a neighborhood of 
the wavefront. Russo [19] applied this method to a rather 
simple case of single wave equation in one space dimen-
sion and made a comparison with the shock fitting me-
thod given by Whitham [1]. Further, Anile and Russo [20] 
extended this method to higher order corrections and 
derived an infinite hierarchy of coupled transport equa-
tions along the wavefront (rays) for the shock amplitude 
and the jumps of the field gradients. In this context Mad-
humita and Sharma [21] employed a different approach to 
describe the kinematics of a shock wave of arbitrary 
strength by considering an infinite sequence of transport 
equations for the variation of jump in the field variable 
and their space derivative across the shock, and used a 
truncation procedure similar to that proposed by Maslov.  

The present work, which deals with the unsteady pla-
nar and cylindrically symmetric flow of an inviscid gas 
under the influence of magnetic field, derives motivation 
from the study relating to the propagation of weak shock 
proposed by Anile [18]. The method of generalized wa-
vefront expansion is used to analyze the main features of 
weakly nonlinear waves propagating in an electrically 
conducting gas permeated by a transverse magnetic field. 
It is assumed that the fluid ahead of the shock is at rest 
and the dissipative effects, except due to the magnetic 
field, are negligible.  

A system of two transport equations, coupled through 
the amplitude of accompanying discontinuity, is derived 
along the rays of governing equations; these equations 
effecttively describe the evolutionary behavior of shock 
front. The location of shock formation, i.e. the point where 
the characteristics begin to coalesce, is determined. Also, 
the influence of the magnetic field on the nonlinear dis-
tortion of the wave form and the shock formation distance 
is assessed.  

 
2. Formulation of the Problem  
 
In carrying out the analytical part of our study, it is con-
venient to treat the wave phenomena as being kinematic 
Whitham [1], rather than dynamic. Mathematically, this 
means recasting the equations, governing a physical phe- 

nomenon, as a system consisting of a ‘conservation/ba- 
lance law’ and a ‘flux’ relation. Omitting the details, it is 
not difficult to establish that the fundamental equations, 
describing the nonlinear wave process, for one dimen-
sional planar or cylindrically symmetric motion of an 
ideal gas in the presence of magnetic field can be modeled 
as Sharma et al. [22] 

( ) ( ) ( ) 0,
F G

f
t x

∂ ∂
+ + =

∂ ∂

U U
U          (1) 

where i≡U U , 1 4i≤ ≤ , is the column vector repre- 
senting dependent field variables, 
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Here, it is assumed that the electrical conductivity of 
the medium is infinite and the direction of the magnetic 
field is orthogonal to the trajectories of the fluid particles. 
The field variables ρ , u  and p  denote, respectively, 
the fluid density, velocity and pressure; h  is the mag-
netic pressure defined as 2 2h Hµ=  with µ  as the 
magnetic permeability and H  the transverse magnetic 
field. The variables x  and t , respectively, are the 
space and time coordinates and γ  is the adiabatic index. 
We consider that initially the wave propagation takes 
place into a uniform state characterized by a flow field at 
rest with constant density and pressure fields, namely 

( )T
0 0 0,0, ,p hρ+ =U . Hereafter the subscript “ 0 ” refers 

to evaluation at the uniform state unless stated otherwise. 
It is well known that a system of equations written in 

the form (1) admits a shock wave that may be initiated in 
the flow region, and once it is formed, it will propagate 
by separating the portions of continuous regions. Let 

( )x tχ=  represents the location of the moving shock 
front at any time t  across which the flow variables and 
their derivatives suffer finite jump discontinuities, then a 
shock wave solution of (1) may exist if across the surface 
of discontinuity ( )tχ , following Rankine-Hugoniot con-
ditions are satisfied, 

( ) ( ) 0V F G   − + =   U U            (2) 

where d dV tχ=  is the speed of propagation of the 
wavefront into the medium characterized by U+ . The 
square brackets enclosing an entity denote the amplitude 
of the jump in that entity across the shock front ( )tχ , 
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defined as [ ] += −U U U . In this context we usually call 
U+  the unperturbed field and U  the perturbed field, 
which correspond, respectively, the states just ahead and 
behind the shock front ( )tχ . If it is assumed that the 
discontinuity [ ]U across ( )tχ  is a ‘ k shock− ’ (see  
Jeffrey [4]), then there exist an eigenvalue of (1), say

( )kλ , such that, ( )k Vλ <  and 
( )

lim
kV λ

+
→

=U U  . 

Assume that, over some finite time interval 0 ,t t   , the 
following asymptotic expansion hold (see Anile [18]) 

[ ] ( )
1

l
l

l
Y tε

∞

=

= ∑U , ( )( )

0

m
j m

jm
j

Y t
x

ε
∞

=

 ∂
= ∂ 
∑U ,    (3) 

where 1,2,3m =  . 
Then, because of the analyticity of ( )F U and ( )G U  

they can be expanded, behind the shock, in terms of 
small parameter ε ; therefore for any quantity ( )q U  
(either of ( )F U or ( )G U ), we have 

( ) ( )

( )( )

2
1 2

2
3

1 1

( )

( )
2

U U

U U

q U q q Y q Y

q YY

ε ε

ε ε
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+

= + ∇ + ∇

+ ∇ ∇ +Ο
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3. Evolution Law for Weak Shocks 
 
In this section, we employ the elegant theory of Genera-
lized Wavefront Expansion (GWE) Anile [18], to deter-
mine how an initial jump discontinuity in flow variables 
propagate and evolves over time. Equation (1) can be 
recast into a quasilinear hyperbolic system of first order 
PDEs as 

( ) ( ) 0
t x

∂ ∂
+ + =

∂ ∂
U UA U B U  ,          (5) 

where, 1
ij

−≡ =A A M N  is a 4 4×  matrix having the 
non zero components 

11 22 33 44A A A A u= = = = , 12A ρ= , 

1
23 24A A ρ−= = , 2

32A aρ= , 42 2A h= , 

and ( )
T

1 2,0, ,m u mpu muhf
x x x
ρ γ−  ≡ =  

 
B M U , 

where, M  and N  are the Jacobian Matrices defined 
as, U F= ∇M  and U G= ∇N . 

Clearly, eigenvalues of the coefficient matrix ( )A U  
are (1,2) u cλ = ±  and (3,4) uλ = . Among them two (i.e. 

(1,2)λ ) represent the waves propagating in x±  direction 
with the speed u c± , where ( )1 22 2c a b= +  repre- 
sents the magneto-acoustic speed with ( )1 22b h ρ=  as 
the Alfvén velocity. The remaining two characteristics re- 
present entropy waves or particle paths propagating with 

fluid velocity. 
As stated earlier, let a ‘ k shock− ’ corresponds to ei-

genvalue (1)λ , then it is possible to write 
(1)V vλ ε= +                (6) 

With the foregoing assumptions, we set ourselves for 
the task of determining the evolution law of weak shocks 
and assessing the magnetic field effects on the process of 
shock formation. The first step is to use Equations (3) 
and (4) in (2) and equating to zero the coefficients of like 
orders ofε , we obtain the following equation governing 
the variables of first order 

( )(1)
1 0λ− =A I Y , 

which implies that 1Y  is an eigenvector of ( )A U  co- 
rresponding to the eigenvalue (1)λ . If the left and right 
eigenvectors of A  corresponding to the eigenvalue 

(1)λ  are 
( )0, 2,1 2 ,1 2c ρ ρ=L  

( )T2 2 2,1/ , ,c c a c b cρ ρ ρ=R . 

Then it is possible to write 

( )1 t= πY R  ,              (7) 

with ( )tπ as the amplitude of a right running shock front 
impinging on the state +U  with the speed (1)λ  0c=  
and to be determined later. 

Also, from the jump conditions, to the second order of 
ε , we get, 

( ) ( ) ( ){ }1 (1)

2 U U

t
v λ−π
= ∇ − ∇LM N RR M RR .   (8) 

From the kinematics of singular surfaces, it is known 
that the following compatibility relation must hold at the 
wavefront Achenbach [2], Thomas [6] 

[ ] t xf f V f
t
δ

= ∂ + ∂      δ
          (9) 

where, tδ δ  is the Thomas displacement derivative and 
provides the time rate of change measured by an observ-
er travelling with ( )tχ . Taking the jump in the field Eq-
uation (5), which is permissible since it is assumed that 
the equations holds on both sides of ( )tχ , and using the 
compatibility relation (9) we get  

[ ] ( ){ } [ ]( ) ( )( ) 0x xV
t +

δ
 + − ∂ + ∂ + =    δ

U
A U I U A U U B U  

(10) 
Introducing expansions (3-4) into (10) and equating to 

zero, the coefficients of the various powers of ε one 
obtains,  

0ε : ( )( )(1) (1)
0 0λ+ − =A U I Y , 
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which implies, 

( )(1)
0 tψ=Y R                 (11) 

1ε : 
( )( ) ( )( )

( ) ( ) ( )

(1) (1) (1)1
1 1 0

1 1

d
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A Y U B Y
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Here, (1)d d t xt λ= ∂ + ∂ is the derivative taken along 
the rays, which implies that, d d xt t vεδ δ = + ∂ . 

The above equation, after left multiplication by L and 
using Equations (7), (8) and (11), yields the following 
ordinary differential equation 

0

d 0
d 2t c

ψπ Γ
+Φπ+ π =           (12) 

where, 0 2mc xΦ = and ( )( )23 2 2 2γ αΓ = + − , with 
0 0c aα = as the Alfvén number. 

In deriving Equation (12), we have made use of the re- 
lation, ( ) ( )(1) .U UL A R λ

+
∇ = ∇ It evidently follows from 

Equation (12) that the temporal evolution of shock am-
plitude at any time t  depends not only on the shock 
strength, its curvature and the dissipation on account of 
applied magnetic field but also on the function ψ . Since 
the quantity ψ  is still unknown, this equation is, how-
ever, unable to give an analytical description of the com-
plete evolutionary behavior of the wave front. We, there- 
fore, need to work out certain aspects in more detail.  

 
4. Evolution of Accompanying Discontinuity 
 
In order to proceed further, it is necessary to obtain a 
transport equation for ψ , which may be think of as the 
amplitude of jump in the slope of unsteady disturbance at 
the wave front. To achieve this goal, we proceed as fol-
lows: 

We differentiate Equation (5) with respect to x  ahead 
and behind the shock and subtract these equations writ-
ten ahead and behind the shock. The resulting equation, 
after using equations the compatibility relation (9) gives 
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The above equation after using expansions (3-4) and 
left multiplying by L , while zeroth order terms only are 
retained, yields the following compatibility equation 

2

0

d 0
dt c
ψ ψ ψΓ+Φ + =             (13) 

It follows immediately that Equation (13) does not con- 
tain any unknown term and thus the system of compati-
bility equations for weak shocks is closed at the second 
compatibility equation. Also, it may be noticed that the 
evolution Equation (16) contains only the zeroth order 
terms therefore the derivation is valid only if the ampli-
tude of accompanying discontinuities are of ( )1O . 

It is interesting to notice that Equation (13) is in the 
form of Bernoulli type equation which governs the evo-
lutionary behavior of acceleration waves in nonlinear 
material media and elsewhere. In (13) the linear term 
ψΦ  depends upon the unperturbed conditions of the me- 

dium and it takes into account the gradient in the flow 
variables as well as the geometry of the problem. The ne- 
gative value of ψ  corresponds for compression waves 
and positive for expansion waves. The coefficient of non-
linear term, Γ , which is positive for most of the fluids, 
is responsible for the nonlinear steepening of the wave 
front. However, in past years, fluids with negative non-
linearity have been found Murlidharan and Sujith [23]. 
The present paper deals with positive values of Γ . Thus, 
the nonlinear term makes a negative value of ψ  more 
negative and a positive value of ψ  less positive, that is, 
the nonlinearity alone causes a compression wave to 
steepen and an expansion wave to relax. 

5. Results and Discussion 

As Equation (13) is of the form which describes the evo-
lutionary behavior of wave amplitude in various gasdy-
namic regimes [9-13] and therefore the analysis of this 
equation concerning the local behavior of wave ampli-
tude follows on parallel lines. However, to investigate 
the magnetic field effects on the process of nonlinear 
steepening of wave front we rewrite Equations (12) and 
(13) in non-dimensional form as 

( )d 2 0
dx

ψπ
+ π Φ +Γ =


 





            (14) 

2d 0
dx
ψ ψ ψ+Φ +Γ =


 

 



             (15) 

where, π , ψ , Φ , Γ  and x  are dimensionless 
quantities defined as 0π = π π , 0ψ ψ ψ= , 0x x x=
Φ 2m x=   and ( )( )2 23 2 2 2γ α α −Γ = + − Θ  with α

0 0c a=  as the Alfvén number and 2
0 0 0x aψΘ =  as 

the dimensionless measure of the strength of the initial 
jump discontinuity in the field gradients. Indeed, these 
two transport equations govern the evolutionary behavior 
of the shock amplitude as well as the jump in the first 
order gradient of the field variables. In deriving Equa-
tions (14) and (15) we have made use of the characteris-
tic relation 

(1)
0

d
d
x
t

λ=                  (16) 
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Performing required integration subject to the initial 
conditions for ψ and π  at 1x = , say 1ψ = and 1π = , 
the Equations (14) and (15) along with the characteristic 
relation (16) yield the following solutions. 

Plane case ( )0m = : Integrating Equations (14) and 
(15) subject to the above initial conditions yield 

( )( ) 121 1xψ α
−−= + ΓΘ −  ,          (17) 

( )( ) 1/221 1x α
−−π = + ΓΘ −  .          (18) 

Cylindrical case ( )1m = : In this case the solution of 
Equations (14) and (15) takes the following form  

( ){ } 1
1/2 2 1/21 2 1x xψ α

−
− −= + ΓΘ −          (19) 

( )( ){ } 1/2
2 1/21 2 1x xα

−
−π = + ΓΘ −          (20) 

5.1. Nonlinear Steepening of the Wave Front 

Since Γ and α  are positive quantities and ( )1/2 1x − is 
an increasing function of x , therefore it follows from 
(17)-(20) that the behavior of π  and ψ  will depend 
on sign of 0ψ  and hence that of Θ . It is evident from 
Equations (17)-(20) that if 0ψ  is positive (i.e. an expan- 
sion wave front with 0Θ > ), π  as well as ψ decreas-
es as the expansion wave advances in x  direction. While 
for negative values of 0ψ  (i.e. a compression wave with 

0Θ < ), π and ψ increases monotonically and the solu-
tion provided by (17)-(20) no longer remains valid and 
steepens into a shock wave after a finite running length 

sx . In fact, the weak shock assumption breaks down be-
fore π and ψ approach to infinitely large values and 
existence of the distance sx  may be regarded as an in-
dication of this. A simple physical explanation of the ap-
pearance of shock wave may be that it is formed owing 
to the inertial overtaking of flow particles, that is when 
the first characteristic could intersect the successive one. 
Thus a shock can form only when initial disturbance is 
compressive and the corresponding shock formation dis-
tance sx  in the above two cases (for 0Θ < ) are given 
by 

Plane case: 21sx α= − ΓΘ , 
Cylindrical case: 1/2 21 2sx α= − ΓΘ . 

 
5.2. Comparison with Exact Results for Decay of 

Weak Shocks 
 
For large values of x  the asymptotic behavior of plane 
and cylindrical shock waves is shown in the flollowing 
table. 

From Table 1 it is clear that for plane waves 1xψ −∝   
and 1 2x−π ∝   therefore, width of the plane shock, i.e. 

Table 1. Decay behavior of weak shock waves and first or-
der discontinuities. 

 Shock 
strength 

First order 
discontinuity 

Shock width 
varies as 

Plane case 1 2x−π ∝  1xψ −∝  1 2x 

Cylindrical 
case 

3 4x−π ∝  1xψ −∝  1 4x 

 
the distance between shock front and tail of the rarefac-
tion wave increases like 1 2x . Also, for cylindrical 
waves, 1xψ −∝   and 3 4x−π ∝   therefore, width of the 
cylindrical shock waves increase like 1 4x . These results 
are in closed agreement with the earlier results obtained 
by Whitham [1, pp. 312-322], Courant and Friedrichs [24, 
pp. 164-168] and by Landau [25]. 

Now our objective is to investigate how the nonlinear 
steepening or flattening of the wave form is influenced 
by the presence of magnetic field. For the sake of com-
parison, the integral curves for Equations (17)-(20) are 
sketched in the Figures 1-9. These curves help to illu-
strate the effect of magnetic field strength, which enters 
through an increase in the Alfvén number α , and the 
geometry of the problem on the nonlinear steepening or 
flattening of the wave. 

Figures 1-4 illustrate the magnetic field effects on the 
flattening of expansion waves for both the cases, that is, 
weak shock ( π ) and correspnding accompanying dis- 
continuity (ψ ). It is evidently clear from Figures 1 and 
2 that a cylindrical wave attenuate faster than a plane 
wave as one would expect and the attenuation rate is 
decreased by the dissipative mechanism due to presence 
of magnetic field strength (α ) as compared to what it 
would be in non-magnetic case ( )1α = . Also, from Fi- 
gures 3 and 4 we infer that the amplitude of the first 
order discontinuity ψ , which accompany the weak 
shock, decays more rapidly as compared to the shock 
amplitude π  itself. 

As discussed earlier that only compressive waves can 
evolve into a shock and the corresponding situations are 
depicted in the Figures 5-8, showing thereby that, for 
compression waves, an increase in the magnetic field 
strength delays the onset of shock. Also, it is clear from 
these figures that amplitude of accompanying disconti-
nuity (ψ ) steepen more rapidly in comparision to the 
shock amplitude π  itself. 

Figure 9 shows the variation of shock formation dis-
tance with changes in the value of the initial jump 0ψ . It 
may be noticed that an increase in the magnetic field 
strength enhances the shock formation distance. How- 
ever, higher values of the initial jump 0ψ  and hence Θ
lead to shorter shock formation distance. 
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6. Conclusions 
 
In this article the interaction between gasdynamic motion 

 

 
Figure 1. Effect of the magnetic field strength ( )α  on the 
flattening of expansion waves for 5 3γ = and 0.5Θ = ; (a) 

0m =  (Dashed lines), (b) 1m =  (smooth lines). 
 

 
Figure 2. Effect of the magnetic field strength ( )α  on the 
flattening of accompanying discontinuity for 5 3γ =  and 

0.5Θ =  (a) 0m = (Dashed lines), (b) 1m = (smooth lines). 
 

 
Figure 3. Effect of the magnetic field strength ( )α  on the 
flattening of expansion waves for m 0= , 5 3γ =  and Θ

0.5= ; (a) Dashed lines correspond to ψ  vs x , (b) 
Smooth lines correspond to π  vs x . 

 
Figure 4. Effect of the magnetic field strength ( )α  on the 
flattening of expansion waves for 1m = , 5 3γ = and 

0.5Θ = ; (a) Dashed lines correspond to ψ  vs x , (b) 
Smooth lines correspond to π  vs x . 
 

 
Figure 5. Effect of the magnetic field strength ( )α  on the 
growth of compression waves for 5 3γ =  and −0.5Θ = ; (a) 

0m =  (Dashed lines), (b) 1m = (smooth lines). 
 

 
Figure 6. Effect of the magnetic field strength ( )α  on the 
steepening of compression waves ( )ψ  for 5 3γ = and Θ  
−0.5= ; (a) 0m =  (Dashed lines), (b) 1m =  (smooth 

lines). 

5 10 15 20

0.2

0.4

0.6

0.8

1.0

x

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

x

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

x

1α =  

2α =

1α =  

2α =  

1α =
 2α =

 

1α =  
2α =  

1α =  

2α =  

1α =  

2α =
 

π  

π  

ψ  

ψ  



L. P. SINGH  ET  AL. 
 

Copyright © 2011 SciRes.                                                                             AM 

659 

 
Figure 7. Effect of the magnetic field strength ( )α  on the 
growth of compression waves for 0m = , 5 3γ = and 

−0.5Θ = ; (a) Dashed lines correspond to ψ  vs x , (b) 
Smooth lines correspond to π  vs x ... 
 

 
Figure 8. Effect of the magnetic field strength ( )α  on the 
growth of compression waves for 1m = , 5 3γ = and 

−0.5Θ = ; (a) Dashed lines correspond to ψ  vs x , (b) 
Smooth lines correspond to π . vs x . 
 

 
Figure 9. Effect of the magnetic field strength ( )α  and 
initial shock strength ( )Θ  on the shock formation distance 
(  sx ) for 5 3γ = ; (a) 0m =  (Dashed lines), (b) m 1=  
(smooth lines). 
 
and magnetic field has been analyzed in detail for the 
classic problem of propagation of weak shocks in one- 

dimensional unsteady planar and cylindrically symmetric 
flows of an inviscid electrically conducting gas. It is as-
sumed that the conductivity of the gas is infinite, and the 
direction of magnetic field is orthogonal to the trajecto-
ries of the fluid particles. Though the mathematics of the 
governing system of equations is quite complex, the qua-
litative physical results obtained are remarkably simple. 

The method employed in this paper, for investigating 
general properties of propagating shock waves, is based 
on an expansion in a neighborhood of the wave front and 
in a subsequent expansion in terms of the shock ampli-
tude (assumed to be small). To the first order this tech-
nique introduces the concept of rays and yields a coupled 
system of transport equations that hold along the rays of 
the governing equations. The solutions of this system 
efficiently describe shock motion and enable us to de-
termine explicitly the position and time of shock forma-
tion which also serve as an important parameter in stud-
ying the effects of magnetic field strength and the wave 
front geometry on convective nonlinear steepening and 
dissipative flattening of the wave which is also illustrated 
through Figures 1-9. It may be noticed that the effects of 
dissipative mechanism due to the presence of magnetic 
field is to slow down the decaying process of expansion 
waves; whereas, it has stabilizing effect on shock for- 
mation in the sense that an increase in the magnetic field 
strength enhances the shock formation distance. Also, it 
is observed that the decaying of plane and cylindrical 
shocks varies according to 1/2x−

 and 3/4x−
 , respectively; 

whereas the width of the shock for the above two cases 
increase like 1/2x  and 1/4x . These results are found to be 
in good agreement with earlier results investigated th- 
rough various other approaches. We conclude this sec-
tion with a remark regarding the mathematical structure 
noticed in Section 3, where the governing system of equ-
ations is used to derive transport equations for the jump 
in flow variables. In fact, in this development it is as-
sumed that the flow on both sides of the shock is smooth. 
The case in which the flow behind a shock near the triple 
point is not smooth, yields many technical difficulties is 
postponed to a future work. 
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