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Abstract 

We introduce a k-strictly pseudononspreading multivalued in Hilbert spaces more general than 
the class of nonspreading multivalued. We establish some weak convergence theorems of the se-
quences generated by our iterative process. Some new iterative sequences for finding a common 
element of the set of solutions for equilibrium problem was introduced. The results improve and 
extend the corresponding results of Osilike Isiogugu [1] (Nonlinear Anal.74 (2011)) and others. 
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1. Introduction 

Throughout this paper, we denote by   and   the sets of positive integers and real numbers, respectively. 
Let C  be a nonempty closed subset of a real Hilbert space H . Let ( )N C  and ( )CB C  denote the family 
of nonempty subsets and nonempty closed bounded subsets of E , respectively. The Hausdorff metric on 

( )CB E  is defined by  

( ) ( ) ( )
1 2

1 2 2 1, : max sup , , sup ,
x A y A

H A A d x A d y A
∈ ∈

 
=  

 
 

for ( )1 2,A A CB C∈ , where ( ) { }1 1, inf ,d x A x y y A= − ∈ . An element p E∈  is called a fixed point of a 

multivalued mapping ( ):T C N C→  if ( )p T p∈ . The set of fixed points of a multivalued mapping T  is 
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represented by ( )F T . 
The multivalued mapping ( ):T C CB C→  is called nonexpansive if  

( ), , , .H Tx Ty x y x y C≤ − ∀ ∈  

The multivalued mapping ( ):T C CB C→  is called quasi-nonexpansive if ( )F T ≠ ∅  and  

( ) ( ), , for .H Tx Tp x p x C p F T≤ − ∀ ∈ ∈  

Iterative process for approximating fixed points (and common fixed points) of nonexpansive multivalued 
mappings have been investigated by various authors (see [2]-[5]). 

Recently, Kohsaka and Takahashi (see [6] [7]) introduced an important class of mappings which they called 
the class of nonspreading mappings. Let C  be a subset of Hilbert space H , they called a mapping 

:T C C→  nonspreading if  
2 2 22 , .Tx Ty Tx y Ty x x y C− ≤ − + − ∀ ∈  

Lemoto and Takahashi [8] proved that :T C C→  is nonspreading if and only if  
2 2 2 , , .Tx Ty x y x Tx y Ty x y C− ≤ − + − − ∀ ∈  

Now, inspired by [6] and [7], we propose a definition as follows.  
Definition 1.1 The multivalued mapping ( ):T C CB C→  is called nonspreading if  

2 222 for , , , .x y x y x yu u u y u x u Tx u Ty x y C− ≤ − + − ∈ ∈ ∀ ∈               (1.1) 

By Takahashi [8], We get also the multivalued mapping ( ):T C CB C→  is nonspreading if and only if  
2 2 2 , for , , , .x y x y x yu u x y x u y u u Tx u Ty x y C− ≤ − + − − ∈ ∈ ∀ ∈            (1.2) 

Infact,  

( )

2 22

2 2 2

22

2 22 2

2 2

2

2 2 ,

2 ,

2 2 2 ,

2 ,

x y x y

x y x x

x x x y x y

x y x x y x x y

x y x y

u u u y u x

u u u x u x x y x y

u x x u u u u u

u u u x x y u u u x x u y u

u u x y x u y u

− ≤ − + −

⇔ − ≤ − + − − + −

+ − + − − + −

⇔ − ≤ − + − + − + − − − −

⇔ − ≤ − + − −

 

Definition 1.2 The multivalued mapping ( ):T C CB C→  is called k -strictly pseudononspreading if there 
exists [ )0,1k ∈  such that  

( ) 22 2 2 , , for , , , .x y x y x y x yu u x y k x u y u x u y u u Tx u Ty x y C− ≤ − + − − − + − − ∈ ∈ ∀ ∈     (1.3) 

Observe that suppose T  is k-strictly pseudononspreading with ( )F T ≠ ∅ , and ( ) { }p F T Tp p∈ ⇒ = , 
then  

( )2 22 , , .x x xu p x p k x u x C u Tx p F T− ≤ − + − ∈ ∈ ∈  

Clearly every nonspreading multivalued mapping is k-strictly pseudononspreading multivalued mapping. The 
following example shows that the class of k-strictly pseudononspreading mappings is more general than the 
class of nonspreading mappings. 

Example (see [1] page 1816 Example 1), Let R  denote the reals with the usual norm. Let :T →R R  be 
defined for each x∈R  by  

( )
[ )

, ,0

2 , 0,

x x
Tx

x x

 ∈ −∞= 
− ∈ ∞
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The equilibrium problem for : E E Rφ × →  is to find x E∈  such that ( ),x y oφ ≥ , y E∀ ∈ . The set of 
such solution is denoted by ( )EP φ . Given a mapping ( ):T E CB E→ , let ( ), ,x y x yφ =  for all y E∈ . 
The ( )x EP φ∈  if and only if x E∈  is a solution of the variational inequality , 0Tx y ≥  for all y E∈ . 

Numerous problems in physics, optimization, and economics can be reduced to find a solution of the equili-
brium problem. Some methods have been proposed to solve the equilibrium problem see, for instance, Blum and 
Oettli [9], Combettes and Hirstoaga [10], Li and Li [11], Giannessi, Maugeri, and Pardalos [12], Moudafi and 
Thera [13] and Pardalos, Rassias and Khan [14], Ceng et al. [15]. In the recent years, the problem of finding a 
common element of the set of solutions of equilibrium problems and the set of fixed points of single-valued 
nonexpansive mappings in the framework of Hilbert spaces has been intensively studied by many authors. 

In this paper, inspired by [1] we propose an iterative process for finding a common element of the set of solu-
tions of equilibrium problem and the set of common fixed points of k-strictly pseudononspreading multivalued 
mapping in the setting of real Hilbert spaces. We also prove the strong and weak convergence of the sequences 
generated by our iterative process. The results presented in the paper improve and extend the corresponding re-
sults in [1] and others. 

2. Preliminaries and Lemma 

In the sequel, we begin by recalling some preliminaries and lemmas which will be used in the proof.  
Lemma 2.1 Let H  be a real Hilbert space, for all ,x y H∈  and [ ]0,1t∈ , then the following well known 
results hold:  

(i) 2 2 2 , .x y x x y y+ ≤ + +  

(ii) ( ) ( ) ( )2 2 2 21 1 1tx t y t x t y t t x y+ − = + − − − −  

(iii) If { }nx  is a sequence in H  which converges weakly to z H∈  then  
2 2 2limsup limsupn n

n n
x y x z z y

→∞ →∞
− = − + −  

Let C  be a nonempty closed convex subset of a real Hilbert space H . The nearest point projection 
:CP H C→  defined from H  onto C  is the function which assigns to each x H∈  its nearest point denoted 

by CP x  in C . Thus CP x  is the unique point in C  such that  

, .Cx P x x y y C− ≤ − ∀ ∈  

It is known that for each x H∈   

, 0, .C Cx P x y P x y C− − ≤ ∀ ∈  

Lemma 2.2 (see [5]) Let C  be a nonempty closed convex subset of a real Hilbert space H . Let :CP H C→  
be the metric projection of H  onto C . Let { }nx  be a sequence in C  and let 1n nx u x u+ − ≤ −  for all 
u C∈ . Then { }C nP x  converges strongly.  

We present the following properties of a k-strictly pseudononspreading multivalued mapping.  
Lemma 2.3 Let C  be a nonempty closed convex subset of a real Hilbert space H , and let ( ):T C CB C→  

be a k-strictly pseudononspreading multivalued mapping. If ( )F T ≠ ∅ , and ( ) { }p F T Tp p∈ ⇒ = , then it is 
closed and convex.  

Proof. Let { } ( )nx F T⊆  and nx x C→ ∈  (as n →∞ ). Since 
nx x x nu x u u x x− ≤ − + −  and  

( )22 2 2 ,
nx x n x n xu u x x k u x x x k u x− ≤ − + − ≤ − + −  

we have 20 0
1x nu x x x

k
≤ − ≤ − →

−
 (as n →∞ ). Hence ( )x F T∈ . 

Next let ( )1z tp t q= + − , where ( ),p q F T∈  and 0 1t≤ ≤ , we have  

( ) ( )( ) ( ) ( ) ( )

( ) ( )

2 22 2 2

2 2 2 2 2 2

1 1 1

1 1 , ,

z z z z z

z z z z

z u t p u t q u t p u t q u t t p q

t p z k z u t q z k z u t t p q k z u u Tz

− = − + − − = − + − − − − −

   ≤ − + − + − − + − − − − = − ∈   
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Thus 0zz u− =  and hence ( )z F T∈ . This complete the proof of Lemma 2.3    
Lemma 2.4 Let C  be a nonempty closed convex subset of a real Hilbert space H , and let ( ):T C CB C→  

be a k-strictly pseudononspreading multivalued mapping. If ( )F T ≠ ∅ , and ( ) { }p F T Tp p∈ ⇒ = , then 
I T−  is demiclosed at 0.  

Proof. Let { }nx  be a sequence in C  which nx p  and 0
nn xx u− →  (as n →∞ ). 

Since nx p , it is bounded. For each x H∈  define [ ): 0,Hφ → +∞  by  

( ) 2 .limsup n
n

x x xφ
→∞

= −  

Then from Lemma 2.1 we obtain  

( ) ( )2 2 2 ,limsup n
n

x x p p x p p x x Hφ φ
→∞

= − + − = + − ∀ ∈  

and so ( ) ( ) 2
p pu p p uφ φ= + −  (where pu Tp∈ ). 

In addition,  

( )

( )

22

22

2

limsup limsup

limsup

.

np n p x p
n n

n p
n

p

u x u u u

x p k p u

p k p u

φ

φ

→∞ →∞

→∞

= − = −

≤ − + −

= + −

 

We obtain ( ) 2
1 0pk p u− − = . Thus 0pp u− =  and hence ( )p F T∈ . This complete the proof of 

Lemma 2.4.     

3. Main Results 

Theorem 3.1 Let C  be a nonempty closed convex subset of a real Hilbert space H , and let ( ):T C CB C→  
be a k-strictly pseudononspreading multivalued mapping with ( )F T ≠ ∅  and ( ) { }p F T Tp p∈ ⇒ = . Let 

[ ),1kβ ∈  and { }nα  be a real sequence in [ )0,1  such that lim 0n nα→∞ = . Let { }nx  and { }nz  be se- 
quences generated initially by an arbitrary element 1x C∈  and then by  

( )
( )

1

1

1

1 , 1

1 1

n n

n n n n n

n n x x n

n

n i
i

x x y

y x u u Tx n

z x n
n

α α

β β
+

=


 = + −
 = + − ∈ ≥

 = ≥


∑

 

Then, the sequences { }nz  converge weakly to ( )z F T∈ , where ( )lim .n nF Tz P x→∞=   

Proof. Let ( ): 1T I Tβ β β= + −  

First, We claim that ( ) ( )F T F Tβ = . 

Indeed, if ( )p F T∈ , then  

( )( ) ( )1 1 , ,p p pu I T p p u p u T pβ β ββ β β β= + − = − − = ∈  

this implies ( ) ( )F T F Tβ =  and { }p T p T p pβ β∈ ⇒ =  Next, for ,x y C∀ ∈  we have  

( ) ( )( )
( ) ( ) ( ) ( )

22

222

1

1 1 .

x y x y

x y x y

u u x y u u

x y u u x u y u

β β β β

β β β β

− = − + − −

= − + − − − − − − −
          (3.1) 
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By (1.3) and (3.1), we obtain  
2 2 2 , .

1x y x yu u x y x u y uβ β β β

β
− ≤ − + − −

−
                       (3.2) 

Observe also that for each ( )p F T∈   

( ) ( )( )
( )

1 1

1 ,

n

n

n n n n x

n n n x n

x p x p u p

x p u p x p

β

β

α α

α α

+ − = − + − −

≤ − + − − ≤ −
 

hence { }nx  is bounded. By Lemma 2.1 and (3.2), we obtain  

( ) ( )( )
( ) ( )

( )

22

1

2 22

2 2

1

1 1

21 , .
1

n

n n

n

n y n n y n x y

n n y n x y n n n x

n n y n n n x y

x u x u u u

x u u u x u

x u x y x u y u

β β β β

β β β β

β β β

α α

α α α α

α α
β

+ − = − + − −

= − + − − − − −

 
≤ − + − − + − − − 

            (3.3) 

Since  
2 22 2 , ,n n y y n y yx y x u u y x u u yβ β β β− = − + − + − −                      (3.4) 

it follows from (3.3) and (3.4) that  
2 2 2

1

1

2 ,

22 , , .
1

n y n y y n y y

n n y y n n y

x u x u u y x u u y

x u u y x x u y

β β β β β

β β βα
β

+

+

− ≤ − + − + − −

− − − + − −
−

                   (3.5) 

Summing (3.5) from n = 1 to n, and dividing by n we obtain  
2 2 211

1 1

1

1 1 2 ,
1

22 , , .

n
n y y y y

n

n y y i i y y
i

xxx u x u y u u y
n n n n

z u u y x u u y
n

β β β β

β β β β

β

α

+
+

=

− ≤ − + − − + + −
−

+ − − − − −∑
                   (3.6) 

Since { }nx  is bounded,then { }nz  is also bounded. Thus there exists a subsequence { }jnz  of { }nz  such 

that 
jnz w  (as j →∞ ). we also have  

2 2 211
1 1

1

1 1 2 ,
1

22 , , .

j

j

j

j

n
n y y y y

j j j j

n

n y y i i y y
ij

xxx u x u y u u y
n n n n

z u u y x u u y
n

β β β β

β β β β

β

α

+

+

=

− ≤ − + − − + + −
−

+ − − − − −∑
            (3.7) 

As j →∞  we obtain from (3.7) that  
2

0 2 , .y y yu y w u u yβ β β≤ − + − −                             (3.8) 

Since y H∈  was arbitrary, setting y w=  in (3.8) we have  
2 2

0 2 ,w wu w u wβ β≤ − − −  

from which it follows that ( ) ( )w F T F Tβ∈ = . Since ( )F T  is closed and convex by Lemma 2.3, thus we can 

define the projection ( )F TP . 
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From Lemma 2.2, ( ){ }nF TP x  converges strongly. Let ( )limn nF TP x z→∞ = . 

Next we show that z w= . 
Since { }nx  and ( ){ }nF TP x  are bounded, there exists 0M >  such that ( )n nF Tx P x M− ≤  ( )1n∀ ≥ , then 

we obtain by ( ) ( ), 0n n nF T F Tw P x x P x− − ≤   

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

, , ,

,

n n n n n n n nF T F T F T F T F T

n n n n n nF T F T F T F T

nF T

w z x P x w P x x P x P x z x P x

P x z x P x P x z x P x

M P x z

− − = − − + − −

≤ − − ≤ − ⋅ −

≤ −

           (3.9) 

Summing (3.9) from 1n =  to jn , and dividing by jn  we obtain  

( ) ( )
1 1

1, .
j j

j

n n

n i iF T F T
i ij j

Mw z z P x P x z
n n= =

− − ≤ −∑ ∑                   (3.10) 

Sine 
jnz w→  as j →∞ , and ( )limn nF TP x z→∞ = , we have  

2, 0.w z w z w z− − = − ≤  

Hence w z= , so, the sequences { }nz  converge weakly to ( )z F T∈ , where ( )limn nF Tz P x→∞= . This 

complete the proof of Theorem 3.1.    
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