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Abstract 
This paper has developed a genetic algorithm (GA) optimization approach to search for the opti- 
mal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural 
frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing 
system is formulated, and by solving the eigenvalue problem derived from the equations of motion, 
the natural frequencies of the spindle system can be acquired. Next, the mathematical model is 
built, which includes the objective function to maximize FMNF and the constraints to limit the lo- 
cations of the bearings with respect to the geometrical boundaries of the segments they located 
and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is 
designed to accommodate the dependent characteristics of the constraints in the mathematical 
model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optima- 
zation problem of an illustrative spindle system is investigated. The results show that the SDP-GA 
provides well convergence for the optimization searching process. By applying design of experi- 
ments and analysis of variance, the optimal values of GA parameters are determined under a cer- 
tain number restriction in executing the eigenvalue calculation subroutine. A linear regression 
equation is derived also to estimate necessary calculation efforts with respect to the specific qual-
ity of the optimization solution. From the results of this illustrative example, we can conclude that 
the proposed SDP-GA optimization approach is effective and efficient. 

 
Keywords 
Optimal Design, Motorized Spindle System Design, Finite Element Method, Genetic Algorithm, First 
Mode Natural Frequency 

 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.514208
http://dx.doi.org/10.4236/am.2014.514208
http://www.scirp.org/
mailto:cwlin@fcu.edu.tw
http://creativecommons.org/licenses/by/4.0/


C.-W. Lin 
 

 
2138 

1. Introduction 
Spindle-bearing systems have been widely applied in mechanisms, such as machine tools, that need relative 
rotary motion to accomplish desired machining functions. Recently, to alleviate high-speed rotation, motorized 
spindles have been successfully developed and used in high-speed machine tools. This type of spindle is equip- 
ped with a built-in motor as an integrated part of the spindle shaft, eliminating the need for conventional power- 
transmission devices. To achieve high cutting performance, the motorized spindle-bearing system must be de- 
signed deliberately since it is the main moving component in the machine tool. 

The design process for a motorized spindle system usually begins with identification of the bearing types, 
configurations, preloading methods, and spindle motor systems that would be appropriate for the desired 
machining application [1]. Once the bearings and spindle system concept has been clarified, detailed product 
specifications are further used to define other design values of the spindle system. One example is the locations 
of bearings assembled on the spindle shaft. However, in the initial stage of the spindle-bearing system design, 
the engineers must ascertain the optimal values of design variables that maximize the first-mode natural fre- 
quency (FMNF) of the spindle-bearing system to avoid forced resonance from easily happening in machining 
operations [2]. 

How the spindle shaft and bearing related design variables affect a system’s static and dynamic characteristics 
has been intensively studied [3]-[7]. Recently, Lin and Tu [2] comprehensively explored the effects of design 
variables on the natural frequencies of a high-speed spindle system. The eight design variables they considered 
included material of spindle shaft, diameters and total length of the spindle shaft, bearing initial preload, 
spacings between the bearings of the front or rear bearing set, spacing between the middle line of the front and 
rear bearing sets, and spacing of the middle line of the front and rear bearing sets to the end of the cutting tool. 
Their results showed that the first two most important design factors among the eight were related to the loca- 
tions of the bearings, which implied that the positions bearings installed on the spindle shaft must be determined 
carefully. There have been several papers dedicated to the optimization of locations or spans of bearings based 
on the stability of rotating machinery or machining from the practical viewpoints of machining experts and 
scholars [6]-[8]. However, there still lacks a research concentrated directly on the dynamics of spindle bearing 
systems. 

To estimate natural frequencies of spindle systems analytically in the early detailed design stage, the finite 
element method (FEM) has been frequently adopted in modeling rotor dynamics, due to its flexibility in treating 
ever-complex spindle system designs, such as motorized spindles. Basically, the FEM model for the spindle 
systems of machine tools is similar to those developed in rotor dynamic literature [9]-[12]. However, the spindle 
shafts used in machine tools usually have smaller shaft diameters and bearings, and possess no disk-like com- 
ponents. As the FEM model is built, the system natural frequencies can then be solved as an eigenvalue problem 
of the dynamic model, which is equal to finding the roots of a high order polynomial equation [13]; therefore, 
the FMNF maximization problem generally appears nonlinear. Because derivatives of the objective function 
FMNF are difficult or even impossible to deduce, genetic algorithm (GA), an optimization approach without 
derivatives, is utilized to solve the optimization problem in this paper. 

Genetic algorithm, first introduced by Holland in 1975 [14], is a modern metaheuristic method which can 
solve nonlinear optimization problems effectively. GA is a computational technique which simulates the evolu- 
tion process based on the principles of natural genetics and natural selection [15]. In the academic field of engi- 
neering optimization, GA has been successfully applied in the researches such as identification of a spatial 
slider-crank mechanism [16], optimal designs of pressure swing adsorption [17], comparisons for damage detec- 
tion on structures [18], and rolling element bearing design [19]. 

The main purpose of this paper is to demonstrate the application of GA on determining the optimal locations 
of bearings of motorized spindle shafts, which are the decisions expected to be made by design engineers when 
they start to plan assembling the bearings and spindle shaft after the spindle and bearing specifications have 
been specified during the concept design stage. In the following sections, the FEM model of a typical motorized 
spindle system is introduced first. Next, based on the FEM model, an optimization mathematical model consti- 
tuted by an objective function and constraints represented with the design variables, i.e. the locations of bearings, 
is developed, and an appropriate GA-based optimal solutions searching approach is described. Then, to manifest 
the proposed GA, a spindle-bearing system design problem is illustrated. The mathematical model of the bearing 
location problem for the illustrative design is built first. To find the optimal solutions, a customized computer 
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code is written in MATLAB by following the procedures of the proposed GA, where the GA parameters are 
determined by statistical analyses. The computer program is also used to investigate the influence of the para- 
meters on the results. Finally, the primary conclusions and discussions of this paper are described. 

2. FEM Model of Spindle-Bearing Systems 
Without loss of generality, the proposed dynamic FEM model is developed based on the spindle-bearing system 
as shown in Figure 1, where two sets of angular-contact ball bearings (Set 1 and Set 2) are utilized. Figure 2 
shows the essential mechanical models and the major independent design variables required to describe the 
dynamic properties of spindle-bearing systems [2], in which the integrated spindle-bearing system FEM model 
is a combination of the distributed spindle shaft FEM and the discrete bearing stiffness models. Those models 
can be represented as functions of spindle specifications, bearing specifications, initial preload, and bearing 
location. In this research, however, only the bearing location (highlighted in Figure 2) is retained as the design 
variables while the other factors are treated as design parameters. 

To construct the spindle shaft FEM model, the spindle shaft is first discretized into a finite number of beam 
elements, and each node of the elements is assigned with four degrees of freedom, where, in sequence, the first 
two are assigned to the lateral directions and the remaining two are assigned to the angular directions. Associ- 
ated with several specific shape functions, the kinetic and potential energy of each element can be obtained by 
integrating those of the cross-sections along the axis of the spindle shaft, and expressed as functions of the 
physical and geometrical properties of the element. Summing up the kinetic and potential energy of all elements, 
we can get the total energy of the spindle shaft, and by utilizing Lagrange’s equation, the equations of motion 
(EOM) of the spindle shaft can be finally deduced. After combining the bearing stiffness with the EOM of the 
spindle shaft, the simple free vibration EOM for the motorized spindle-bearing system can be presented as [20]  

0+ =Mq Kq  (1) 

s= +K K B  (2) 

where q  in ( )4 1p+  is the global node displacement vector of the spindle shaft and p  is the element number; 
M  is the mass matrix of size ( ) ( )4 1 4 1p p+ × + ; K , comprising the spindle shaft and radial bearing stiffness 
matrices sK  and B  as indicated in Equation (2), is the stiffness matrix of size ( ) ( )4 1 4 1p p+ × + . The 
matrices M  and sK  are all determined based on the dimensions and material of the spindle shaft, and the 
details of these matrices can be found in Appendix A, where the elements are modeled as Timoshenko beams. 
Note that no structural damping or axial forces are considered in the model. 

The bearing stiffness matrix B  can be expressed by summing up the stiffness of all bearings as  

 
1

bn

i
i=

= ∑B B  (3) 

 

 
Figure 1. A general spindle-bearing system.                             

 

 
Figure 2. Mechanism of spindle-bearing system FEM model.   
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where bn  is the total number of bearings in the system and iB , with the same size as sK , is the stiffness 
matrix contributed by bearing i . Usually the points of application of the bearings are arranged on the joint 
stations of spindle shaft FEM model [13]. If we neglect the axial stiffness contributed by the bearing as in the 
analysis of the spindle shaft, the entries of [ ]i lmb=B  can be written as  

 
if  4 3  or  4 2

0 otherwise.lm

V l m j j
b

= = − −
= 


 (4) 

where ( ), 1, 2, , 4 1l m p= + , V  is the radial stiffness of bearing i , and j  is the joint station which the 
bearing is acted on. The static radial stiffness V  of an angular-contact ball bearing can be represented by the 
bearing stiffness equation as a function of axial preload ( )ap , ball diameter ( )bd , number of balls ( )an  and 
contact angle ( )θ  [21]:  

 1 3 2 3 2 3 1 3sin cosa a a bV c p n dθ θ=  (5) 

where ac  is an empirical data decided by the experimental results. 
In order to find the natural frequencies of the system, we relate the vibration problem to the generalized 

eigenvalue problem by substituting e j tω=q h  into Equation (1), which results in [13]  

 ( )1 λ− =M K h h  (6) 

 2λ ω=  (7) 
where ω  is the system natural frequency, λ  is the eigenvalue, and h  is the eigenvector. 

To find a nonzero solution h  of Equation (6), we must have [22]  

 ( )1det 0λ− − =M K I  (8) 

which is the characteristic equation of 1−M K , and the roots of which are the eigenvalues of 1−M K . Expan- 
sion of Equation (8) by cofactors results in a ( )4 1p + th-degree polynomial equation in λ , i.e. the eigen-  
values of 1−M K  are ( )1 2 4 1, , , pλ λ λ +

 =  λ , and therefore, the natural frequencies are ( )1 2 4 1, , , pω ω ω +
 =  ω ;  

for each eigenvalue, there is a corresponding eigenvector. 

3. Mathematical Model of the Bearing Location Optimization 
In this research, we define the locations of bearings as the design variables. Assume that there are sn  sets of 
bearings to be installed on the spindle system, and for set i , in  identical bearings are used and, therefore, 

1
sn

b iin n
=

= ∑ . Under this condition, the locations of bearings of set i  can be represented as  

 , ,  1, 2, ,i i j ix j n = =  
x  (9) 

where the real number ,i jx , named local design variable, indicates the coordinate of the middle line of bearing 
j  of the bearing set i . The lower the bearing sets numbered, the closer their locations are to the original point. 

Since the bearings are identical within a set, index j  can also be used to represent the sequence of the bearings 
such that the bearings with lower j ’s are closer to the original point. Therefore, for bearing set i , ,1ix  and 

, ii nx  are the coordinates of the two end bearings respectively. The adjacent bearings of bearing j  are bearings 
1j −  and 1j +  for 2,3, , 1ij n= − . The locations of all bearings x  can be formed by assembling all ix  

as  

 1 2   
sn =    

x x x x  (10) 

Besides the local variables, we define the global design variables as 1 2, , ,
bnx x x =  x , which are utilized in  

calculating natural frequencies after being converted into the corresponding numbers of joint stations in FEM, 
and for a local variable owning an index ( ),i j , the index k  for its representing global variable can be 
evaluated by  

 
( )1

0

i

l
l

k n j
−

=

= +∑  (11) 
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with 0 0n = . 
Since the FMNF is the smallest among the natural frequencies of spindle-bearing systems, maximizing it 

draws the following objective function  
 1Max ω  (12) 

where 1 minω = ω . As discussed in Section 2, ω  is the square root of eigenvalue λ  and depends on x  
since the matrix K  is a function of x . 

There are two different kinds of location-related constraints for the design variables considered in this 
research. First, the locations of bearings are ordinarily constrained by, for example, the geometrical boundaries 
of the segments where they are located. This kind of constraint is set to avoid interference with other parts, and 
or by the requirements originated from the results of other analyses such as statics. Here we name those 
constraints as Type I constraints and represent them with  

 , , , ,   1, 2, , ,  1, 2, ,i j i j i j s iL x U i n j n≤ ≤ = =
 

 (13) 

where ,i jL  and ,i jU  are the upper and lower limits of ,i jx  respectively. 
The second type of constraints, Type II constraints, reflects the fact that the least amount of spacing between 

two bearings must be greater than a specified value such as the width of the bearing. Apparently, only the 
bearings within the same group would be involved in the same constraint equations of Type II constraints. If the 
smallest spacing of bearings j  and 1j +  in the bearing set i  is recognized as , , 1i j jC + , the constraints can be 
written as  

 , 1 , , , 1,  1, 2, , ,  1, 2, , 1i j i j i j j s ix x C i n j n+ +− ≥ = = − 
 

 (14) 

Ideally, the optimal solutions are obtained by identifying the ones possessing the maximum FMNF from the 
feasible solutions. However, since the objective function is complicated and nonlinear, it may be difficult or 
even impossible to derive an analytical or gradient-based method to solve the optimization problem. In this 
paper, a GA-based approach is constructed instead to search for the optimal solutions, which simultaneously 
satisfy all the constraints presented in Equation (13) and Equation (14). 

4. Formulation of the Genetic Algorithm 
As a randomized population-based search technique, GA utilizes genetic operators, i.e. crossover and mutation, 
inspired by natural evolution process to manipulate individuals in a population over generations to improve their 
fitness gradually based on the “survival of the fittest” strategies. The individuals in GA are likened to chromo- 
somes which are most commonly represented as strings with an equal length of binary numbers formed by the 
coded design variables, and to each chromosome, there corresponds a value of the objective function, referred to 
as the fitness of the chromosome [23]. 

To encode the real variables x  as binary numbers for forming the chromosome, we adopt the simple binary 
representation scheme with m  bits [24]. The value of bit number m  is generally determined based on the 
required precision of the design variables. For each component ix , by translating and scaling, we map its fea-  
sible region ,L U

i iX X    onto the interval 0, 2 1m −  . The integers in the interval 0, 2 1m −   are then expre-  

ssed as m -bit binary strings iy , which defines the corresponding encoding variable of ix  as  

 ( ) ( )1 1 1 2i mim i m iy a a a− + − +=   (15) 

where ( ) { }1 0,1m i ja − + ∈ , 1, 2, ,j m= 
, and by collecting all iy ’s, we can form 1 2, , ,

bny y y =  y , the de- 
sign variables in binary format. As a result, the chromosome S  can be constituted by attaching the m -bit 
binary strings of all variables, end for end, in sequence as  

 ( ) ( )1 2 1 2 1 2 2 1 1 1 2

1 2
b cb b

b

n m m m m nm n m n
y y yn

S y y y a a a a a a a a a+ + − + − += =
 



      (16) 

where c bn n m= ×  is the length of chromosome S . S  can be converted back to y  with a similar reverse 
transformation. 

When we perform the decoding tasks to convert the binary codes back to real numbers, the feasible regions of 
variables must be identified deliberately according to the constraints applied to them. For a simple problem with 
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fixed upper and lower limits, we can conduct decoding on all variables simultaneously since they are indepen- 
dent to each other. However, for mutually dependent variables such as those considered in this paper, their 
values in new generations, yielded by genetic operations of GA, may violate the dependency constraints (such as 
Type II constraints) if we try to decode the variables parallel in time or fail to handle the dependencies of the 
variables properly. There are several methods to ensure variable dependent constraints satisfied during GA 
optimization. The most effective approach is to restrict the search to valid regions of the search space, i.e. the 
chromosome is decoded in such a way that invalid solutions are prevented. We can thereby avoid wasting effort 
by evaluating infeasible solutions [25]. 

In this research, to ascertain that the design variables satisfy all constraints after decoding from binary codes 
to real values, we propose the Sequential Decoding Process (SDP), in which the valid regions of variables are 
decided one by one, sequentially. Since the locations of bearings of two different sets are independent, we can 
simultaneously decode the variables within different bearing sets at the same time, and for each set of bearings, 
we decode the variables, from the first to the last, in sequence. The first step of SDP is converting the global 
binary variable y  to the local binary variable ,i jy  by using Equation (11). Then, for each bearing set i , 

1, 2, , si n=  , the binary ,i jy , with respect to global ky , is decoded into real ,i jx  by using the standard binary 
decoding formula for j  from 1 to in , in sequence:  

 ( )
( ), ,

, , 1
1

2
2 1

U L m
i j i j m lL

i j i j m k lm
l

X X
x X a −

− +
=

−
= + ⋅

−
∑

 



  (17) 

where if 1j = , the valid region , , , ,, ,L U
i j i j i j i jX X L U   =   
  ; if 2,3, , ij n=  , the valid region  

, , , 1 , 1, ,, ,L U
i j i j i j i j j i jX X x C U− −   = +  
 

 ; the values of ,i jL , ,i jU , and , 1,i j jC −  are specified in the constraints. After  

all ,i jx  are evaluated, we can obtain values of the global variables x  by the global-local transition equation 
as indicated in Equation (11). 

Now that the above representation scheme has been defined, the procedure of applying the proposed SDP and 
GA, which is called SDP-GA, to search for the optimal solutions of the mathematical model is shown in Figure 
3 and summarized as [26]: 
1) Utilize a random number generator to create an initial population which consists of z  individuals, each 

with an cn  binary string.  
2) Extract the values of variables for each individual by reading bn  sets of m  binary digits and decoding into 

real numbers through the SDP. The fitness values, FMNF, for all individuals are evaluated by solving 
Equation (8), where the locations of bearings necessitate to be the joint stations of the finite element model, 
which is coded and tested antecedently.  

 

 
Figure 3. Flowchart of the SDP-GA. 
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3) Create a mating pool by using the proportional selection procedure, such as a simulated roulette wheel, to 
choose the members in the initial population to form a mating pool with a size z , in which the chance of an 
individual being selected for the mating pool is proportional to its fitness value.  

4) Perform crossover operation on the mating parent pool to produce offspring. The crossover operation 
adopted in this research involves randomly choosing two chromosomes from the mating pool and an integer 
k  in the range of 1 to 1cn − . The first k  positions of the parents are exchanged to produce two children.  

5) Perform mutation operation by visiting every bit of all individuals of the new population and switching the 
bit from 0 to 1 or 1 to 0 with a mutation probability mp .  

6) Evaluate the population as what we did in step 2. The highest fitness value and the corresponding variable 
values are stored. A generation is now completed.  

7) If the preset number of generations gn  is complete, the process is stopped; otherwise, go to step 3. 
Note that the size of population z , the number of generations gn , and the mutation probability mp  are ge- 

nerally decided with a few experiments to ensure a good convergence. However, to further determine the opti- 
mal values of the parameters in this research, we conduct statistical analysis such as design of experiments 
(DOE), analysis of variance (ANOVA), and linear regression [27]. 

5. An Illustrative Example 
To demonstrate the validity of the proposed SDP-GA, a real bearing location optimization problem of a 
high-speed spindle-bearing system design is exemplified in this section. It is assumed that the concept design 
stage has already been completed, and the results are summarized as specifications in Table 1 and Table 2 for 
the spindle shaft and bearings, respectively. The spindle shaft in this illustrative case is made of steel and 
constitutes 14 cylinders with different diameters. Table 1 shows the material properties of the spindle shaft, and 
the length and diameter of each segment as well as the number of elements that each segment is divided into in 
the FEM model. There are two different kinds of bearings, types ACB1 and ACB2, used in the example, and 
their specifications are indicated in Table 2. The table also includes the widths of the bearings and the data 
required in Equation (5) for calculating their stiffnesses with the assumption that preloads applied on bearings 
are not affected by their locations. The results are also provided in the last column of the table. 

If in the system level design stage, four bearings, two of type ACB1 on segment 7 and two of type ACB2 on 
12, are planned to be installed in the system, i.e. 2sn = , 1 2 2n n= = , and 4bn = , we assign the global and  

 
Table 1. Dimensions and element numbers for the spindle shaft.                                         

 

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Length (mm) 45 20 35 30 10 15 150 20 10 180 35 120 15 20 

Diameter (mm) 12 42 32 50 92 57 60 70 62 90 53 45 42 23 

Element Number 2 2 2 2 2 2 10 2 2 8 2 6 2 2 

Material properties: 7800AXρ =  kg/m3, 112.1 10E = ×  N/m2, 0.889κ = , and 108.077 10G = ×  N/m2 

 
Table 2. The specifications of the bearings.                                                         

Bearing Type Width (mm) θ  (˚) bd  (mm) an  ap  (N) ac  V  (N/m) 

ACB1 18 15 23 18 850 61.9 10×  81.379 10×  

ACB2 16 15 19 16 340 62.2 10×  81.021 10×  
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local design variables as  

[ ]1 2 3 4, , ,x x x x=x  and [ ]1 2 1,1 1,2 2,1 2,2 , , ,x x x x =       x x  

where the set formed by the two bearings on segment 7 is numbered one and the set on segment 12 is numbered 
two. Our objective is to maximize 1ω  of the spindle system. The constraints of the design variables can be 
derived from the data provided in Table 1 and Table 2. Assumed that geometry limits are the only sources of 
Type I constraints. These constraints for the design variables are illustrated as Figure 4. As revealed in Figure 
4(a), for example, the lower limit 1,1L  of 1,1x  can be obtained by adding the left end coordinate of segment 7 
and half of the width of the type ACB1 bearing, i.e. 1,1 155 0.5 18 164L = + × =  mm. The upper limit 1,1U  is 
equal to subtracting the right end coordinate of segment 7 off 1.5 times of the width of type ACB1 bearing, i.e. 

1,1 305 1.5 18 278U = − × =  mm, where the origin point is located on the left end of the spindle shaft. The type I 
constraints for the other three design variables can be obtained in a similar way and the results are shown in 
Figure 4. Type II constraints specify the least spacing between adjacent bearing pairs. As shown in Figure 5, 
the least distance between 1,1x  and 1,2x  is the width of the bearing ACB1, which is equal to 18 mm, and 
between 2,1x  and 2,2x  is 16 mm, the width of bearing ACB2. Table 3 summarizes all constraints for the four 
local design variables and also their valid regions utilized in SDP-GA. 

Since there are only four variables in this case, we can reach the global optimal solution as  
[ ]189,296,558,574∗ =x  mm and the corresponding 1ω

∗  being 794.622 Hz by an exhaustive search with the 
precision as 0.5 mm. However, even with only four variables, to obtain the results, the FMNF-related eigen-  

 

    
(a)                                        (b) 

   
(c)                                        (d) 

Figure 4. Type I constraints for (a) 1,1x ; (b) 1,2x ; (c) 2,1x ; and (d) 2,2x .                   

 
Table 3. The constraint equations and valid regions of the design variables (all units are in mm).     

Variable Type I Constraint Type II Constraint Valid Region 

1,1x  1,1164 278x≤ ≤  1,2 1,1 18x x− ≥   [ ]164,278  

1,2x  1,2182 296x≤ ≤   1,1 18,296x +    

2,1x  2,1558 646x≤ ≤  2,2 2,1 16x x− ≥   [ ]558,646  

2,2x  2,2574 662x≤ ≤   2,1 16,662x +    
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(a)                                   (b) 

Figure 5. Type II constraints for (a) 1,1x  and 1,2x ; and (b) 2,1x  and 2,2x .  

 
value-solving subroutine has to be executed 414,855,255 ( ) ( )( )230 229 2 178 177 2= × × ×  times, which takes 
about 240 days if one execution takes 0.05 seconds. To a design project, 240 days may be too long to wait for a 
decision and the schedule is likely to be delayed. To avoid such a tedious, exhaustive search, the alternative GA 
approach provides a more efficient approach in obtaining an acceptable, near optimal solution. 

To code a computer program for searching for the optimal solutions by following the SDP-GA procedures 
developed in Section 4, we need to decide bit numbers of the design variables first. If the precision is required to 
be at least 0.5 mm and since the largest interval for the design variables is 114 mm, the binary number m , in  
order to guarantee the required precision, must satisfy ( )114 2 1 0.5m − ≤ , which leads to 8m = , and such that  

the length of chromosome 32cn = . Following the procedures indicated in Figure 3, a computer program which 
constitutes a main script M-file to execute the SDP-GA and a supporting function M-file to calculate the FMNF, 
is coded in MATLAB. However, we still need to determine the parameters z , gn , and mp  before running 
SDP-GA in searching for the optimal solutions. 

In this paper, we use the statistics techniques DOE to identify the optimal values of the parameters under the 
practical assumption that the allowable time to decide the locations of bearings is one minute, i.e. the number of 
calculations for finding the eigenvalues must be 1200 at most if each eigenvalue evaluation takes 0.05 seconds. 
As the total number of eigenvalue calculations ( )1e gn z n= × +  in the SDP-GA optimization process, to satisfy  

the required calculation number 1200, possible values of the parameters z  and gn  can be expressed as 
( ), gz n  combinations that include (16,74), (20,59), (30,39), and (40,29), where the smallest z  is set as 16 
since it is the smallest number of chromosomes to prevent a population from ending up with identical chro- 
mosomes. Because z  and gn  are dependent, we use the levels of z  to represent the combinations. The third 
parameter mp  is typically very small [24], therefore, the possible values considered here are 0.005, 0.01, and 
0.02. 

To examine convergence, Figure 6 shows the evolution of the optimization process in a certain test run for all 
four candidates ( ), gz n  with 0.01mp =  respectively, where the maximum and average values of FMNF for 
each of the generations are presented. From the figures, we can find that, as generations go by, not only does the 
best chromosome of the population improve, but the rest in the entire population also improve. This implies that 
the proposed SDP-GA approach not only provides a single solution, but also a family of good-quality solutions. 

After preliminarily confirming the convergence of the proposed SDP-GA algorithm, to decide the levels for 
parameters z  and mp , a two-factor experiment is performed with FMNF as the response variable and with z  
and mp  as the main factors. Since z  and mp  are with 4 and 3 levels respectively, there are 12 different 
combinations or cells of the two factors. In a complete balanced experimental design, we obtain 30 observations 
(replication measurements) from each of the 12 cells. The sums, sums of squares, averages, and standard 
deviations of the 30 observations for each cell are calculated and shown in Table 4. Based on the information 
provided in Table 4, the ANOVA table for the two-factor problem is shown in Table 5. Under the level of 
significance 0.05α = , since the F -statistics of z  ( )0.05,3,36011.1779 2.6297f> =  and of mp   

( )0.05,2,3600.2096 3.0208f< = , we conclude that only the main effect z  affects FMNF. Furthermore, since the 
F -statistic of interaction ( )0.05,6,3601.3470 2.1238f< = , there is no indication of interaction between these two 
factors. The last column of Table 5 shows that the p -value for the test statistic for the main effect z  is 
considerably less than 0.05, while for the main effect mp  and the interaction are greater than 0.05. A graph of 
the FMNF averages compared to levels of z  for each mp  is shown in Figure 7. Notice that of the 12 
experimental configurations considered, the optimum configuration employs 16z =  at 0.01mp =  in the  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Results of a certain test run for                                            
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,  a  16,74,0.01 ;  b  20,59,0.01 ;  c  30,39,0.01 ;  and d  40,29,0.01g mz n p = . 
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Figure 7. Graph of average FMNF versus numbers of members for all values of mp .         

 
Table 4. Results of factorial design for parameters of SDP-GA.                                         

z  gn  mp  Sum Sum of Squares Average Standard Deviation 

16 74 0.005 23697.2 18719188.1 789.908 4.273 

20 59 0.005 23662.2 18663884.5 788.740 4.263 

30 39 0.005 23623.7 18603206.6 787.455 4.621 

40 29 0.005 23559.2 18501983.7 785.305 5.336 

16 74 0.01 23713.5 18744704.2 790.449 3.749 

20 59 0.01 23671.3 18677966.8 789.044 2.967 

30 39 0.01 23615.5 18590315.4 787.186 3.988 

40 29 0.01 23583.5 18539994.5 786.118 4.278 

16 74 0.02 23663.2 18665300.5 788.774 3.512 

20 59 0.02 23657.0 18655449.0 788.567 3.293 

30 39 0.02 23613.3 18586860.1 787.110 4.512 

40 29 0.02 23635.3 18621505.7 787.844 4.253 

 
Table 5. The analysis of variance table for the FMNF data.                                             

Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

Squares 
Mean 22 cm F-Statistic 22 cm p-Value 

z  3 592.4542 197.4847 11.1779 75.0823 10−×  

mp  2 7.4056 3.7028 0.2096 0.8110 

Interaction 6 142.7913 23.7985 1.3470 0.2355 

Errors 348 6148.2773 17.6675   

Total 359 6890.9284    

 
figure, where the average FMNF is about 790.449 Hz. In summary, under the requirement that the optimal 
locations of bearings are obtained in one minute, after conducting the two-factor factorial experiments and 
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analysis of variation, the optimal parameters of the GA are decided as ( ) ( ), , 16,740.01g mz n p =  (highlighted in 
Table 4), which can be applied to determine the optimal locations of bearings not only for the original design 
and the engineering changes, but also for the sensitivity studies of the design parameters. 

In the 30 outcomes from the experiment of SDP-GA with optimal parameters ( ) ( ), , 16,74,0.01g mz n p = , the 
best and worst ones are 794.625 Hz and 783.589 Hz, which compare to the results obtained by the exhaustive 
search, the differences are about +0.000% and −388%, respectively. It is noticeable that the best result is slightly 
better than that of exhaustive search (794.622 Hz) since the precision of the former is finer than the later, and 
therefore, we replace the value of 1ω

∗  with 794.625 Hz. Table 6 summarizes the optimal values of the four de- 
sign variables, the corresponding FMNF's, and the final spindle-bearing system drawings for the exhaustive 
search and the best and worst runs. Moreover, since the average and standard deviation of FMNF for this com- 
bination are 790.449 Hz and 3.749 Hz respectively, the approximate 95% confidence interval on the mean 
FMNF ( )1ω

µ  is  
 

1
789.107 791.791ωµ≤ ≤  (18) 

Therefore, if we can tolerate the potential errors of the SDP-GA approach as discussed above and indicated in 
Table 6, the number of times to run the subroutine for solving the eigenvalues can be reduced to 1200, which is 
equal to 62.893 10−×  of that the exhaustive search requires. 

Apparently, the quality of the optimal solutions shall be better if we are allowed to perform more calculations 
in the GA optimization. To investigate the influences of calculating times on the results of SDP-GA by using the 
optimal parameter values 16z =  and 0.01mp = , as obtained in the above analysis, a series of 30-run tests are 
conducted, with total eigenvalue calculating times 3600en = , 6000, 18,000, and 30,000, which correspond to 

224gn = , 374, 1124, and 1874 respectively. The results are summarized in Table 7, where the results of 
1200en =  ( )74gn =  are also included. From the table, we can find that as the gn  increases, the average 

FMNF increases while the standard deviation decreases, which confirms that the qualities of optimal solutions 
are improved with more iterations by the SDP-GA. The maximum and minimum FMNF obtained in each gn  
are also provided in the table, and they also perform better in larger gn . Finally, the last column of the table 
records the numbers of outcomes hitting 1ω

∗ , where we can find that the frequencies are greater with larger gn , 
At 1850gn = , this number even reaches 15, i.e. 50% of the experimental runs hit 1ω

∗ . By using the extra 
information of sum and sum of squares provided in Table 7, we can derive the linear regression equation of 
FMNF vs gn  as [27]  

3
1ˆ 790.4399 1.6672 10 gnω −= + ⋅ ×  (19) 

Equation (19) can be used to decide the number gn  needed to reach a certain average value of FMNF. For 
example, if we want the results with an average value 793 Hz, the required gn  can be calculated and rounded 
to an integer, as 1536, which is equal to 20.5 minutes if each eigenvalue calculation takes 0.05 seconds, since 

( )16 1536 1 24,592en = × + =  when 16z = . 
 

Table 6. The results for (A) The exhaustive search; (B) The best run of ( ) ( ), , 16,74,0.01g mz n p = ; and (C) The 

worst run of ( ) ( ), , 16,74,0.01g mz n p = .                                                              

Case 1x  
(mm) 

2x  
(mm) 

3x  
(mm) 

4x  
(mm) 

FMNF 
(Hz) The spindle system design drawings for the corresponding case 

(A) 189.00 296.00 558.00 574.00 794.622 
 

(B) 189.04 296.00 558.00 574.00 794.625 
 

(C) 193.51 294.34 560.42 585.48 783.589 
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Table 7. Results of 30 runs for 74gn = , 224, 370, 1124, and 1850.                                       

gn  Sum Sum of 
Squares Average Standard 

Deviation 
Max.  

FMNF 
Min.  

FMNF 
1ω
∗  

Occurrence 

74 23713.466 18744704.22 790.4489 3.7487 794.6249 783.5886 1 

224 23717.189 18750491.40 790.5730 3.2823 794.5378 786.7188 0 

370 23741.898 18789591.44 791.3966 3.3408 794.6249 787.1365 2 

1124 23773.892 18840197.42 792.4631 2.9759 794.6249 787.2706 6 

1850 23803.319 18886792.39 793.4440 2.5321 794.6249 787.5212 15 

6. Conclusion 
This paper has developed a GA-based optimization approach to search for the optimal locations of bearings 
installed on a spindle shaft to maximize the FMNF. First, an FEM dynamic model of the spindle-bearing system 
is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural 
frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the 
objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to 
the geometrical boundaries of the segments they located and the spacings between adjacent bearings. A custo- 
mized GA optimization procedure, SDP-GA, is designed to accommodate the dependent characteristics of the 
constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing 
installation optimization problem of a illustrative spindle system is investigated. The results show that the SDP- 
GA provides good convergence for the optimization searching process. By applying DOE and ANOVA, the 
optimal values of GA parameters are determined as 16z = , 74gn = , and 0.01mp = , under the restriction that 
the number of executing the eigenvalue calculation subroutine is 1200. The best and worst outcomes for the 
optimal GA parameter are 794.625 Hz and 783.589 Hz, and for the best one, the locations for the four bearings 
are ( )189.04,296.00,558.00,574.00  mm. Compared to the exhaustive search with a maximum FMNF as 
794.622 Hz, the 95% confidence interval of mean FMNF obtained by the SDP-GA with optimal parameter 
values is [ ]789.107,791.791  Hz; however, the calculation time consumed by SDP-GA is about 62.893 10−×  
of that of the exhaustive search. A linear regression equation is also derived to estimate necessary calculation 
efforts with respect to the specific quality of the optimization solution. From the results of this illustrative 
example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient. 
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Appendix A 

1

p
T e
i i i

i=
= ∑M A M A  (A.1) 

where p  is the total element number, and the matrix iA  is defined as:  

( )8 8 1

1 if 4 4, 1,2, 8,
0 otherwise.

jk
i jk p

jk

a k i j j
a

a× × −

= = + − = = =   =



A                   (A.2) 

and for each element i :  
 e e e

T R= +M M M  (A.3) 

 2
,1 ,2 ,3

e e e e
T T T T= +Θ +ΘM M M M  (A.4) 

 
( )

2 2

2 2

,1 2

2 2

2 2

156 0 0 22 54 0 0 13
0 156 22 0 0 54 13 0
0 22 4 0 0 13 3 0

22 0 0 4 13 0 0 3
54 0 0 13 156 0 0 22420 1
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13 0 0 3 22 0 0 4

e AX
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l l
l l

l l l l
l l l l l
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l l l l
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0 140 17.5 0 0 70 17.5 0
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0 17.5 3.5 0 0 17.5 3.5 0
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2

12EI
AGlκ

Θ =  (A.16) 

where AXρ  is the axial mass density, l  is the length of the element, r  is the radius of the element, E  is 
Young’s modulus, I  is the moment of inertia, κ  is the Timoshenko’s shear correction factor, A  is the 
cross-section area, and G  is the shear modulus of elasticity. 
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