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Abstract 
 
In the present paper we study the effect of rigid boundary on the propagation of Love waves in an inhomo-
geneous substratum over an initially stressed half space, where the heterogeneity is both in rigidity and den-
sity. The dispersion equation of the phase velocity has been derived. It has been found that the phase velocity 
of Love wave is considerably influenced by the rigid boundary, inhomogeneity and the initial stress present 
in the half space. The velocity of Love waves have been calculated numerically as a function of KH (where 
K is a wave number H is a thickness of the layer) and are presented in a number of graphs. 
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1. Introduction 
 
The earth is a non-homogeneous medium with variations 
in density and rigidity in constituent layer. A study on 
earth structure and earth quakes [1,2] says that inside the 
earth there exist materials which are anisotropic in nature 
i.e., deviate from the directionally regular elastic behav-
iour of an isotropic material. The study of generation and 
propagation of waves in layered anisotropic media, with 
various geometrical configurations are important in 
Geophysics, Seismology, Acoustic and Electromagnet-
ism. Theoretical studies of anisotropy usually dealt with 
limiting case such as infinitesimal thickness and infinite 
wavelength, or with infinite thickness and infinite fre-
quency. According to some seismologists anisotropy is 
the limiting case of a laminated solid as the laminations 
become infinitesimal, and Stoneley considers surface 
wave propagation along a half space. 

The effect of inhomogeneity and rigid boundary on 
Love wave propagation is becoming increasingly impor-
tant as seismologists study the structure of earth in ever 
finer details. Love waves are more sensitive to structural 
complexities than are Rayleigh waves. The propagation 
of Love waves in a medium having different types of 
crustal thickness was discussed by Satô [3] and De Noy-
er [4]. 

Propagation of Love waves under some particular 
physical conditions which are likely to exist in the inte-
rior of the earth is studied in this paper. It is Love [5], 

who first predicted that the earth is in a state of high ini-
tial stress. Due to atmospheric pressure, gravity vibration, 
creep, difference in temperature, large initial stresses 
may exist inside the earth. The stresses which exist in an 
elastic body even though external forces are absent are 
termed as initial stresses and the body is said to be ini-
tially stressed. These stresses might exert significant in-
fluence on the elastic waves produced by earthquakes, 
explorations or impacts. Thus, it is imperative to deal 
with the properties of wave propagation under initial 
stress. It was Biot [6] who first pointed out that the initial 
stress influences elastic waves to a great extent. The the-
ory of incremental deformation formulated by Biot [7] in 
his famous book “Mechanics of Incremental Deforma-
tion” has been employed by several authors to study the 
propagation of surface waves in pre-stressed elastic sol-
ids. Propagation of Love waves in a non-homogeneous 
orthotropic elastic layer under initial stress overlying 
semi-infinite medium is studied by Abd-Alla and Ahmed 
[8]. Khurana [9] has shown the effect of initial stress on 
the propagation of Love wave. Wave velocities in a 
pre-stressed anisotropic elastic medium have been stud-
ied by Sharma and Garg [10]. References to be made to 
Das and Dey [11,12], Dey [13], Dey and Addy [14], 
Chattopadhyay and De [15], Chattopadhyay and Kar [16] 
and others. They suggested that the studies on the prob-
lem of elastic wave inside the earth deserve the consid-
eration of initial stresses present in the medium. These 
stresses might exert significant influence on the elastic 
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waves produced by earthquakes, explorations or impacts. 
Thus, it is imperative to deal with the problems of wave 
propagation under initial stress. 

The near surface of the earth consists of layers of dif-
ferent types of material properties overlying a half space 
of various types of rock, underground water, oil & gases. 
So, the studies of the propagation of seismic waves will 
be of great interest to seismologist. A detail study on 
elastic wave propagation and its generation in seismol-
ogy had been made by Pujol [17] and Chapman [18]. In 
the present paper Love wave propagation in anisotropic 
layer of sandstone with rigid boundary over a pre- 
stressed orthotropic quartz medium has been studied. 
The inhomogeneity of the layer is taken into considera- 
tion by assuming    2 2

0 01 , 1N N mz L L mz   
2

 

and , m is a constant and having dimen- 0 1 mz   


sion that is inverse of length. Also the inhomogeneity of  
the half-space has been taken as 1 1 az   and  

1 1 bz    where a, b are constants and having di- 

mensions that are inverse of length. The initial stresses P 
present in the inhomogeneous quartz half space also have 
effect in the velocity of propagation. The initial com-
pressive stress is seen to reduce the velocity. The upper 
boundary plane of the layer is assumed to be rigid, and 
both the rigidity and the mass density of the underlying 
half space are assumed to increase linearly with depth. 
 
2. Formulation and Solution of the Problem 

 
Consider an inhomogeneous anisotropic layer of finite 
thickness H  over an initially stressed inhomogeneous 
quartz half-space. We assume that the upper surface of 
the crustal layer is rigid and horizontal. The -axis is 
taken vertically downwards in the lower medium. The  

z

 

x -axis is chosen parallel to the layer in the direction of 
wave propagation, origin being taken at the depth 
H below the upper surface of the layer as shown in Fig-
ure 1. and ,N L   are the directional rigidities and 
density at any point in the layer which is assumed to be 
transversely isotropic with z -axis as the axis of sym-
metry. The inhomogeneity of the layer has been taken as  

   2 2

0 01 , 1N N mz L L mz    and  2

0 1 mz   , 

m is a constant and having dimension that is inverse of 
length. In the half space rigidity and density vary linearly  
with depth i.e.  1 1 az    and   
where are constants and having dimensions that are 
inverses of length. 

 1 1 bz  

,a b

 
2.1. Solution for the Layer 
 
Let  and  be the displacement components in 
the x, y and z direction respectively. Starting from the 
general equation of motion and using the conventional 
Love waves conditions viz., and 

,u v w

0, 0u w 
 1 , ,v v x z t , the only y component. Then the equation 

of motion in absence of body force can be written as [7] 
2 2

1 1
2 2

v v
N L

z z
1v

x t


         
         (1) 

For a wave propagating along x -direction, we may 
assume 

  
1 eiK x ctv V z                 (2) 

Using Equation (2), Equation (1) takes the form 

 
2 2

2
2

d 1 d d
0

d dd

V L V K
c N V

L z z Lz
         (3) 

After putting 1V
V

L
  in Equation (3), we get 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Geometry of the problem. 
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 
22 2 2

21
1 12 2 2

d 1 d 1 d
0

2 dd d 4

V L L K
V V c N

L z Lz z L
     

 
1V 



 

                    (4) 
The variations in rigidities and density are taken as  

  2 2

0 01 , 1N N mz L L mz     and   2

0 1 mz  

       (5) 

where m is a constant having dimension inverse of leng- 
th. 

Using Equation (5), Equation (4) changes to 

2
21
1 12

d
0

d

V
m V

z
                 (6) 

where 


2

2 2
1 0

0

K
m c N

L
  0              (7)  

The solution of Equation (6) may be assumed as 

1 1
1 e eim z im zV A B    

Thus the solution for the non-homogeneous, anisot-
ropic layer may be taken as 

 
1 1

1
0

e
e e

1

im z im z
iK x ctA B

v
L mz





          (8) 

2.2. Solution for the Half-Space 

The lower medium is considered as inhomogeneous 
quartz half-space under initial horizontal compressive 
stress  along x-axis. The eqn. of motion correspond-
ing to the displacement due to Love waves can be written 
as [7] 

P


2 2

2321
22 22

ss P v
v

x z x t


   
       

         (9) 

where ijs are the incremental stress components in the 
half-space, is the initial compressive stress along the 
x-direction, and 

P
  is the density of the material of the 

half space. In the present problem we have 

 1 1 az   and 1  1 bz        (10) 

Using the stress-strain relations 

21 232 ,  2xy yzs e s e                (11) 

And the relation (10), the equation of motion (9) can 
be written as 

 

 
 
 

2 2 2
12 2 2

2 2
1 1

1
1

2 1 1 1

bzv v v vP a

az az z az
2

2x z t


 

     
    

       
                     (12) 

 
Let  

   
2 e x ctiKv V z                (13) 

 

be the solution of Equation (12). 
Using Equation (13), Equation (12) takes the form 

 
   

2
1 2

2
1 1

1d d
1

1 d 1 2 1d

bzV a V P
c

az z az azz


 

         
      

2 0K V                      (14) 

 

Putting 
 1/2

( )

1

z
V

az





 in Equation (14) to eliminate the term 

dV

dz
, we get 

   
 
   

2 2
/ / 2

2 2
1

1
( ) 1 0

2 1 14 1 os

bza P c
z K

az azcaz
 



    
z

            
                   (15) 

 

where 1

0
osc




 and is phase velocity.  
Substituting  

c

 
 1/2

2
1

1 2
1

2 1
1 ,  ,  

2 1 os

K azP c b
Kc

az a ac


 


  

     
  

  

in Equation (15) we get 

 
2

2 2

d 1 1
0

2 4d 4

R  
 

 
    
 

         (16) 

where 
 2

2 2
1os

a b
R

c a K





 Equation (16) is a Whittaker’s 

equation, solution of which may be written as 

Copyright © 2011 SciRes.                                                                                 AM 



S. GUPTA  ET  AL. 589 
 

     1 2,0 2 2,0R RD W D W     
 

where 1  and 2  are arbitrary constants and 

/2,0R

D
 

D
W   is the Whittaker’s function. The solution of 
Equation (16) satisfying the condition  when 

 i.e. 
lim z 

 V z  0 lim   when may be ta- 
ken as 

  0  

   1 /2,0RD W                 (17)  
 

Hence, the displacement component in the heteroge- 
neous half-space is given by 

     
 

1 2,0
2 e e

1 1 2
RiK x ct ik x ctD W

v V z
az

  


      (18) 

Expanding Whittaker’s function up to linear terms 
Equation (18) reduces to 

 
   

1

2 1

2

/2(1 )
1

1/2 3/2
1

1
2 1 21

e e
1 2 1

K
Raz

iK x cta

K

R
a

az
v D

a az az

 



 


        
      

 




 




 
 

                (19) 

Boundary Conditions and Dispersion equation 

   
1 2

1

At the interface, 0  the continuity of the stress requires that 
At rigid boundary ,  the displacement is vanishing so that =0, at 
  and the continuity of the displacement requires 

yz yz f
z H v z H

 
   

1 2that  at 0  v v z





  


                   (20) 

 
where yf  is the incremental boundary force per unit 
initial area in the pre-stressed half-space at deformed 
stage, the physical explanations of which may be ob-
tained from Figure 2. In the boundary conditions the 
quantities (i.e. yf and  for the stratum (inhomoge-
neous and anisotropic) and lower half-space are denoted 
by the subscripts 1 and 2 respectively. 

)v

The magnitude of yf as derived by [7] is 

i ij ijkj ik ik jk  jf s S w S e S e n      

where  are the initial stress components, ijS ijs are the 
incremental stress components, are the strain com-
ponents,  are the rotational components, is the 
dilatation and 

ije

ijw e

jn is the cosine of angle between the thj  
direction and normal to the surface. It is obvious that  

zf is the incremental normal force per unit area to the 
boundary whereas, xf and yf are shear forces. In the 
present problem, since  is the only initial stress com- 11S
ponent,  , ,x z t2 2 2 2 0v v w,u 0,    and also z- axis 

is normal to the boundary. 
2

23y

v
f s

z



  


 

Using boundary conditions (20) in Equation (8) and 
Equation (19), we get 

   0 1 0 0 1 0 1 1 0A L im m L B L im m L D K    

0

(21) 

1 1e eim H im HA B               (22) 

1 0 2 0A B D L K              (23) 

where 

1

1

2 2
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1
1 0 1

1 1

2
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1
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1 1
2 3 2 2
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2 2 2 2 2

1
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a a

a a aR
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




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 








              
. ,
                        

  
         

   
  

 

 
Eliminating ,A B and  from Equations (21)-(23), we get 1D
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(a)                              (b)                         (c) 

Figure 2. Incremental boundary forces. 

Expanding the above determinant and solving, we get 
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∆fz 

∆fx 

∆fy 

x 

y 

z = 0 
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2
0 0 1 0 2

0 0 2 1m
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c N
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L L K

 
  
  

K L K m 

Putting the values of 1 2,K K and 1m in Equation (24), 
   

we get 

2 N0 1
2

0 20
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
  
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where
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c
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 


 

    
 

and 
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P




itial stress P

is the 

non-dimensional parameter due to in
The Equation (25) gives the phase velocity of Love 

 in an inhomogeneous anisotropic layer over an 
initially stressed inhomogeneous space wh
upper boundary plane of the layer is assumed to be rigid. 

3.

If the half-space is taken as Gibson half-space i.e., ri-
gidity varies linearly with depth whereas the density re-
mains constant. In this case  but  so that 

. 
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 Particular Cases 
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 1/2
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1os

R
c aK





 

which is the dispersion equation of Love wave in an in-
homogeneous layer lying over an initially stressed Gib-
son half space, when the upper boundary plane of the 
layer is assumed to be rigid 

Case 2 
If 0,  0,  0,  0a p b m    then the dispersion Equ-

ation (25) takes the form 
2

0 1
2
0

cot
N

0 2

Ac
KH

c

 
  


 

L A
where  

2

1 0
1

2 2

2

1 1
1 1

1R
a

2
1

2

1 1
3 2 2

1
2 2 2 2 2

A L m
K

R R
a

a a aR
K

K K



 
 


     
 
  

                              

 

  
  



 
2

2
0 0

2 0
0 1

1

2
1

2

R
ac N

A L K
L K





  
       
 
    

which is the dispersion equation of Love wave in a ho-
mogeneous layer over an initially stressed half space 
with constant density and when upper boundary plane is 
assumed to be rigid. 

Case 3 
If 0,  0,  0a b P    and 0m  then the dis-

persion Equation (25) takes the form 
2

0 1cot
N Ac

KH
 
 


   2
0 20 L Ac  

where 1 1A K   and 
 2

0 0

02

N
A L K

 


0

c

L
  

which is the dispersion equation of Love ave in a ho-
mogeneous layer over a homogeneous half-space, when 
the upper boundary plane is assumed to be rigid and half- 

 free from initial stress. 
 4 

 w

space is
Case
If 0,  0,  0a b P    and 0m   and  

0 0N L then the dispersion Equation (25) takes the form 
2

2
1

c
L

c  
2

2 2

0

tan 1 o

o

c
KH

c c
21 1
osc

 
  

          (27) 

Equation (27) gives the phase velocity of Love wave 
in a homogeneous isotropic layer over a homogeneous 
half space when the upper boundary plane of the layer is 
assumed to be rigid and half space has no initial stress.

 
Note that the equation for the phase velocity c of the 

Love waves in a layer overlaying a half-space, when the 
upper boundary plane is not rigid, is given by 

 

2

1 22
1

2 2
0

0 2 1
o

c
L

c
  

It can be seen from Equation (27) and Equation (28) 
that the phase velocity of Love waves in a layer with

1

tan 1

c
cc

KH
c

 
 
 


            (28) 

 a 
rig

4. Numerical Computation and Discussion

 In order to show the effect of rigid boun
non-homogeneity and initial stresses on
of Love waves, numerical computation of Equation (25) 
were performed with different values of parameter (Ta-
bl

id surface is different from that in a layer with a free 
surface. 

dary, anisotropy, 
 the propagation 

e 1) representing the above characteristics. The value of 

osc c and m K are taken as 0.7 and 0.2 respectively in 
all the figure except Figures 9 and 10. In Figures 3-5 
curves are plotted when both density as well as rigidity 
varies linearly with depth in presence of rigid boundary 

ted 
when rigidity varies linearly with depth but density

under ffect

plane. Unlike to this, Figures 6-8 have been plot
 re-

mains constant, thus giving dispersion curve in Gibson 
half space. 

Figures 3 and 6 gives the dispersion curves in the ab-
sence of initial stress, shows that the velocity of Love 
wave decreases rapidly when the values of KH increases 

 the e  of rigid boundary and initial stress. This 
also reflects that the velocity of Love wave is finite in the 
vicinity of the surface of the half-space and vanishes as 
depth increases for a particular wave number. Moreover, 
in the presence of rigid boundary, it has been found that 
the velocity of Love wave increases for a particular value 
of KH when compared with the case of a layer having 
free surface. 

Figures 4 and 5 show the effect of initial stress pre-
sent in the half-space. It has been observed that an in-
crease in compressive initial stresses  0  deceases 
the velocity of Love waves for the same frequency. The 
tensile initial stress  0   of small magnitude in the 
half-space increase the velocity, but the large magnitude 
of tensile stress  doesn’t allow Love wave to propagate. 
Figures 6 and 7 show the influence of tensile initial 
stress in Gibson half-space. 

Figure 9 gives the velocity of Love waves for  

Copyright © 2011 SciRes.                                                                                 AM 



S. GUPTA  ET  AL.592  
 

3.5 4 4.5 5 5.5 6
3.5

4

4.5

5

5.5

6

KH

02 1

c2 /c 2
3

4

 di ters. 

 no. Curve no. a/K b/K 

Table 1. Values of various

Figure

mensionless parame

  µ1/L0 N0/L0 

3 

1 
2 
3 
4 

0.1 
0.1 
0.1 
0.1 

0.0 
0.0 
0.0 
0.0 

0.2 
0.4 
0.6 
0.

0.1 
0.2 
0.3 

0.1 
0.1 
0.1 
0.1 8 0.4 

4 
3 

01 

0.3
2.5 1.5 

1 
2 

0.2 0.

4 

0.2 
0.2 

0.01 
0.01 

0.1 
0.2 

0.2 0.01 

0.0 2.5 
2.5 

1.5 
1.5 

 2.5 1.5 

5 

1 
2 
3 
4 
1 

0.2 
0.2 
0.2 
0.2 
0.1 

0.01 
0.01 
0.01 
0.01 
0.0 

0.0 
–0.1 
–0.2 
–0.3 
0.0 

2.5 
2.5 
2.5 
2.5 
0.2 

1.5 
1.5 
1.5 
1.5 
0.1 

6 
2 
3 
4 

0.1 
0.1 
0.1 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

0.4 
0.6 
0.8 

0.2 
0.3 
0.4 

7 

1 
2 
3 
4 
1 

0.2 
0.2 
0.2 
0.2 
0.1 

0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.1 
0.2 
0.3 
0.0 

2.5 
2.5 
2.5 
2.5 
2.5 

1.5 
1.5 
1.5 
1.5 
1.5 

8 
2 
3 
4 

0.1 
0.1 
0.1 

0.0 
0.0 
0.0 

–0.1 
–0.2 
–0.3 

2.5 
2.5 
2.5 

1.5 
1.5 
1.5 

 
 
 
 
 
 

 

igure 3. Dipersion curve in the absence of initial stress 
nder the effect of rigid boundary. 

 
 
 

 
 
 
 
 
 

Figure 4. Dispersion curve under the effect of initial stress 

and rigid boundary . 
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Figure 5. Dispersion curve under the effect of initial stress 

 0   and rigid boundary. 
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igure 7. Dispersion curve under the effect of initial stress 
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Figure 8. Dispersion curve under the effect of initial st

 0  and rigid boundary. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Dimensionless phase speed 2 2
0c c  as function of 

 imensionless KH evaluated from Equation (27) for  d

. , . , .0 1 1 0 1 5 2 0 L and  2
.0 os 0 2c c . 
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Figure 10. Dimensionless phase speed 2 2

0c c  as function of 

dimensionless KH evaluated from   Equation (28) for 

. , . , .0 1 1 0 1 5 2 0 L  and  2
.0 os 0 2c c . 
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Appendix 
 
H    Thickness of the layer 
N, L    Directional rigidities of the layer 
     Rigidity of the half-space 

     Density of the medium 

P    Initial stress 
, ,u v w   Displacement components in radial, ci

K  wave number 
rcumferential & axial directions respectively 

   Velocity of love wave in the layer 
Velocity of shear wave in the layer 

 Velocity of shear wave in the half-space 

c
c0  

cos 

, , R    Dimensionless quantity 

s that are inverse of length 

 
 

, ,m a b        Constants having dimension
D1, D2 , A, B,m1  Arbitrary constants 

 
 
 


