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Abstract 
This paper presents the numerical study on the nonlinear sound propagation for the parametric 
array using the compressible form of Navier-Stokes equations combined with the mass and energy 
conservation equations and the state equation. These governing equations are solved by finite 
difference time domain (FDTD) based method. The numerical result is shown for the parametric 
sound propagation in the near field of the sound source in cylindrical coordinate. The result indi-
cates the generation of low-frequency unsteady beat by the interaction of two frequency sound 
waves in the near field, which grows to a difference frequency sound in the far field. 
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1. Introduction 
The parametric array is a nonlinear transduction mechanism, which generates difference frequency sound of low 
frequency through the interaction of high-frequency sound waves of fundamental frequencies. The low-frequency 
sound generated from the parametric array is nearly side-lobe free and propagates for a long distance, while the 
emitted higher-frequency sound and the higher harmonics of nonlinear sound are attenuated during the propagation 
process due to the nonlinear effect of the fluid properties. Such parametric array has been applied to the highly 
directional loudspeaker, parametric sonar and so on. 

The theory of nonlinear sound propagation of parametric array is first studied by Westervelt [1], who derives 
the equations of low-frequency sound under the approximation of the nonlinear terms in the full second order 
wave equation. Later, Khokhlov-Zaboloskya-Kuznetsov (KZK) equation is derived from the Wetervelt equation 
under the assumption of parabolic approximation [2]. The KZK equation is solved numerically by Aanonsen et 
al. [3] and Kamakura et al. [4] for the study of parametric array, and the usefulness of this equation is experi-
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mentally confirmed by Garrett et al. [5]. It should be mentioned that the application of the KZK equation is 
limited to the far-field acoustics due to the parabolic nature of the KZK equations. In order to solve this problem, 
a few attempts have been carried out using the numerical technique for solving the full governing equations of 
nonlinear sound propagation for parametric array [6] [7], while the mechanism of sound propagation in the near 
field has not been studied in detail. Such direct approach to the nonlinear sound propagation is important and 
should be further studied. 

The purpose of this paper is to study the nonlinear sound propagation of parametric array based on the 
compressible form of Navier-Stokes equations combined with the mass and energy conservation equations and 
the state equation without the use of parabolic approximation. A few computational results are shown to visualize 
the interaction of sound waves in the near field of parametric array. 

2. Numerical Methods 
The nonlinear sound propagation is described by the compressible form of Navier-Stokes equations, the mass 
and energy conservation equations and the state equation, which can be written in the following form in cylindrical 
coordinate system under the axisymmetric assumption [7]:  
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where the physical quantities with * are non-dimensional variables, such as r* = k0r, *
0P P P= , *

0T T T= , 
*

0t w t= , *
0u u c= , *

0v v c= , *
0z k z= , *

0ρ ρ ρ= , ( )*
0 0τ τ μ ω= , where subscript 0 denotes the reference 

quantities. r and z are radial and axial coordinates, respectively, u and v are velocity components in axial and 
radial directions, respectively, P is the pressure, T is the temperature, ρ is the density and τ is the stress tensor. 

( )0 0 0 0Re ρ c μ k=  is the Reynolds number and 0 p 0Pr μ C κ=  is the Prandtl number, where Cp: specific heat 
at constant pressure, c0: sound velocity, k0: wave number and μ0: viscosity. Then, the governing equations are 
summarized in the following compact form using the operator splitting method [7]. 
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The subscripts A, AD and D denote the acoustic term, advection term and dissipative term, respectively. These 
equations are discretized using FDTD based method and the velocities u, v, density ρ, pressure P are solved by 
numerical computation. It should be mentioned that the 2nd order difference scheme is applied to the acoustic 
terms in space and time, the 1st order upwind difference scheme is used for the advection terms and the 2nd order 
central difference scheme is used for the dissipative terms. In the numerical simulation, the staggered grid system 
is used. The computational domain in cylindrical coordinate is illustrated in Figure 1. The boundary condition for 
sound pressure at the inlet is prescribed by the two sinusoidal frequencies f1 and f2 with an amplitude Pm, which is 
written by the following equation. 

( ) ( ){ }0 m 1 2P P P sin 2π f t sin 2π f t= + +                        (17) 

The surrounding boundary condition for sound pressure is given by the Mur 1st absorbing condition to minimize 
the reflection of sound at the boundary [8]. 

3. Results and Discussions 
The numerical simulation is carried out for the parametric sound propagation from a circular disk sound source in 
a fluid of air at temperature 293 K, as shown in Figure 1. The sound source is set to z = 0 m and the height is 0.05 
m with a uniform sound intensity. The characteristic properties of the air used in the present computation is as 
follows: the sound speed c0 = 3.468 × 102 m/s, the density ρ0 = 1.184 kg/m3, the pressure P0 = 1.013 × 105 Pa, the 
viscosity μ0 = 1.802 × 10−5 Pas, the thermal conductivity κ0 = 2.600 × 10−2 W/(m·K), the specific heat at constant 
pressure Cp = 1.006 × 103 J/(kg·K) and the specific heat ratio γ = 1.403. The two frequencies of parametric sound 
is set to f1 = 30 kHz and f2 = 32 kHz with the same amplitude Pm = 500 Pa, while the comparative study is carried 
out for the single frequency sound at f1 = 30 kHz. In the numerical simulation, the cell size is set to Δz = Δr = 
λ/40 (λ: wavelength of sound), which corresponds to the number of grids 692 × 692 in the present computational 
domain of interest 0.2 m × 0.2 m. The increment of time step (=0.235 μs) is determined to satisfy Courant-Frie- 
drichs-Lewy (CFL) condition [9]. It should be mentioned that the validation of the present simulation code is 
confirmed in comparison with the reported result in literature [7]. 

Figure 2 shows the numerical results of sound wave propagation in the near field, which compares the sound 
propagation of the parametric sound with frequencies f1 = 30 kHz and f2 = 32 kHz (a) and that of the single 
frequency f1 = 30 kHz (b). Both results are compared at the same computational time of 4000 steps, which 
corresponds to the time t = 0.94 ms after the sound emission. The observation of the sound propagation for 
parametric sound indicates that the low amplitude of sound pressure is found around x = 0.08 m and the high 
amplitude is detected around x = 0.16 m along the axis of sound propagation. These are due to the result of  
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                            Figure 1. Computational domain for parametric array. 
 

 
(a) 

 
(b) 

Figure 2. Visualization of sound wave propagation. (a) Parametric array; (b) Single frequency sound. 
 
sound interference of two fundamental sound frequencies which is known as beat, and is perceived by the periodic 
variations in pressure wave whose rate is the difference of the two frequencies. The highest peak of the pressure 
wave does not necessary locate in the centerline of the sound, which shows the interference of the sound wave 
emitted from various radial positions of the sound source. The sound wave in the outer part of the sound source 
indicates the circular development of the sound wave from the edge of the sound source. On the other hand, the 
sound propagation of the single frequency (b) indicates almost uniform sound wave propagation in axial direction 
and the magnitude of the sound wave is smaller than the parametric case. 

Figure 3 shows the comparison of the pressure waves at two different time steps for the parametric array (a) 
and for the single frequency sound (b). Although the pressure wave for the single frequency does not change 
with the time steps, the pressure wave of the parametric sound varies with the time steps and the result indicates 
the generation of unsteady low frequency beat in the near field. Note that the modulation of the pressure wave 
for the single frequency case is also due to the non-linear effect of sound propagation. This result suggests that 
the difference frequency sound is generated in the near field due to the interference of two fundamental frequencies 
of emitted sound from the parametric array. This result may not be obtained from the computation under the 
assumption of parabolic approximation in literature. 

4. Conclusion 
The propagation of sound emitted from the parametric array is numerically studied by solving compressible  
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(a)                                                      (b) 

Figure 3. Sound pressure distribution along sound axis (-4000 step, t = 0.94 ms; - - - 5000 step, t = 1.18 ms). (a) Parametric 
array; (b) Single frequency sound.                                                                           
 
form of Navier-Stokes equations combined with the mass and energy conservation equations and the state equation 
without assuming parabolic approximation. The numerical result shows the generation of low-frequency unsteady 
beat due to the interference of two fundamental frequency sounds in the near field, which grows to a difference 
frequency sound in the far field. 
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