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Abstract 
 
In this paper, we present multiplicity results of exponential stability and attracting domains for Cohen- 
Grossberg neural network (CGNN) with distributed delays. We establish new criteria for the coexistence of 

 equilibrium points and estimate their attracting domains. Moreover, we base our criteria on coefficients 
of the networks and the derivative of activation functions within the attracting domains. It is shown that our 
results are new and complement corresponding results existing in the previous literature. 
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1. Introduction 
 
Cohen-Grossberg neural network (see [1,2]) is usually 
described by the following differential equations system 
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where , is the number of 
neurons in the network; describes the state vari-
able of neuron i at time t; i

 : 1,2, ,i  
i

a

N 2N 
 u t
   represents an amplifica-

tion function and the function  can include a con-
stant term indicating a fixed input to the network; 

 id 
 ijb t  

weights the strength of the j unit on the  unit at time 
t; the activation function 

thi
 jg   shows how the neurons 

react to the input. CGNN not only has a wide range of 
applications in pattern recognition, associative memory 
and combinatorial optimization but also includes a num-
ber of models from neurobiology, population biology 
and evolution theory. Hence studies on stability of CGNN 
with or without delays have been vigorously done and 
many criteria have been obtained so far [3-14]. 

In the applications of neural network to associative 
memory storage or pattern recognitions, the coexistence 
of multiple stable equilibrium points is an important fea-
ture [15-19,20-21]. However, few papers focus on the 
existence of multiple equilibrium points of CGNN and 
their complex convergence analysis. Hence, we should 
consider multistability of the following CGNN with dis-
tributed delays 
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where the delay kernel function is assumed to be 
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  is a positive constant. In this paper, we not 
only de  new criteria for the existence of 2rive N  equi-
librium points of CGNN (1.1) but also estimate at acting 
domains for these equilibrium points. When we relax our 
conditions to be common assumptions, our results im-
prove corresponding results in [12]. Moreover, our re-
sults can extend the corresponding results in [3-13] to 
local exponential stability of multiple equilibrium points 
of Cohen-Grossberg networks. It is shown that our re-
sults are new and complement the existing results in the 
literature. 

The rest

tr

 of this paper is organized as follows. In Sec-
tion 2, we should make some preparations by giving 
some notations, assumptions and a basic lemma. Mean-
while, we discuss the existence of 2N  equilibrium 
points of CGNN (1.1). In Section 3, we  only discuss 
local exponential stability of 2

not
N  equilibrium points of 

CGNN (1.1) but also compare ur results with existing  o
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. Coexistence of Equilibrium Points 

 this paper, we denote by 

ones in the literature. In Section 4, two examples are 
given to illustrate the new results. Finally, concluding re- 
marks are given in Section 5. 
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Due to the monotonicity of  id  , it is easy for us to 
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the unique equilibrium point of CGNN (1.1) which is 
globally exponentially stable. The proof is complete. 
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, where    2 2 1 4.633F v


   1,2  .

† 1.91v  

ptions 
ere exist 

 From (2.2)-(2.3), 

sum  and 
 3.2, th
CGNN 

we can estimate 
† †
11 121.85v v  

We can check that as
(3.3) hold. By Theorem
equilibrium points of 

†
21 221.85 1.91v   

   1 2
A AH H

only four stable 
(4.1) located in  . 

Moreover, their attracting domains H   can be esti-
mated as Example 4.1. 
 
5. Concluding Remarks 
 
In this paper, some new c
istence of 2N equilibrium
also given for each e
results are new and co
[7,9-11]. Furthermore, o
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