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Abstract 
Oripavine is the major alkaloid of Papaver orientale. It is an important intermediate in the bio-
synthesis of morphine alkaloids. Recently, new Papaver somniferum strains have been developed 
which accumulate thebaine and oripavine, but not morphine and codeine. Therefore, the chemi-
stry of oripavine has been studied intensively to synthesize opioid pharmaceuticals such as oxy-
morphone, naloxone and buprenorphine. 
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1. Introduction 
Thebaine an alkaloid present in 0.2% - 0.8% in opium and a major constituent (90% of total alkaloid content) in 
Papaver bracteatum (which is morphine free), possesses little utility medically for two reasons: (a) its lack of 
the depressant and analgesic properties common to other morphine alkaloids and (b) its expression of extreme 
toxicity and CNS stimulation. Oripavine is also a minor alkaloid of the opium poppy, but it is the main alkaloid 
of the oriental poppy Papaver orientale, which is a perennial flowering plant. The development of the top1 
poppy was an important finding for the opium industry in Australia, because this poppy strain produces thebaine 
and oripavine, but not morphine or codeine. Both thebaine and oripavine possess a conjugated diene system at 
ring C and chemical modifications resulted in numerous opioid pharmaceuticals, for instance the 14-hydroxy 
opioid antagonists and the 6,14-endoetheno and 6,14-endoethano derivatives. This paper will survey the recent 
developments of the chemistry and biochemistry of oripavine.  

2. Occurrence and Isolation 
2.1. Isolation of Oripavine 
Oripavine (1) was isolated as a major alkaloid of Papaver orientale in 1935 by a Russian research team [1]. It 
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was shown to contain N-methyl and O-methyl groups and a phenolic hydroxyl group. O-methylation with di-
azomethane yielded thebaine (2), corroborating its structure namely it is 3-O-demethylthebaine. Oripavine al-
ways occurs together with thebaine in Papaver orientale. For instance, Shafiee et al. [2] [3] found 20% oripa-
vine and 9% thebaine in the dry latex of Papaver orientale. There are several papers [4]-[7] in which the detec-
tion and identification of oripavine was reported. The structure of oripavine was also elucidated by spectral 
(NMR, MS and UV) studies [3] [8] [9].  
 

 
 

Numerous papers were published about the isolation of oripavine from Papaver bracteatum. In a critical re-
view H. Bohm [10] considered these accounts unreliable. Slavik and Slavikova in a detailed study did not detect 
oripavine in Papaver bracteatum [11]. Nevertheless Rapoport et al. also reported similar results [12]. The bio-
synthesis of morphinan alkaloids was examined in Papaver bracteatum and the O-demethylation of radioactive 
labelled thebaine to oripavine was not observed. In 1992 Sariyar et al. [13] detected oripavine (trace amount) in 
the capsules of Turkish Papaver bracteatum. It is notable that oripavine was found between the alkaloids of hy-
brids of Papaver bracteatum and Papaver orientale [14].  

 Oripavine, thebaine, narcotine and rhoeadine were isolated as the main alkaloids from Papaver cylindricum 
Cullen [8]. It was the first report on the isolation of morphinan alkaloids in the Milthantha species. Slavik and 
Slavikova isolated oripavine as a major alkaloid from the plant Papaver pinnatifidum Moris of the section 
Rhoeadium Spach [9].  

Oripavine was isolated from the dried capsules of a variety of Papaver somniferum cultivated on Tasmania in 
1983 by E. Brochmann-Hanssen [15]. The Indian land races of opium poppy was examined for the capsule husk 
contents of 5 opium alkaloids morphine, codeine, thebaine, papaverine and narcotine and 3 biosynthetic inter-
mediates reticuline, codeinone and oripavine [16]. The alkaloid profiles and correlations between alkaloids 
showed that in the Indian genetic resources of P. somniferum (a) morphine is synthesized from codeine rather 
than oripavine and (b) accumulation of morphine and codeine was limited upstream of codeinone and morphi-
none. Oripavine, in general was present in very low amounts.  

2.2. Biosynthesis of Oripavine 
Radioactive labelled thebaine was converted to oripavine by C-3 O-demethylation in the plant of Papaver 
orientale [17]. Feeding experiments in Papaver orientale with radioactively labelled reticuline and thebaine 
have proved that oripavine is derived from reticuline via thebaine [18]. Reticuline undergoes racemization in 
this plant as has been earlier shown for P. somniferum and P. bracteatum. 

2.3. Biosynthesis of Morphinan Alkaloids 
(R)-Reticuline (3) is a very important intermediate in the biosynthesis of morphinan alkaloids. It is converted 
into salutaridine (4) which is the first alkaloid containing morphinan skeleton. The reaction is an oxidative phe-
nol coupling that establishes the characteristic stereochemistry of (-) morphinans. This coupling is catalyzed by 
salutaridine synthase a microsomal NADPH dependent cytochrome P-450 enzyme [19]-[21]. 
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Salutaridine is then reduced by the NADPH dependent salutaridine reductase to form salutaridinol (5), fol-
lowed by the closure of the oxygen bridge between C4 and C5 to form the distinctive pentacyclic morphinan 
skeleton. Salutaridinol possesses the correct 7-S configuration for the allylic syn-displacement of the activated 
hydroxyl group by the C-4 phenolic hydroxyl group which follows the established stereochemistry for SN2’ 
substitution at the cyclohexene ring. First the hydroxyl group is activated by an acetylation catalyzed by saluta-
ridinol 7-O-acetyltransferase. 7-O-Acetyl salutaridinol (6) at slightly alkaline pH values spontaneously rear-
ranges to thebaine by closing the oxide bridge between C-4 and C-5 [19]-[21]. 
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Precursor feeding studies in P. somniferum using labelled thebaine have shown that the enol ether cleavage 
involves the loss of the C-6 O-methyl group with retention of the 6-oxygen, possibly through a mechanism in-
volving an oxygenase [22]. In species such as P. bracteatum and P. orientale, which lack enzymes for this O- 
demethylation, biosynthesis stops at thebaine and branches to oripavine by demethylation of the phenolic ether 
at C-3.  

O-Demethylation at position C-6 is catalyzed by thebaine 6-O-demethylase (T6ODM), whereas O-demethy- 
lation at position C-3 is catalyzed by codeine O-demethylase (CODM). These enzymes [23] were identified as 
α-ketoglutarate/non-heme iron (II) dependent dioxygenases, in contrast to the functionally analogous cytoch-
rome P450s found in mammals. 

Thebaine can undergo O-demethylation at position C-6 or position C-3 to yield neopinone (7) or oripavine, 
respectively. Neopinone spontaneously rearranges to the more stable codeinone (8) in aqueous solution over a 
wide pH range, a process that is accelerated under physiological conditions by the reduction of codeinone to 
codeine (9) by codeinone reductase (COR ). Codeine is demethylated by CODM to produce morphine (10) [19]- 
[21]. Demethylation of oripavine by T6ODM yields morphinone (11), which is reduced to morphine by COR. 
The opium poppy variety top1 is blocked at T6ODM, and accumulates thebaine and oripavine rather than mor-
phine and codeine. 

It has clearly been shown by Brochmann-Hanssen [24] that in opium poppy a second pathway exists to mor-
phine via oripavine. This implies a cleavage of the phenolic O-methyl group at C-3 of thebaine. 2-3H-Oripavine 
was administered to mature Papaver somniferum plants from two different chemical strains, one of which was 
known to contain oripavine. Morphinone (11) was synthesized and used as carrier. Incorporation of oripavine 
into morphine was 28.1% and 21.4%, respectively. Morphinone decomposed during isolation, but the small 
amount isolated from one batch showed an incorporation of 4.5%. Thebaine and codeine were not radioactive. 
Therefore, the 3-O-demethylation of thebaine is not reversible. These results strongly suggest that the formation 
of oripavine represents a step on a second pathway from thebaine to morphine. 

2.4. Biosynthesis of Morphinans in Mammalian Cells 
Since the beginning of the 80s, endogenous morphine with an identical structure to that of morphine isolated 
from poppy, has been characterized in numerous mammalian cells and tissues. Morphine has also been found in 
cancer cell lines originating from human and animal cells. Reports over the past twenty years indicated the oc-
currence of morphine in humans and animals but these results did not prove whether this morphine was pro-
duced in animals de novo. Conclusive evidence of de novo morphine synthesis in mammals was provided by the 
laboratory of Prof. M. H. Zenk.  

Zenk et al. [25] have unequivocally demonstrated that human neuroblastoma cells are able to synthesize 
morphine. The metabolic route starting from L-tyrosine involving at least 19 chemical steps shares remarkable 
similarities with the morphine biosynthesis in opium poppy. Their results confirmed that codeine and oripavine 
are intermediates of morphine biosynthesis in human cells. This finding, in turn, implies that thebaine can serve 
as a substrate for two different competing cytochrome P450-dependent methyl ether cleaving enzymes acting 
either first at position C-3 or C-6, exactly as in the poppy plant.  

The biosynthesis of endogenous morphine was observed when tetrahydropapaveroline was injected intraperi-
toneally into mice and the urine was analyzed [26]. The biosynthesis of morphine proceeds via (R)-reticuline to 
salutaridine, salutaridinol and thebaine, all of which were found in mice urine after injection of relevant precur-
sors. Thebaine injection into mouse yielded codeine, oripavine, and morphine. These findings indicate the pres-
ence of the bifurcate pathway found previously in plant morphine biosynthesis. 

2.5. Development of the Top1 Poppy 

In Australia since 1994 the Tasmanian Alkaloids, the biggest grower of opium poppies, pursued a systematic 
research in order to develop a high thebaine poppy variety, and to simplify the processing of the alkaloids, the-
reby increasing production efficiency. These efforts led to the development of top1 poppy utilizing chemical 
mutagenesis [27] [28].  

The seeds of a commercial poppy cultivar (Papaver somniferum) were treated with ethyl methanesulfonate as 
a mutagen. After the seeds have been exposed to the mutagen, the seeds were grown to maturity in controlled 
conditions and self-pollinated. The seeds from the mature plant are taken and at least one seed was planted to 
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grow an M2 generation. The M2 generation plant designated Papaver somniferum Norman was examined for 
alkaloid production. The threshed poppy straw or opium having thebaine and oripavine constitutes about 50% 
by weight or greater of the alkaloid combination consisting of morphine, codeine, thebaine and oripavine. The 
mutant top1 poppy was found to accumulate thebaine and oripavine but not morphine or codeine. Feeding of ra-
dioactive intermediates confirmed that there is a metabolic block in top1 which was suggested to result from a 
defect in the enzyme catalyzing 6-O-demethylation of thebaine and oripavine. This cultivar produces approx-
imately the same quantities of alkaloids per hectare, but with thebaine and oripavine (not morphine) as the major 
constituents. The straw of the major alkaloid content of the Papaver somniferum N. (PSN) cultivar was deter-
mined and the reported figure is percent by weight of the dry straw: thebaine (2.0%), oripavine (0.8%), codeine 
(0.01%) and morphine (0.05%) compared with the traditional Papaver somniferum L. (PSL) cultivar with mor-
phine (2.4%), codeine (0.1%), oripavine (0.03%) and thebaine (0.1%) by dry weight. Morphine is present as a 
by-product from PSL infestation as a weed in the PSN crop and there is significant season-to-season variation in 
these minor alkaloids (morphine and codeine). Since initial plantings in 1996 PSN now accounts for 60% of the 
crop under cultivation. Isolation of morphine from PSN is accomplished by means of harvesting and extraction 
of the poppy straw (PSN does not ‘bleed’ opium sap).  

3. Chemistry of Oripavine 
3.1. Analytical Determination and Separation of Oripavine 
Rapid and accurate methods are required to determine the P. somniferum alkaloids for samples such as raw plant 
materials (to establish or screen alkaloid content in different crops), industrial process streams (to optimise the 
extraction yields and reduce waste) and pharmaceutical formulations (for quality control and regulatory re-
quirements). Chromatographic methods have been extensively used for the separation and quantitation of the 
alkaloids in opium and in poppy straw. Thin-layer chromatography (TLC) is also utilized for the identification 
of alkaloids and screening of opium samples prior to further examination by other chromatographic methods.  
High-performance liquid chromatography (HPLC) with UV-Vis detection as the determinative step is the me-
thod of choice for the quantitative determination of opium alkaloids [14] [29]-[31]. Barnett et al. [32] estab-
lished a dual chemiluminescence reagent for the determination of the opiate alkaloids morphine, codeine, oripa-
vine, and thebaine in Papaver somniferum extracts. Detection was achieved using a mixture of acidic potassium 
permanganate and tris(2,2’-bipyridyl)ruthenium(II), where the former acted as both the oxidant for the latter and 
as a chemiluminescence reagent in its own right. The analytes were separated on a C8 column using ion-pairing 
HPLC. Detection limits for the alkaloids were 10−6, 5 × 10−7, 3 × 10−6, and 2 × 10−6 mol∙L−1 for morphine, 
codeine, oripavine, and thebaine, respectively. Further developments on this method were reported from this re-
search group [33].  

Recently capillary electrophoresis procedures for the determination of opium alkaloids in process monitoring, 
pharmaceutical and forensic science applications have been reported [34] [35]. Most of these have incorporated 
UV-absorbance detection, which has limited sensitivity due to the small internal diameter of the separation ca-
pillary. Chemiluminescence detection was also utilized as a low-cost option to increase the sensitivity and selec-
tivity. Barnett et al. [36] elaborated a simple and robust capillary electrophoresis chemiluminescence detection 
system for the determination of morphine, oripavine and pseudomorphine, based upon the reaction of these ana-
lytes with acidic potassium permanganate in the presence of sodium polyphosphate. 

Odell et al. [37] recommended a unique marker compound for the identification of illicit heroin of Tasmanian 
origin. Tasmanian poppies contain a unique alkaloid, oripavine, which is the source of ‘marker’ impurities in il-
licit heroin produced from Tasmanian poppy straw. Treatment of oripavine with acetic anhydride under the he-
roin processing conditions, followed by simple evaporative workup afforded a crude residue, which upon exten-
sive chromatographic purification yielded several compouds. Oripavine displays the same type rearrangement 
products like thebaine. Nevertheless, there is no evidence to suggest that heroin has ever been produced from 
Tasmanian poppies.  

Oripavine was detected as its 3-O-trimethylsilyl derivative in the urine specimen of opium users. The urine 
sample was subjected to enzymatic hydrolysis and derivatization for its GC-MS analysis. El Haj et al. [38] pro-
posed oripavine as a useful putative marker of opium use. They explained the presence of oripavine in the urine 
of opium users by the O-demethylation of thebaine.  
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3.2. Synthesis of Thebaine 
The opium alkaloids thebaine and oripavine are considered as the enol methyl ethers of codeinone and morphi-
none respectively. The preparation of the enol ethers of α, β-unsaturated ketones is well established in synthetic 
organic chemistry. Seki [39] elaborated an one-step formation of enol ethers from codeinone (8) with various 
alcohols in the presence of p-toluenesulfonic acid catalyst. Thebaine was obtained in low (27%) yield. 
 

 
 

Coop and Rice [40] published another modification of this reaction: Codeinone (8) was methylated with me-
thyl sulfate in the presence of potassium tert. butoxide base and 18-crown-6 catalyst. Thebaine was prepared in 
54% yield.  

Rapoport et al. [41] [42] reported the synthesis of thebaine from codeinone dimethyl ketal (12). The elimina-
tion of methanol from codeinone dimethyl ketal was performed with phosphorous oxychloride in pyridine re-
sulting an 80% yield of thebaine. Codeinone dimethyl ketal was obtained fom dihydrocodeinone in three steps. 

Utilizing suitable protecting groups C-3 ethers or esters of oripavine can be prepared. Bartels-Keith [43] ac-
complished the synthesis of oripavine and N-cyclopropylmethyl-nororipavine using Rapoport method.  

Singer and Scammells [44] achieved the manganese dioxide oxidation of codeine methyl ether (13), to the-
baine (2) via the use of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, bmim BF4. The ionic 
liquid has been used to remove or extract excess manganese dioxide and concomitant impurities from the reac-
tion mixture to afford thebaine in 36% to 95% yield. 

 

 

3.3. Synthesis of Oripavine 
Barber and Rapoport [45] oxidized 3-O-acetyl-6-O-methylmorphine (14) with activated manganese (IV) oxide 
to obtain 3-O-acetyloripavine (15). The latter compound was hydrolysed to oripavine. The yields were 88 and 
93% respectively and the reactions were performed on one mmole scale. (Oxidation of codeine methyl ether 
gave thebaine in 80% yield.) Klein et al. [46] utilized these reactions starting from 3-O-tertbutyldimethyl- 
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silyl-6-O-methylmorphine yielding the C3-protected oripavine. The Diels-Alder reactions of 3-O-tertbutyldi- 
methylsilyloripavine were studied with dienophiles such as acrolein and methyl vinyl ketone to furnish the cor-
responding adducts. This research team also reported the synthesis of N-Cyclopropylmethyl-3-O-tertbutyldi- 
methylsilylnororipavine and its Diels-Alder reactions.  

 In principle, oripavine can be prepared from thebaine by selective C-3 O-demethylation. Unfortunately the 
C-6 enol methyl ether is very reactive and the cleavage of this ether leads to rearrangement reactions and de-
composition. Coop et al. [47] [48] reported the first selective C-3 O-demethylation of thebaine with L-selectride 
and oripavine was isolated in 35% yield. Oripavine was purified expediently by means of crystallization of the 
oxalate salt from methanol. The authors reported two reactions of oripavine. The reacion of oripavine-sulfate 
salt with m-chloroperbenzoic acid resulted in 14-hydroxymorphinone (16) in 62% yield. The Diels-Alder reac-
tion of oripavine with methyl vinyl ketone gave orvinone (18) in 82% yield. Subsequent Grignard reaction of 
orvinone with methylmagnesium iodide afforded 19-methyl-orvinol.  

 

 

4. Oripavine as a Starting Material for the Syntheses of Opioid Agonists and  
Antagonists 

Introduction of the C-14 hydroxyl group into a 4,5-epoxymorphinan nucleus may be accomplished from the-
baine by hydrogen peroxide or peracid treatment resulting in 14-hydroxycodeinone (17). Catalytic reduction of 
the double bond yields oxycodone (14-hydroxydihydrocodeinone, 19) which can be converted to oxymorphone 
(20) by means of O-demethylation. Both compounds are more potent analgesics than morphine. However, oxy-
morphone is an important starting material for the synthesis of pure opioid antagonists such as naloxone (21) 
and naltrexone (22). First oxymorphone is subjected to N-demethylation reaction yielding noroxymorphone and 
N-alkylation of this secondary amine will furnish naloxone and naltrexone. Therefore noroxymorphone is also a 
key intermediate in the synthesis of 14-hydroxy-substituted opioid antagonists.  
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Diels-Alder reaction of thebaine with dienophiles resulted in 6,14-endoethenotetrahydro-oripavines which 
possess outstanding pharmacological properties. Etorphine (23) is ca. 8000 times more potent analgesic than 
morphine. It is used to immobilize large wild game animals due to its margin of safety. Buprenorphine (24) is 
also a potent analgesic (partial opioid agonist) and it is used to treat heroin addiction, whereas diprenorphine (25) 
is a strong opioid antagonist. It is reasonable that the above-mentioned pharmaceuticals can be prepared from 
oripavine which is available from poppy straw. Oripavine may be useful as a starting material to avoid the diffi-
cult C-3 methyl ether cleavage in the preparation of 6,14-endoeheno-tetrahydrooripavines.  
 

 

4.1. N-Demethylation of Thebaine and Oripavine 
N-Demethylation of thebaine was studied with cyanogen bromide or various chloroformates but these reactions 
led to the scission of C-9-N bond. Diethyl azodicarboxylate has been reported to be an effective reagent for the 
N-demethylation of thebaine to northebaine.  

 Sipos and coworkers [49] reported the synthesis of nororipavine (28) in which thebaine was treated with di-
ethyl azodicarboxylate to afford the corresponding N-nor-N-{[1,2-bis(ethoxycarbony)-hydrazinyl]methyl} de-
rivative. Subsequent treatment of this intermediate with L-Selectride effected simultaneous O- and N-dealkyla- 
tions, giving N-nororipavine (28) in an overall yield of 43%.  

Scammells et al. [50] employed a modified nonclassical Polonovski reaction for the N-demethylation of 
morphine alkaloids and this method was suitable for the preparation of northebaine (29) and nororipavine (28). 
This approach involved the conversion of the tertiary N-methyl amine to the corresponding N-oxide (by treat-
ment with hydrogen peroxide or m-chloroperbenzoic acid) followed by treatment with iron sulfate. Morphine 
derivatives with various structures were successfully N-demethylated using this procedure in moderate to high 
yield. In all cases, the major by-product formed during the iron sulfate step was the parent N-methyl compound. 
It was found that isolation of the corresponding N-oxide as its hydrochloride (26 and 27) salt prior to iron treat-
ment afforded superior yields of the desired ‘N-nor’ product. One of the limitations of the iron salt-mediated va-
riant of the Polonovski reaction is the difficulty in separating the product from the iron salts. The use of EDTA 
as an iron-chelating agent in the reaction work-up proved to be effective in removing iron salts in a number of 
cases. 

 

 
 
It was found the reaction of the N-oxide of morphine alkaloids (hydrochloride salt) with sulfonated tetraphe-

nylporphyrin-iron (II) complex [51] took place readily yielding the corresponding N-nor derivatives in high 
yields. The catalyst was readily removed and recycled. Northebaine (27 → 29) was prepared in 69% yield. 

Later on, Kok and Scammells [52] reported that under Polonovski-type conditions, ferrocene has been found 
to be a convenient and efficient catalyst for the N-demethylation of a number of morphine alkaloids, including 
key pharmaceutical intermediates such as oxycodone and oxymorphone. Thus, the tertiary N-methylamine is 
first converted into the corresponding N-oxide hydrochloride which, following subsequent treatment with the 
ferrous reagent, has provided the N-nor compound in moderate to good yields. In most cases, the only by-prod- 
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uct obtained is the parent tertiary amine. This method offers a number of advantages with the ferrocene catalyst 
being inexpensive and readily available, as well as being air and thermally stable. If desired, most of the catalyst 
could readily be recovered from the reaction via a simple extraction with hexane or column chromatography. 
The reaction is mild and, as demonstrated for substrates such as oripavine, morphine, and oxymorphone, does 
not require protection of functional groups such as hydroxyl. 

Further development of the Polonovski-type N-demethylation has been reported by Kok and Scammells, and 
they found that the Polonovski reaction took place in the presence of iron powder catalyst [53]. The tertiary 
N-methylamine was first oxidized to the corresponding N-oxide, which was isolated as the hydrochloride salt. 
Subsequent treatment of the N-oxide hydrochloride with iron powder readily provided the N-demethylated 
amine. Iron powder, using iso-propanol as solvent, was effective in the N-demethylation of morphine, thebaine 
and oxycodone resulting in high yields after column chromatography. N-demethylation of oripavine was per-
formed in low yield.  

Kok and Scammells [54] achieved detailed investigations into the direct synthesis of N-nororipavine (28) 
from oripavine using iron powder under nonclassical Polonovski conditions. The stoichiometry, solvents and 
iron oxidation rates were found to have a dramatic effect on the rate of N-demethylation as well as product yield. 
The authors described a high-yield procedure to the N-demethylated product simply by employing stainless steel 
rather than iron powder as redox catalyst. 

In these methods the utilized reagents are cheap, but the drawback that the N-nor derivative always contains 
the parent N-methyl compound as a by-product and the separation can be performed by means of column chro-
matography.  

4.2. Syntheses of 14-Hydroxymorphinans from Oripavine 

Kok and Scammells [55] elaborated a new procedure for the syntheses of oxymorphone and noroxymorphone 
directly from oripavine and nororipavine respectively.  

Oxidation of thebaine (2) hydrochloride was performed with m-chloroperbenzoic acid in 10% acetic acid at 
ambient temperature. 14-hydroxycodeinone (17) hydrochloride was obtained in a 98% yield. In the same way, 
14-hydroxymorphinone (16) hydrochloride was prepared from oripavine (1) hydrochloride, again in an excellent 
yield (99%). Both compounds had purities of 95% and 94% respectively, according to HPLC analysis. Similar 
results were obtained for the reduction of 14-hydroxymorphinone (16) hydrochloride, with the reduction in me-
thanol over 5% Pd/BaSO4 resulting in oxymorphone (20) hydrochloride in a 98% yield and a purity of 94% by 
HPLC. 

 

 
 

The improved oxidation–reduction protocol was also investigated for the direct synthesis of noroxymorphone 
(31) from nororipavine (28). Oxidation of nororipavine (28) hydrochloride using with m-chloroperbenzoic acid 
in 10% acetic acid at ambient temperature afforded 14-hydroxy-normorphinone (30) hydrochloride in a 99% 
yield (purity 96% via HPLC). The latter was hydrogenated in methanol using 5% Pd/BaSO4 catalyst and fur-
nished noroxymorphone (31) hydrochloride in a 97% yield with a purity of 95% via HPLC. Noroxymorphone 
was alkylated with cyclopropylmethyl bromide to furnish naltrexone (22) in 95% yield.  
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Hudlicky et al. [56] reported a quaternization/N-demethylation protocol for the synthesis of nalbuphine (34) 

from oripavine. Quaternization of oripavine with cyclobutylmethyl bromide resulted in a mixture of diastereo-
mer quaternary ammonium salts (32) (S:R = 3:1) in excellent yield. The N-demethylation of the quaternary salts 
was achieved with sodium thiolate derived from 1-dodecanethiol in dimethyl sulfoxide at elevated temperature 
providing the desired N-cyclobutylmethylnororipavine (33) in consistent yields of 60%. The latter compound 
was oxidized with peracetic acid yielding the 14-hydroxy-morphinone derivative, which was subjected to cata-
lytic hydrogenation (H2/Pd-C) to obtain nalbuphone. Nalbuphone was reduced (H2/PtO2) to nalbuphine (34).  

4.3. Synthesis of Buprenorphine from Oripavine 
Hudlicky et al. [57] reported a novel synthetic sequence for the preparation of buprenorphine (24) utilizing ori-
pavine as starting material. The major improvement over the previous synthesis is the elimination of cyanogen 
bromide as the reagent of N-demethylation and avoidance of O-demethylation required in the route from the-
baine.  

Oripavine was converted to a mixture of diastereomeric quaternary salts (35) by heating with cyclopropylme-
thyl bromide in dimethyl formamide. The N-demethylation of the quaternary ammonium salts of oripavine was 
accomplished with tert-dodecanethiol as the nucleophilic reagent and sodium ethoxide as the base to give 
N-cyclopropylmethylnororipavine (36). The conversion of N-yclopropylmethylnororipavine to buprenorphine 
involves several steps which were elaborated previously. It was found that it is neccessary to protect the phenol-
ic hydroxyl of N-cyclopropylmethylnororipavine by ethoxycarbonyl group. Subsequently the Diels-Alder reac-
tion with methyl vinyl ketone (37), hydrogenation of the orvinone derivative and the Grignard reaction yielded 
the C-3 protected buprenorphine. Finally the ester protecting group was removed by hydrolysis with sodium hy-
droxide.  
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Hudlicky et al. [58] elaborated another synthesis of buprenorphine from oripavine. Oripavine was converted 
to dihydroorvinone and its phenolic hydroxyl was protected with ethoxycarbonyl group (38). Grignard reaction 
with tert.-butylmagnesium chloride afforded the N-methyl-tertiary alcohol derivative (39). The latter compound 
was treated with cyclopropanecarboxylic acid anhydride in the presence palladium and copper catalysts yielding 
the acyl amide of norbuprenorphine (40). This amide was reduced with lithium aluminium hydride or Red-Al 
resulting in the target compound buprenorphine (24). 

 

 
 
The research team of Mallincrodt Inc. took out a patent [59] for the preparation of norbuprenorphine, and ul-

timately buprenorphine, utilizing oripavine as the starting material. It was claimed that the use of oripavine does 
not require an O-demethylation step, since this reaction takes place in low to moderate yields. On the contrary, 
before N-demethylation of dihydroorvinone they used benzyl group to protect the phenolic hydroxyl. The pro-
tecting group was then removed by an additional step by means of catalytic hydrogenation.  

It is mentionable that numerous patents [60]-[63] have been published covering the preparations of oxymor-
phone and buprenorphine from oripavine. Unfortunately, in these procedures the prepared new compounds have 
not been characterized, for example melting points, chromatographic properties and spectral data were not re-
ported.  
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