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Abstract 
The entrance region flow of a Herschel-Bulkley fluid in an annular cylinder has been investigated 
numerically without making prior assumptions on the form of velocity profile within the boun-
dary layer region. This velocity distribution is determined as part of the procedure by cross sec-
tional integration of the momentum differential equation for a given distance z from the channel 
entrance. Using the macroscopic mass and momentum balance equation, the entrance length at 
each cross section of the entrance region of the annuli and pressure distribution have been calcu-
lated for specific values of Herschel-Bulkley number and various values of aspect ratio and flow 
behavior index. The effects of non-Newtonian characteristics and channel width on the velocity 
profile, pressure distribution and the entrance length have been discussed. 
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1. Introduction 
The entrance region flow in channels constitutes a problem of fundamental interest in engineering applications 
such as nuclear reactors, polymer processing industries, haemodialyzers and capillary membrane oxygenators. In 
such installations, the behavior of the fluid in the entrance region may play a significant part in the total length 
of the channel and the pressure drop may be markedly greater than for the case where the flow is regarded as 
fully developed throughout the channel. Recently, there has been an increasing interest in problems involving 
materials with variable viscosity such as Bingham materials, Casson fluids and Herschel-Bulkley fluids which 
are characterized by a yield value. 
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Batra and Bigyani Jena [1] investigated stress-strain relation in the entrance region of annuli using blood as 
Casson fluid. Tandon et al. [2] analyzed the blood flow in the arteries by assuming it as Casson model. Dash et 
al. [3] have analyzed steady and pulsatile flow considering pressure gradient as a function of time in a narrow 
catheterized artery taking into account blood as Casson fluid. Ramesh Gupta [4] has considered a constant prop-
erty of viscous fluid entering a conduit under appropriate intake conditions so that its velocity is practically con-
stant over the entry cross-section. Maia and Gasparetto [5] applied finite difference method for the Power-law 
fluids in the annuli and found difference in entrance geometries. Sankar and Hemalatha [6] have studied the 
pulsatile flow of blood through catheterized artery by modeling blood as Herschel-Bulkley fluid and considering 
artery as coaxial circular cylinders. Poole and Chhabra [7] reported the results of a systematic numerical inves-
tigation of developing laminar pipe flow of yield stress fluids. Recently Kandasamy and Pai [8] have investi-
gated the Core variation in the entrance region flow of Casson Fluid in an annuli. 

The purpose of the present work is to analyze numerically the entrance region flow of a Herschel-Bulkley 
fluid through annular cylinder without making assumptions in the form of velocity profile within the boundary 
layer. The velocity distribution is determined as part of the procedure by cross-sectional integration of the mo-
mentum differential equation for a given distance z from the channel entrance. Using macroscopic mass and 
momentum balances, the change in the velocity profile and pressure gradient downstream are calculated numer-
ically. Considering the fluid flow being symmetric about the axis of the channel, the entrance length, velocity 
distribution and the pressure drop have been calculated in the upper portion of the annuli at each cross section of 
the entrance region of the channel for various values of Herschel-Bulkley number, flow behavior index and as-
pect ratio. 

Using macroscopic mass and momentum balances, the change in the velocity profile and pressure gradient 
downstream are calculated numerically. Considering the fluid flow being symmetric about the axis of the chan-
nel, the entrance length, velocity distribution and the pressure drop have been calculated in the upper portion of 
the annuli at each cross section of the entrance region of the channel for various values of Herschel-Bulkley 
number, flow behavior index and aspect ratio. 

2. Analysis 
We are analyzing the entrance region flow of a Herschel-Bulkley fluid through an annular cylinder without 
making assumptions in the form of velocity profile within the boundary layer. Fluid enters a horizontal annular 
duct from a large chamber with a uniform velocity along the axial direction. The analysis has been carried out 
over the wide range of aspect ratios, that is, the ratio of the radius of the inner cylinder to that of the outer cy-
linder. The development of boundary layer is visualized when the fluid enters an annulus and the fully devel-
oped velocity profile is observed in the region starting from the point down-stream where the boundary layers 
meet asymptotically with the outer edge of the plug flow zone. 

We consider a horizontal annular duct consisting of inner cylinder of radius 1r  and outer cylinder of radius 
2r  as shown in Figure 1. The Herschel-Bulkley fluid enters from a large chamber to this duct with a steady, la-

minar incompressible and isothermal flow with velocity 0v  and pressure 0p  into annular boundary. We use 
cylindrical polar coordinate system ( ),  ,  r zθ  with axial symmetry and origin at the center of the cylinders at 
the inlet with z  axis coinciding with the axis of the cylinders. rv  is the velocity component in r direction, zv  
is the velocity in the z  direction. Since Herschel-Bulkley fluid possesses a yield value, there is a plug core  
 

 
Figure 1. Geometry of an annuli. 



R. G. Pai, A. Kandasamy 
 

 
1966 

formation away from the walls. On each wall, there is boundary layer formation separated by the core as shown 
in Figure 2. As the two regions about the axis are symmetrical, the solution of the problem will be considered in 
the upper half only. We have inner boundary layer region 1 1 1r r r δ≤ ≤ +  with thickness ( )1 zδ  and outer 
boundary layer region 2 2 2r r r δ≤ ≤ −  with thickness ( )2 zδ  and the plug flow region 1 1 2 2r r rδ δ+ ≤ ≤ −  
separating the two boundary layers, where the core is moving with constant velocity. In the plug core region, the 
shear stress τ  is less than or equal to the yield stress 0τ  and the velocity at each cross section is constant. 
Under the assumptions of boundary layer theory and neglecting inertia terms, the equation of motion of an iso-
tropic, incompressible fluid can be given as, 

( )1 d
d

r p
r r z

τ∂
= −

∂
                                   (1) 

where “p” is the pressure of the fluid. 

0 0,  
n

zv
r

τ τ η τ τ∂
= + ≥

∂
                              (2) 

where η  represents coefficient of viscosity for Herschel-Bulkley fluid and “n” is the flow behavior index. 
Equations (1) and (2) will be solved under the following boundary conditions: 
1) The axial velocity components are zero at the wall, i.e., 

( ) ( )1 2, 0,   , 0z zv z r v z r= =                             (3a) 

2) At the edge of the boundary layers, zv  is equal to the plug core velocity, i.e., 

( ) ( )
1 21 1 2 2, ,   ,z zc z zcv z r v v z r vδ δ+ = − =                        (3b) 

3) The shear stress at the edge of the lower and upper boundary of the plug core region are equal to 0τ−  and 
0τ  respectively. Hence Equation (2) reduces to 

1 1 2 2

0,      0z z

r r r r

v v
r rδ δ= + = −

∂ ∂   = =   ∂ ∂   
                        (3c) 

Using Equations (1), (2) and conditions (3a), (3b), (3c) we obtain the velocity profiles of various regions in 
the non-dimensional form as follows: 

( )
( ) ( )( ) ( )

( ) ( )( )
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 d d d
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n N Z Z N Zn n
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− 
     

≤ ≤

  (4) 

 

 
Figure 2. Fluid flow in various regions in an annuli. 
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( )
( ) ( )( ) ( )

( ) ( )( )

( )
( ) ( )( ) ( )

( )
( ) ( )( )

1 1
1 1 1 1 1

1
1 1 1 1

1 1 12 21 1 1
1 1 1 1 3 1 3 1

1 12 1 11
2 1 2 1 4 1 4 1

2

 d d d
1 8 d 24 8 d 8 d

1d d         
2 1 8 d d32 8

n n
n n

C Cn n n n
C C C C C

n nn
Cn n n n

C C C C

r rn N P N P PV r r r r
n N Z n Z N Z

r n NN P Pr r r r
n N Z Zn n

ε ε

ε ε

−
−

− − − −

− −
− − − −

    
= − − + − −       − −   

  −
− − − − − −  − − 

1

1 2

1 22 d ,
8 d

n

C

C C

r P
N Z

r R r

−  
     

≤ ≤

  (5) 

( )
( )( ) ( )

( )( )

( )
( ) ( )( ) ( )

( )
( ) ( )( )

2 2
2 2

2 2
2 2

1 1 12 21 1 1
1 1 3 1

2

1 1 12 21 11
2 1 2 1 4 1 4 1

2

 d d d1 1
1 8 d 24 8 d 8 d

1d d d      
2 1 8 d d 8 d32 8

n n
n n

C Cn n
C C

n nn
C Cn n n n

C C

r rn N P N P PV R r R r
n N Z n Z N Z

r rn NN P P PR r R r
n N Z Z N Zn n

ε ε

−
−

− −

− −
− − − −

    
= − − + − − −       − −   

   −
− − + + − +      − −   

2

2

,

      1 

n

Cr R

− 




≤ ≤

  (6) 
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where the non-dimensional quantities are defined as follows: 

1 2 1 2
1 2

1 1 2 2

1 2 2 1 2
0 0 0 0 20 2 0

0 1 1 2 2 1
0 2

2 2 20

0 2

0

 , , , , , , ,
4

, , 1 , Aspect Ratio,

Herschel-Bulkley Number.

c cz zZ Z
C C n n

C C C C

n

n

v vv v z r pV V V V Z R P
v v v v rv r v
p r r rP r r

r r rv

rN
v

η
ρ ρ

δ δε δ δ ε
ρ

τ
η

− += = = = = = =

+ −
= = = + = = − = =

= =

 

The macroscopic mass and momentum balance equations are given by 
1

0

2 d 1VR R =∫                                       (8) 

1 1
2

0 0 1

d dd d 4  0
d d

n

R

P VV R R R R N
Z Z R

=

 ∂ + + + =  ∂   
∫ ∫                        (9) 

Using the velocity distribution in various regions and mass balance equation, one can find the variation of 
core in the entrance region for various parameter values. And the same has been computed numerically and re-
ported elsewhere [9]. 

Further, using velocity expressions in the Equations (8) and (9), the momentum balance equation in an alge-
braic form is given by 

( ) ( )2

2

d

d
C

C

F r
G r

Z
=                                   (10) 

where 
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( )
1 2

2 2

1 2

1 21
2 2 2

1 2
1

d d d
C C

C C

r r

C C i
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F r V R R V R R V R R X
ε =

= + + = ∑∫ ∫ ∫                      (11) 

where s
iX  are given below 
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Rewriting Equation (10) can be written as 
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Integrating the above equation w.r.t. 
2Cr  we get 
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The solution of Equation (14) gives the relation between the core thickness and the dimensionless axial dis-  

tance Z. Here, 2

2 1

d
d

C

C

r

r
Z

=

 
− 
 

 is not defined. Hence, without making significant error, the lower limit of the inte-  

gration of Equation (14) corresponding to the value 0Z Z= ∆ =  may be assumed to have the value 
2

0.99Cr =  
instead of 1, and the upper limit of the integration corresponds to the dimensionless core thickness 

2Cr . Equa-
tion (14) can be integrated numerically and the variation of entrance length along the dimensionless axial dis-
tance can be obtained for different values of Herschel-Bulkley number, flow behavior index and aspect ratios. 

Again, From Equation (8), we can say that the pressure gradient is a function of 
2Cr , i.e. ( )2

d
d C

P f r
Z
=  Then,  

using the condition thatthe pressure is constant and equal to 0P  at the entrance, the pressure drop can be ex-
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pressed as 

( )
( )

( )
22

2
2 2

20.99

d
d

d
C Cr

C
C C

C

F r
r

P f r r
G r

∆ = ∫                             (15) 

Again, the above equation can be numerically integrated for various values of Herschel-Bulkley number, flow 
behavior index and aspect ratios for the pressure drop. 

3. Results and Discussion 
The solution of the entrance region flow of a Herschel-Bulkley fluid through an annular cylinder has been inves-
tigated numerically without prior assumptions on the form of the velocity profile in the developing boundary 
layer. Initially, a nonlinear algebraic equation for determining the pressure gradient as a function of core thick-
ness has been derived using the mass balance equation. This equation has been solved using an iterative proce-
dure to obtain d dP Z  numerically. Using the values of pressure gradient so obtained, in the momentum bal-
ance equation, we obtain the entrance length for various values of Herschel-Bulkley number, flow behavior in-
dex and aspect ratios of the annuli. The entrance length has been defined as the distance at which 99 percent of 
fully developed velocity is reached. 

Figures 3-5 shows the variation of entrance length with core thickness when flow behavior index is n = 0.55 
and Herschel-Bulkley number is 0.1, for various values of aspect ratio. It is observed that as aspect ratio in-
creases, for particular Herschel-Bulkley number and flow behavior index, the entrance length decreases. 

From Figure 3 and Figure 6 we can conclude that as the Herschel-Bulkley number increases for a given as-
pect ratio and flow behavior index entrance length decreases. Also, the similar results were observed in Figure 7 
and Figure 8, when the flow behavior index is changed. This indicates that plug core will be very high for mate-
rials having thick viscosity, like mineral oils and polymer thickened fluid. 

Further, from the results it is evident that as the value of flow behavior index “n” decreases, entrance length 
decreases for a fixed value of Herschel-Bulkley number and annuli aspect ratio. 
It is observed that at any cross section Z, the entrance length decreases with the increase in aspect ratio of the 
annuli. Further, it is noted that as the Herschel-Bulkley number increases, the value of entrance length diminish-
es, that is, thick viscous fluids attains the fully developed state at early stage compared to that of Newtonian flu-
id like water. 
 

 
Figure 3. The Variation of entrance length with core thickness for ε = 0.4, N 
= 0.1, n = 0.55. 

 

 
Figure 4. The Variation of entrance length with core thickness for ε = 0.5, N 
= 0.1, n = 0.55. 
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Figure 5. The Variation of entrance length with core thickness for ε = 0.6, N 
= 0.1, n = 0.55. 

 

 
Figure 6. The Variation of entrance length with core thickness for ε = 0.4, N 
= 0.15, n = 0.55. 

 

 
Figure 7. The Variation of entrance length with core thickness for ε = 0.5, N 
= 0.15, n = 0.6. 

 

 
Figure 8. The Variation of core thickness along axial distance for ε = 0.5, N 
= 0.2, n = 0.6. 

 
Expressing pressure gradient as a function of 

2Cr  and integrating from 0.99 to fully developed value, the 
pressure drop along the axial distance has been determined for different values of Herschel-Bulkley number, 
flow behavior index and aspect ratios and given as Figures 9-14. It is observed that at any cross section pressure 
drop is greater for materials with larger values of Herschel-Bulkley number for a particular aspect ratio. For a 
particular value of Herschel-Bulkley number and at a particular cross section, pressure drop decreases with the 
increase of aspect ratio. The velocity profile along the radial direction is shown in Figures 15-20. From these 
figures it is found that with the increase in Herschel-Bulkley number, the velocity decreases and its profile takes 
parabolic form for smaller values of Herschel-Bulkley number which can be approximated to that of Newtonian 
fluid. Further, velocity tends to decrease with the increase of aspect ratio. 
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Figure 9. The Variation of pressure drop with the core thickness for ε = 0.4, 
N = 0.1, n = 0.55. 

 

 
Figure 10. The Variation of pressure drop along axial distance for ε = 0.5, N 
= 0.1, n = 0.55. 

 

 
Figure 11. The Variation of pressure drop along axial distance for ε = 0.6, N 
= 0.1, n = 0.55. 

 

 
Figure 12. The Variation of pressure drop with the core thickness for ε = 0.4, 
N = 0.15, n = 0.55. 

 

 
Figure 13. The Variation of pressure drop along axial distance for ε = 0.5, N 
= 0.15, n = 0.6. 
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Figure 14. The Variation of pressure drop with the core thickness for ε = 0.5, 
N = 0.2, n = 0.6. 

 

 
Figure 15. The velocity profile in the entrance region for ε = 0.4, N = 0.1, n = 
0.55. 

 

 
Figure 16. The velocity profile in the entrance region for ε = 0.5, N = 0.1, n = 
0.55. 

 

 
Figure 17. The velocity profile in the entrance region for ε = 0.6, N = 0.1, n = 
0.55. 

 

 
Figure 18. The velocity profile in the entrance region for ε = 0.4, N = 0.15, n 
= 0.55. 
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Figure 19. The velocity profile in the entrance region for ε = 0.5, N = 0.15, n 
= 0.6. 

 

 
Figure 20. The velocity profile in the entrance region for ε = 0.5, N = 0.2, n = 
0.6. 

4. Conclusions 
From the present study of the entrance region flow of Herschel-Bulkley fluid in an annuli, the following conclu-
sion can be drawn: 

1) The entrance length decreases when the width of annuli decreases for any particular Herschel-Bulkley flu-
id. 

2) Thick viscous fluid attains fully developed state at early stage compared to that of Newtonian fluid. 
3) At any cross section of the annuli, pressure drop is greater for materials with large values of Herschel- 

Bulkley number. 
4) The velocity profile takes the parabolic form for smaller values of Herschel-Bulkley number which can be 

approximated to that of a Newtonian fluid. 
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