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Abstract 
Adequate damping is necessary to maintain the security and the reliability of power systems. The 
most-cost effective way to enhance the small-signal of a power system is to use power system con- 
trollers known as power system stabilizers (PSSs). In general, the parameters of these controllers 
are tuned using conventional control techniques such as root locus, phase compensation techni- 
ques, etc. However, with these methods, it is difficult to ensure adequate stability of the system 
over a wide range of operating conditions. Recently, there have been some attempts by research- 
ers to use Evolutionary Algorithms (EAs) such as Genetic Algorithms (GAs), Particle Swarm Opti- 
mization, Differential Evolution (DE), etc., to optimally tune the parameters of the PSSs over a wide 
range of operating conditions. In this paper, a self-adaptive Differential Evolution (DE) is used to 
design a power system stabilizer for small-signal stability enhancement of a power system. By us- 
ing self-adaptive DE, the control parameters of DE such as the mutation scale factor F and cross- 
over rate CR are made adaptive as the population evolves. Simulation results are presented to 
show the effectiveness of the proposed approach. 
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1. Introduction 
In the last three decades, there has been a growing interest in applying Evolutionary Algorithms (EAs) to solve 
optimization problems. Until now, Genetic Algorithms (GAs) are by far the most used EAs [1]-[6]. Although 
GAs provide robust and powerful adaptive search mechanism, they have several drawbacks such as “genetic 
drift” which prevents GAs from maintaining diversity in the population [3]. In the last few years, several other 
variant of GA such as Breeder Genetic Algorithms [7], Population-Based Incremental Learning [8]-[15], Particle 
Swarm Optimization [16]-[18], Differential Evolution (DE) [19]-[21], etc., have been proposed. Among these 
algorithms, DE algorithm has started to emerge as one of the most powerful stochastic and parameter optimizers 
due to its simplicity and a straightforward strategy [19]. It was first proposed by Price and Storm [19] as a float- 
ing point of EA for global optimization over continuous spaces. It is a stochastic population-based optimization 
that uses differential mutation technique as the main operator to arrive at the desired solutions. Although in the 
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last decades researchers have proposed many variants of DE to improve its performance, there are still many 
open problems that need to be tacked for DE to be successfully applied to emerging new application areas [20], 
[21]. For example, it is known that the performance of DE is sensitive to the choice of the mutation and cross- 
over strategies and their associated control parameters such as the scale factor F and the crossover constant CR 
[22]-[26]. Choosing suitable parameter values is often a problem dependent task and requires previous expe- 
rience of the user [22]-[24]. In general, the optimal selection of the parameters is done using trial-and-error ap-
proach, which in many cases is time consuming and inadequate. In addition, the optimal parameters for one op- 
timization problem might not be adequate for another problem [24]. In order to improve the performance of DE, 
several research efforts have been devoted to the tuning and adaptation of the DE control parameters F and CR 
[22]-[28]. One of the most attractive approach is to use self-adaptive DE where DE control parameters such as 
the amplification factor F and the crossover rate CR are encoded into the chromosome (individuals) so that they 
undergo the actions of genetic operators and evolve with the individuals [24] [26]. This not only will save the 
precious time of the users but also will make the performance of DE more robust.  

In this paper, we explored the idea of using self-adaptive DE similar to the one proposed in [19] to optimally 
tune the parameters of a power system stabilizer for the enhancement of small-signal stability in a simple power 
system network [29] [30]. Simulation results show that the controller designed based on the self-adaptive DE 
(denoted here by jDE-PSS) is more effective in improving the small-signal stability of the system than the PSS 
designed using the classical DE (CE-PSS). 

2. Selected Operating Conditions 
The system considered in this paper is a single machine infinite bus (SMIB) system [29]. The generator is con- 
nected to the infinite bus through a double transmission line. The non-linear differential equations of the system 
are linearized around the nominal operating condition to form a set of linear equations [10]-[13]. The generator 
is modeled using a 6th order machine model, whereas the Automatic Voltage Regulator (AVR) was represented 
by a simple exciter of first order differential equation [14]-[15]. 

The dynamics of the system are described by a set of nonlinear differential equations. However, for the pur- 
pose of controller design, these equations are linearized around the nominal operating conditions [12] [29] [30]. 
For the design, several operating conditions were considered. These operating conditions were obtained by va- 
rying the active power output and the reactive power of the generator as well as the line reactances. However, 
for simplicity only four operating conditions are presented in this paper as listed in the Table 1. The Table 
shows the operating conditions with the open loop eigenvalues and their respective damping ratios in % in 
brackets. 

3. Background to DE 
3.1. Overview 
Define DE is a parallel direct search method that uses a population of points to search for a global minimum/ 
maximum of a function over wide search space [19] [20]. Like GAs, DE is a population-based algorithm that 
uses operators such as crossover, mutation and selection to generate successive solutions from the population of 
individuals with the hope that the solutions will improve over time [19]. However DE search methods differ 
from GAs in many aspects. The main differences between the two search methods are:  
 

Table 1. Selected operating conditions. 

Case Active Power Pe (p.u.) Line Reactance Xe (p.u) Eigenvalues (ζ%) 

1 1.000 0.3000 −0.268 ± 4.457i (6.00) 

2 1.000 0.5000 −0.118 ± 3.781i (4.83) 

3 0.700 1.1000 −0.133 ± 3.311i (4.02) 

4 0.900 0.9000 −0.0997 + 2.947 (3.38) 
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• GAs rely on the crossover to escape from local optima and search in different zones of the search space; 
whereas DE relies on the mutation and selection operation as a search mechanism to direct the search toward 
the prospective regions in the search space [19]-[24]. 

• Unlike GA which uses fitness-based selection for parents, in DE, all solutions have the same chance of being 
selected as parents regardless of their fitness values. This increases the exploration of the search space. 

Some of the other features of DE are: ease of use, efficient memory utilization, lower computational complex- 
ity. 

3.2. DE Operators 
In DE, the population is constituted of Np candidates solutions. Each candidate is a D dimensional real-valued 
vector where D is the number of parameters. 

The summary of DE’s operation is as follows [17] [18] 
• Step 1 (Initialization): DE generates Np vectors candidates xi,g, where “i” represents the vector and “g” the 

generation. The ith trial solution can be written as xi,g = [zj,I,g] where j = 1, 2, …, D. The vector’s parameters 
are initialized within the specified upper and lower bounds of each parameter Zj

L ≤ Zj,i,g ≤ Zj
U. 

• Step 2 (Mutation): There are several strategies to perform mutation in DE. The most popular strategy is 
called DE/rand/1/. In this process, four vectors from the initial population are randomly sampled where one 
is chosen as the target vector and another as the base vector. The difference of the remaining two vectors, 
scaled by a factor F, is added to the base vector to form the mutant vector. The equation below shows how 
mutant vectors are created. 

( )1 2, 0, , ,i g r g r g r gv x F x x= + ⋅ −                              (1) 

The mutation scale factor F is a positive real number between 0 and 2 that controls the rate at which the pop- 
ulation evolves [20]. The base vector, denoted by r0, is randomly chosen, in such a way that r0 ≠ r1 ≠ r2 where r1 
and r2 are also randomly chosen. ,i gv  is the trial vector. 
• Step 3 (Recombination or crossover): In this stage DE crosses each vector with a mutant vector, as in (2), to 

form a trial population. 
, , rand

, ,
, ,
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where CR ∈  [0, 1] is the crossover probability defined by the user within the specified range. 
• Step 4 (Selection): The selection of vectors to populate the next generation is accomplished by comparing 

each vector Ui,g of the trial population Ug to its target vector xi,g from which it inherits parameters. The val- 
ues of the vectors are obtained using the function in (3) 

,
, 1

,

    if ( )  ( )     
                otherwise          

i g i,g i,g
i g

i g

U f U f x
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x+

≤= 
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                       (3) 

In the above, we assume the minimization of a function. As soon as the new population is obtained, the cycle 
from step 2 to step 4 is repeated until the optimum is located or the termination criterion is satisfied. 

The values of DE control parameters F, CR have a significant impact on the performance of the algorithm. In 
general, the selection of the parameters is done using trial-and-error method, which in many cases is time con- 
suming. The best way to deal with this problem would be to make the control parameters of DE adaptive (i.e., 
the values of the parameters are changed during the run) [24]-[26]. One the most attractive approaches is to 
make the parameters self-adaptive by encoding them into the chromosome (individuals) so that they to undergo 
the actions of genetic operators and evolve with the individuals [24]. The best of these parameters will lead to 
better individuals which in turn are more likely to survive and produce better offspring 

4. Self-Adaptive DE 
DE’s ability to find the global maximum is mainly dependent on the mutation and crossover process. The differ- 
ential mutation allows DE to explore the search space for the global maximum or minimum. This process is 
controlled by the mutation scale factor F ∈ ]0 2]. “F” controls the rate at which the population evolves. On the 



K. A. Folly, T. Mulumba 
 

 
49 

other hand, the crossover ensures that the diversity of population is maintained so as to avoid premature conver- 
gence. Hence this process is directly dependent on the crossover constant “CR”. 

The self-adaptive DE (jDE) proposed by Brest et al., in [24] uses a strategy based on DE/rand/1/bin. It fixes 
the population size during the optimization whilst adapting the control parameters Fi and CRi associated with 
each individual. Each individual in the population is extended with parameter values as shown in Figure 1. In 
other words, the control parameters that will be adjusted by means of evolution are F and CR. The initialization 
process sets Fi = 0.5 and CRi = 0.9 for each individual. jDE regenerates (with probabilities 1 2 0.1τ τ= =  at each 
generation) new values for Fi and CRi according to uniform distributions on [0.1,1] and [0,1], according to the 
following Equations (4) and (5): 

1 u 2 1
, 1

,                                        

 rand *F   if 

otherwise

l
i g

i g

F rand
F F

τ
+

+ <= 


                             (4) 

3 4 2
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,                            

rand                if 

otherwise
i g

i g

rand
CR CR

τ
+

<= 


                            (5) 

where randj, j = 1, 2, 3, 4, are uniform random values on [0,1], and τ1 = τ2 = 0.1 represent the probabilities to 
adjust the control parameters. The newly generated parameter values are used in the mutation and crossover op- 
erations to create the corresponding offspring vectors and will replace the previous parameter values if the 
offspring survive in the selection. It is believed that better parameter values tend to generate individuals which 
are more likely to survive, and thus the newly generated better values are able to go into the next generation. 

The self-adaptive DE used in this paper is similar to the one proposed in [24] except that the mutation strategy 
adopted is DE/rand/2 as given below 

( ) ( )1 2 3, 0, , , , 4,i g r g r g r g r g r gv x F x x F x x= + ⋅ − + ⋅ −                          (6) 

5. Controller Structure and Objective Function 
The objective in this paper is to optimize the parameters of the PSSs such that the controllers designed using 
conventional DE and self-adaptive DE can simultaneously stabilize a family of system models and provide ade- 
quate damping to the system over a wide range of operating conditions. In order words, the PSSs should be ro- 
bust with respect to changes in the operating conditions. 

In this paper, the rotor speed is used as input to the PSS. It was found that a PSS of the form of Equation (7) 
made of double stage lead-lag networks with time constants T1-T4, Tw and gain Kp is adequate to damp the 
low-frequency oscillations [12]. 

31
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                           (7) 

where, Kp is the gain, T1-T4 represent suitable time constants. Tw is the washout time constant needed to prevent 
steady-state offset of the voltage.  

Since the electromechanical modes are generally poorly damped and dominate the time response of the sys- 
tem, it is expected that by maximizing the minimum damping ratio, we could simultaneously stabilize the family 
of the system models over the given range of operating conditions and ensure that the closed-loop system is sta- 
ble [10]-[15]. To design the PSS using conventional DE (CDE) and self-adaptive DE (jDE), we need to select an 
objective or fitness function. The following objective function is used: 
 

 
Figure 1. Self-adaptive DE. 



K. A. Folly, T. Mulumba 
 

 
50 

( )( ),max min i jJ ζ=                                   (8) 

i = 1, 2, … n, and j = 1, 2, … m 

,

2 2
, ,

,
i j

i j i j
i j

σ
ζ

σ ω

−
=

+
 

where, ζi,j is the damping ratio of the i-th eigenvalue in the j-th operating condition. σij is the real part of the ei- 
genvalue and the ωij is the frequency. N denotes the total number of eigenvalues and m denotes the number of 
operating conditions. 

6. Controller Design 
6.1. Design of Self-Adaptive DE-PSS 
The parameter’s configuration that was used for jDE-PSS is as follows 

Population: 30 
Generation: 100  
Mutation scale factor F: Adaptive 
Crossover CR: Adaptive 

6.2. Design of Conventional DE-PSS 
The parameter’s configuration that was used for CDE is as follows 

Population: 30 
Generation: 100  
Mutation scale factor F: 0.9 
Crossover CR: 0.9 
The parameter domain for both CDE and jDE are set as: 
0 ≤ Kp ≤ 20 
0 ≤ T1, T3 ≤ 1 
0.010 ≤ T2, T4 ≤ 0.5 

7. Simulation Results  
7.1. Eigenvalue Analysis 
Table 2 shows the closed-loop eigenvalues and damping ratios for CDE-PSS and jDE-PSS. Also included in 
Table 2 is the case where there is no PSS (No PSS). It can be seen that jDE-PSS gives the best damping under 
all operating conditions considered. As the system becomes weaker (i.e., line reactance becomes bigger), the 
performance of CDE-PSS is seen to be deteriorating. On the other hand, jDE-PSS is providing better perfor- 
mance as the system becomes weaker. Therefore, jDE-PSS can be considered to be more robust than CDE. 

7.2. Small Disturbance 
A small disturbance was simulated by applying a 10% step change in the reference voltage. The step responses 
for the speed deviations of the generator are presented in Figures 2-5.  
 

Table 2. Closed-loop eigenvalues and damping factors. 

Case CDE-PSS jDE-PSS No PSS 

1 −1.52 ± j3.41 (0.410) −1.92 ± j3.98 (0.430) −0.268 ± 4.457i (0.06) 

2 −1.13 ± j2.74 (0.380) −1.57 ± j3.23 (0.440) −0.118 ± 3.781i (0.048) 

3 −0.83 ± j2.32 (0.330) −1.34 ± j2.69 (0.450) −0.133 ± 3.311i (0.040) 

4 −0.49 ± j1.69 (0.280) −1.16 ± j2.25 (0.460) −0.0997 + 2.947 (0.034) 
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Figure 2. Speed deviations for a step response (case 1). 

 

 
Figure 3. Speed deviations for a step response (case 2). 

 

 
Figure 4. Speed deviations for a step response (case 3). 
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Figure 5. Speed deviations for a step response (case 4). 

 
Figure 2 shows the responses of the rotor speed deviations for case 1. It can be seen that all the controllers are 

able to damp the oscillations and improve the stability of the system. However, jDE-PSS has a slightly higher 
overshoot and undershoot but settles within 2.5 sec. as compared to CDE-PSS which settled in about 3 sec. 

Figure 3 shows the responses for case 2. The performances of the controllers are similar to the ones observed 
in case 1.  

Figure 4 and Figure 5 show the speed responses of the system for cases 3 to 4, respectively. jDE-PSS pro- 
vides the best performance in terms of settling time. In particular in case 4, where the system is weaker than the 
previous cases, jDE-PSS settled quicker (in about 5.5 sec) compared to CDE which settled in about 10 sec. The 
relatively large undershoots of jDE-PSS is probably due the the relatively higher PSS gain of jDE-PSS (Kp = 
18.9) compared to CDE-PSS (Kp = 17.2).  

8. Conclusion 
In this paper, self-adaptive DE is used to optimally tune the parameters of a power system controller for small- 
signal stability improvement. It is shown that there are clear advantages in using self-adaptive DE as compared 
to the conventional DE. Firstly, the time consuming trial-and-error approach is removed and secondly, there is a 
high possibility that the algorithm will converge to optimal values. Results based on eigenvalue analysis and 
time domain simulations show that under small disturbance, the self-adaptive DE performs better than the clas- 
sical DE in terms of settling time. Work is in progress to extend the self-adaptive DE approach to controller de- 
sign in a multi-machine power system in the future. 
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