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Abstract 
We answer the stability question of the large scale SIS model describing transmission of highland 
malaria in Western Kenya in a patchy environment, formulated in [1]. There are two equilibrium 
states and their stability depends on the basic reproduction number, 0  [2]. If 0 1 ≤ , the dis-
ease-free steady solution is globally asymptotically stable and the disease always dies out. If 

0 1 > , there exists a unique endemic equilibrium which is globally stable and the disease persists. 
Application is done on data from Western Kenya. The age structure reduces the level of infection 
and the populations settle to the equilibrium faster than in the model without age structure. 
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1. Introduction 
We recall the large scale system developed in [1] reduced into a compact form as 

( ) ( )diag 1X X X X= − + − +                                 (1) 

where 
( ), ,X x y z= , is a vector representing; x  is the proportion of infectious children, y  is the proportion of 

infectious adults, and z  is the proportion of infectious mosquitoes. 
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The authors used the preceding matrices and the vector ( ), ,X x y z=  to rewrite Equation (10) in [1] in a 
compact form as 

( ) ( )diag 1 .X X X X′ = − + − +                             (2) 

This system evolves on the unit cube of 3n .  

Calculation of the Basic Reproduction Number 
We use the classical framework defined in [3] [4]. 

The application ( ) ( )diag 1x X X= −    represents the rate of appearance of new infections in the com- 
partments in the patches. 

The function ( ) ( )X X= − +     is the rate of transfer of individuals in compartments. 
If ( )x  is set to zero, system becomes ( )X X= − +   , which is a linear system, and we have already 

seen that ( )− +    is a stable Metzler matrix. 
Proposition 1.1  
The basic reproduction number of system (1) is 

( )( )1

0 .ρ
−

= − − +      

Proof 
This is straightforward since the Jacobian of   computed at the DFE 0X =  is 

,F =  

and the Jacobian of ( )X  computed at the DFE is ( )= − +  V . 

The next generation matrix is then ( ) 1
K

−
= − − +                                            □ 

We can develop the expression of 0  further: 
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Then we can compute the nonnegative matrix 1−−V , which is a lower triangular matrix 
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The next generation matrix is a block matrix 

13

23

31 32

0 0
0 0 ,

0

K
K K

K K

 
 =  
 
 

 

with 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )( )

( )

11
13 1

11
23 1

1

31 2

1 1

2

32

diag diag diag diag

diag diag diag diag

diag diag diag diag .1

         diag diag diag diag diag .1

diag diag

C v
v

A v
v

C C C C
v h

A A A A C C
v h h

v

K N V M

K N V M

K N M

N M M

K

β µ

β µ

µ β γ ν µ

ν µ β γ µ γ ν µ

µ β

−−

−−

−

− −

= − − +

= − − +

= − − + + +

+ − + + − + + +

= −







 

( ) ( ) ( )( ) 1

2 diag diagA A A A
hN Mγ µ

−
− + + 

 

The block structure of K  implies (see [4]) that 

( )2
0 31 13 32 23K K K Kρ= +  

When 0 1< , the DFE is locally asymptotically stable, and if 0 1>  the DFE is unstable, see [3] [4]. 

2. Main Result 
In this section we establish a global stability result for the DFE when 0 1≤  and a global stability result when 

0 1> . We have the following theorem 
Theorem 2.1 
We consider the system (1) with the matrix C A vM M M+ +  irreducible. 
Then 
If 0 1≤ , then the system (1) is globally asymptotically stable at the origin 
If 0 1> , then there exists a unique endemic equilibrium *X , which is globally asymptotically stable on 
[ ]30,1 .n∈K  

Proof 
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We recall system (1), 

( )diag 1X X X X = − + − + 
      

The Jacobian at the origin will be given by 

( ) ( ) ( )diag 1 diagJ X X X  = − − + − + 
       

and 

( )0 .J  = + − + 
    

To prove the first part of the proposition above we assume that 0 1≤  Following [5], A B C= +  is a re- 
gular splitting of A if B is Metzler stable and 0C ≥ . Thus in our case  − + 

   has to be a stable Metzler 
matrix which is invertible and 0≥ , or equivalently,  − + 

   has to be an M-matrix. 
We know from Thieme [6], Driessche [4], and Varga [7] that 

( )1

0 1       0.s
−

 ≤ ⇔ − + − + ≤ 
     

From the preceding section we know that the Jacobian J  is an irreducible Metzler matrix. So, by Perron- 
Frobenius, there exists a positive vector 0c , such that 

( ) ( )( )0 0.
T

s J− + = ≤c c    

To prove the global stability of the DFE we consider the Lyapunov function 

( )  ,L X X= c  

where  | ,  denotes the inner product. From the definition of 0c , this function is actually positive definite 
in the nonnegative orthant. 

We compute the derivative of L  along the trajectories of (1) and find that it is equivalent to 

( ) ( ) ( )
( ) ( )( ) ( )( )

diag 1

           0  0  0,
T

L X X X X

X s J X s J X

   ′ = − + − + ≤ + − +   

 = + − + = = ≤ 

c c

c c c

 



      

  
           (5) 

We see that 0 1X≤ ≤ , it is clear that ( )1 X B XB− ≤ , hence the above inequality. 
Since ( )( )0 0s J ≤  the derivative is non positive. The DFE is stable. 
We will prove the asymptotic stability when 0 1.≤  
First we consider the case when 0 1< . Since we know that 0 1<  implies ( ) 0s J < , L′  is negative de- 

finite, since 0c . This proves the asymptotic stability of the DFE. 
When 0 1= , we consider the largest invariant set contained in the set 

( ){ }0 .X L X′= =  

For such an X  we have 

( ) ( ) ( )0 diag 1 diag ,X X X X X X   = − + − + = + − + −   c c           

but since ( ) 0L x′ = , we have by the inequality (5), 

( ) 0.X + − + = c     

Hence 

( ) ( ) diag .V X X X′ = − c    

Since 0c  then ( )diag 0X X =   or equivalently ( )diag 0X X =  
Now we show that the largest invariant set in   is reduced to the origin. 



J. Wairimu et al. 
 

 
1917 
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 =
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We must have, for any index i , 0i ix z =  and 0i iy z =  
Suppose 0ix =  since 
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Then 0iz =  and 0jx =  for any patch j , with a “children” arc leaving j  and entering i . 
Since 0iz =  and 0ix =  and since 
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Again 0iy =  and 0jz =  for any patch j  with a “mosquito” arc leaving j  and entering i . 
Now 0i i ix y z= = =  implies 

1,

An
j

i ij jA
j j i i

N
y m y

N= ≠

′ = ∑  

which implies that 0jy =  for any patch with a “adult” arc leaving j  and entering i . 
Now, since any patch can be reached by a path composed of “children”, “adult” or “mosquito” arcs, this 

proves that 0i i ix y z= = =  for any index. 
This ends the proof for the global asymptotic stability of the DFE from LaSalle’s Invariance Principle [8]. 
To prove the second part of our theorem, when 0 1> , we need the following theorem from [9]. 
Theorem 2.2 
Let F  be a 1C  vector field in n

 , whose flow φ  preserves n
+  for 0t ≥  and is strongly monotone in 

n
+ . Assume that the origin is an equilibrium and that all trajectories in n

+  are bounded. Suppose the matrix- 
valued map : n n nDF + + +→ ×    is strictly anti monotone, in the sense that,  

( ) ( )if  , then  ,x y DF x DF y< >  

then either all the trajectories in { }\ 0n
+  tend to the origin, or else there is a unique equilibrium  

( )   0np Int p+∈    and all the trajectories in n
+  tend to p .  

For our case we shall consider the positively invariant set [ ]30,1 n , which is diffeomorphic to the nonnegative 
orthant 3n

+ . Since the faces of the cube of type 1ix =  are repulsive for the vector field associated to (1), all 
the trajectories are bounded in [ ]30,1 n . 

We recall system 1. 
( ) ( )diag 1X X X X′ = − + − +      

If we take 1 2X X X< ∈ , then 

( ) ( )( )
( ) ( )( )

1 1 1 1

2 2 2 2

diag 1

diag 1

F X X X X

F X X X X

 = − + − + 
 = − + − + 
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Clearly 

1 2 ,X X   − + < − +   
      

since the quantities are positive. 
Now we prove that 

( )( ) ( )( )1 1 2 2diag 1 diag 1X X X X− < −     

and hence show that the system is strongly monotone. That is  

( ) ( ) ( ) ( )1 1 1 2 2 2diag diag diag diagX X X X X X− < −        

or 

( ) ( )1 1 2 2diag diag .X X X X− < −     

Considering the structure of   and   and having 1 2X X<  in [ ]30,1 n  and the fact that a sign change re- 
verses the inequality, then 

( ) ( )1 1 2 2diag diagX X X X>     

hence 

( ) ( )1 1 2 2diag diag .X X X X− < −     

To prove that theorem, we recall the Jacobian ( )J X  of system (1) 

( ) ( )( ) diag diag 1 ,J X X X  = − + − + − + 
       

Again for any 1 2X X X< ∈  , then ( ) ( )2 1diag 1 diag 1X X− < − . Since the matrix   has on each row a 
positive term, since   is a diagonal matrix with positive terms, we deduce 

( ) ( )2 1diag 1 diag 1X X− < −     

Considering the structure of   we have, if 1 2X X< , the relation 1 2X X<   holds and consequently  
( ) ( )2 1diag diagX X− < −    . 

Finally we have ( ) ( )2 1J X J X< , therefore the anti monotone criteria is met. 
We will prove that no trajectory tends to the origin. 
We have 0 1>  which is equivalent to ( )( )0 1s J > . Then there exists a positive vector 0c  such that 

( ) ( ) ( )( )0 0 .
TTJ s J= − + =c c c    

We consider the Chetaev function on a neighborhood of the origin 

( ) .V X X= c  

An simple computation gives 

( ) ( )( ) ( )diag .nV X s J o I X X ′ = − c    

Then in a sufficiently small neighborhood of the origin, in [ ]30,1 n , ( ) 0V X′ > . This proves that for 0ε >  
sufficiently small, the hyperplane { }X X ε=c  is a barrier for the vector field associated to (1). This proves 
that no trajectory tends to the origin. Then we conclude, by Hirsch theorem, the existence of an attractive en- 
demic equilibrium *X  in the interior of the cube. 

To prove stability, we shall compute ( )* *J X X : 

( ) ( ) ( )* * * * * * *diag diag 1 .J X X X X X X X = − + − + − + 
       

Taking into account that *X  is an equilibrium gives 

( ) ( )* * *diag 1 0,X X X− + − + =     

therefore 
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( ) ( )* * * *diag 0J X X X X= −    

since * 0.X   
We have proved that there exists a vector * 0.X   such that for the Metzler matrix ( )*J X  we have 
( )* * 0J X X  . This implies that ( )*J X  is Hurwitz [10] [11]. 
This completes the proof of the global asymptotic stability of the endemic equilibrium. 

3. An Example in Two Patches 
In this section we give a result to the case of two patches. We shall use the structure defined in Subsection 1.1. 
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The basic reproduction number is given by ( )1FVρ −−  From our example and at the DFE, this matrix is de- 
fined by 1FV −  
which has the values  

( )
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N
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N
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µ
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µ
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where 
( )( )1 21 2 12 12 21

C C C C C C CD m m m mγ γ= + + − , ( )( )1 21 2 12 12 21
A A A A A A AD m m m mγ γ= + + − . To get the basic reproduction num-  

ber we need to solve det I Jλ −  which is a 6 6×  matrix. Rewriting the matrix in the form  

4

2

0
.

0
I B
A I

 
Θ =  

 
 

The determinant of Θ  is given by 
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( )
4

4 444 4
6

2 2
2 2

11 0
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I BI B II B
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A I A IA I I AB

λ λλ λ λλ
λ λ λ

λ
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Using the properties of determinants we have 

( ) ( )4 2 2
6 2 2

1det det det 0.I I AB AB Iλ λ λ λ λ
λ

 Θ − = − + = − = 
 

 

We see after some calculation, that 
2

0 0 12
0

4
2

a a a+ −
=  

where 

( )0 11 11 13 31 22 22 24 42a A B A B A B A B= + + +  

( )( ) ( )( )1 11 11 13 31 22 22 24 42 21 11 23 31 12 22 14 42 .a A B A B A B A B A B A B A B A B   = + + − + +     

The expression for 2
0 , is complex due to the large number of parameters involved, but from the expression 

of the matrices A and B above, we can gain some insight. For example if there is no human migration between 
the two patches, then 12 21 12 21 0C C A Am m m m= = = =  and  

2 *
0 0 12

0

4
2

a a a+ −
=  

where 

( )( )*
1 11 11 13 31 22 22 24 42 .a A B A B A B A B= + +  

This is the product of the maximum basic reproduction number for patch 1 and patch 2. 
If there is no infective vectors in patch 2, and no vector migration, then 12 12 0C Aβ β= = , and 

( )
( )( )

( )
( )( )

11 21 2 2 12 1 11 21 2 2 1 12
0 2 2

1 1 21 2 12 21 12 1 1 21 2 12 21 12

,
C C C C C A A A A

C C C C A A A A A A

m N N V

N m m m m N m m m m

β β γ µ β β γ µ

γ γ γ γ

+ + +
= +

   + + − + + −   



  

which is the total children and adult contribution to 2
0 . 

It is clear that this new value of the basic reproduction number highly depends on the migration rates of the 
two age groups. If we increase the migration rates then 2

0  increases. 
Biologically, this implies that back and forth movement between the patches, would introduce malaria in- 

fection in an otherwise malaria free patch. 

4. Simulation 
In this section we obtain baseline values for two sites: the U-shaped valleys and V-shaped valleys. and use them 
to simulate equation 1, which is a compact form of equation 5 in [1]. For the human population in our model, we 
consider two patches, Umutete and Iguhu for the U-shaped valleys, and, Marani and Fort Tenan for the V-shap- 
ed valleys. From the study on the different ecosystems, the plateaus and the U-shaped valleys ecosystem have 
the characteristic, such that the results for the V-shaped valleys apply to the plateau ecosystem. This results from 
the fact that on the plateaus, the terraine is characterised by raised but flat topography with very little stag- nant 
water as the water darains down the rivers, to support breeding places for mosquitoes. The only notable differen- 
ces is where there are large water bodies like dams and reservoirs. In these cases high mosquito population is 
likely to survive and hence increase malaria transmission and infection. Some suitable references for our values 
are [12]-[16]. 

Data for 1 2, N N , and vN  was estimated to be 10000 people and we assume that the population is evenly 
distibuted to the two patches so that we have 5000 people on each patch (1500 children and 3500 adults for each 
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ecosystem). The mosquito population likewise was estimated to be 80,000 mosquitoes in the U-shaped valleys 
and 10,000 mosquitoes in the V-shaped valleys.  

The summary of the parameter values used is given in Table 1. 

4.1. The U-Shaped Valley Sites: Iguhu and Umutete, When 0 = 5.36  
When the age structuring is considered, the dynamics of the host population in the U-shaped valleys is re- 
presented on Figure 1. When there is no age structuring, the dynamics for the U-shaped valleys are shown in 
Figure 2. If we consider the U-shaped and the V-shaped valleys as one epidemiological region representing 
Western Kenya, then the dynamics are represented by Figure 3. The disease in the age structured model fades 
out faster. The steady states also settle to the endemic equilibrium faster. 

If there is no spatialization the values for the U-shaped valleys for both ecosystems has host population vari- 
ation represented on Figure 3. The interaction between the patches raises infection rate, so that the disease per- 
sists in the total population, while it fades out fast when the patches are isolated. 

4.2. The V-Shaped Valley Sites: Fort Tenan and Marani, 0 = 1.67  
The dynamics of the model in the V-shaped valleys sites with age structure is given by Figure 4. When the age 
structuring is ignored the variation of the host population in the V-shaped valleys is represented by Figure 5. 

5. Conclusions 
Highland malaria in Western Kenya remains a source of mortality and morbidity. Concerned efforts have been 
put in place by the stakeholders to bring the disease under control with less than expected results. This study 
 

Table 1. Parameter values and ranges for System 1 and Equation 
(5) in [1].                                               

Parameter U-Shaped valleys V-shaped valleys 
Ca  0.52 0.42 
Aa  0.15 0.12 

1
Cb  0.011 0.08 

1
Ab  0.011 0.08 

2
Cb  0.048 0.24 

2
Ab  0.024 0.018 
C
hµ  0.079 0.059 
A
hµ  0.033 0.033 

vµ  0.033 0.033 

ν  0.000283 0.000283 

12
Cm  0.08 0.08 

21
Cm  0.08 0.08 

12
Am  0.5 0.5 

21
Am  0.5 0.5 

12
vm  0.02 0.02 

21
vm  0.02 0.02 

Cγ  0.0035 0.0035 
Aγ  0.0035 0.0035 

hΛ  0.04 0.04 

vΛ  0.13 0.07 
CN  1500 1500 
AN  3500 3500 
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Figure 1. A numerical simulation for the variation of the two age classes population 
using Equation (1) and parameter values defined in Table 1 for the U-shaped valleys 
system with 0 5.36= .                                                   

 

 
Figure 2. A numerical simulation of Equation (1) no age class in the population and 

0 5.36= .                                                              
 
captures important factors key to endemicity of of malaria in Western Kenya, which could direct control mea- 
sure and targets effectively. 

Age structure helps us differentiate between child’s infectivity and susceptibility to malaria infection. It is 
clear from Balls [17] that children are a significant source of mosquito infection compared to adults. The biting 
rate for the two age groups differs [18] [19] as children are bitten more than adults did. The other difference 
captured in the model is death rates for the children (which may include malaria induced deaths). Most malaria 
deaths occur in children under the age of five years. While the adults also suffer morbidity due to severe in- 
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Figure 3. The variation of the total population in the region, no age class and the two 
ecosystems are treated as a single U-shaped valley ecosystem.                     

 

 
Figure 4. A numerical simulation of model 1 using parameter values defined in Table 
1 for the V-shaped valleys ecosystem with age structure. In this case 0 0.96 1= < .   

 
fection of highland malaria, there are fewer deaths due to acquired immunity compared to children. We note that 
the populations settle to the endemic equilibrium faster than in the age-structured than in the unstructured sys- 
tem as shown in Figure 5, and the stable equilibrium is achieved faster in the structured than the unstructured 
system. Adding age structure allows age specific control strategies to reduce disease prevalence. 

Our model suggests that a suitable model for malaria should be one that captures: age structure; differen- 
tiated patch or region susceptibility, which depends on the immunity of the inhabiting population; differentiated 
infectivity, which also depends on the immunity and age of the host population, and the mosquito population 
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Figure 5. A numerical simulation of model 1 using parameter values defined in Table 1 for 
the V-shaped valleys ecosystem without age structure. In this case 0 0.96 1= < , A numeri- 
cal simulation of model 1 using parameter values defined in Table 1 for the V-shaped valleys 
ecosystem. The is no age structures in the populations. In this case 0 0.96 1= < .           

 
dynamics. Intervention then can be done with guidance from the model. 

A more comprehensive characterization of results would have to include other types of patches that may not 
be terraine related but have different epidemiological characteristics from the U-shaped and the V-shaped val- 
leys. Such patches could take care of cities like Nairobi, where human migration has transferred malaria, and 
central Kenya where the cool highland ecosystem is disturbed by creation of dams for irrigation, rice cultivation, 
climate change and migration of population to the economically endowed part of the county. Adding age struc- 
ture allows age specific control strategies to reduce disease prevalence. 

We assumed that vectors migrate especially to nearby patches, and the migration parameters for hosts are con- 
stant, similar and independent of the compartment. For the compartments that are far apart, the migration of mo- 
squitoes is negligible and is set to zero, since the mosquitoes are only able to fly about 2 kilometers away. 

An explicit formula for 0  is obtained, which although complex due to the infinite number of patches, can 
be used to explore the effects of the parameters of the model. This formula will allow theoretical exploration of 
the options and efficiency of targeted public health intervention policies. The example in the two ecosystems 
simplifies the expression for 0 , which we use to simulate our model with some realistic data from Western 
Kenya. This parameter is inversely related to migration of the hosts between the patches. This implies that to re- 
duce 2

0 , we have to i) administer effective treatment through provision of proper health care facilities in both 
patches, ii) promote drug adherence, iii) reduce malaria drugs abuse through self administration to shorten the 
infectious period and arrest human to mosquito infection, hence increase the rate of recovery represented by γ . 

An example in two patches is given with an expression of 0  which is still complex; but insight is given in 
a case when no migration takes place. If the disease exists in one patch, with the back and forth movement, the 
disease in the otherwise free patch would be reintroduced. We want to mention that an example in three patches 
is also possible, but meaningful insight for the basic reproduction number may only be gained by simulation, 
with relevant data. This model can be extended to include intervention strategies by the Ministry of health in 
Kenya, through ITNs and IRS. Since the disease causes death especially in children, the model can also include 
disease related death rate in the human population. An important factor which is under investigation is the im- 
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pact of climate related factors to the resurgent epidemics. Resistance of vectors to ITNs and IRS is also an im- 
portant factor which may cause the disease to remain a menace in the region, not to mention the possibility of 
drugs resistance in human and possible emergence if new malaria strains. 

So far, we have formulated an analytical and numerical analysis which is a foundation of more research and 
also applicable to other vector borne disease like chikungunya [20]. 
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