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Abstract

The norm of an elementary operator has been studied by many mathematicians. Varied results
have been established especially on the lower bound of this norm. Here, we attempt the same
problem for finite dimensional operators.
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1. Introduction

Let H be a complex Hilbert space and B(H) be the set of bounded operators on H . A basic elementary
operator, M;¢:B(H)— B(H), isdefined as:

M, (W)=TWs,

for weB(H) and T,S fixed.
An elementary operator, E,:B(H)— B(H), neN, is a finite sum of the basic elementary operators, de-

fined as, E,(W)=> M;  => TWS;, forall weB(H), where T,,S, eB(H) are fixed, for i=12,--,n.
i=1 i=1

When n=2,wehave E,(W)=TWS, +T,WS,,forall weB(H) and T,,S, eB(H) fixed, for i=12.
Given the elementary operator E; on B(H), the question on whether the equation

|E.|I= Zn:"Ti IlIS: [l ne N, holds remains an area of interest to many mathematicians. This paper attempts to an-
i=1

swer this question for finite dimensional operators.
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For a complex Hilbert space H , with dual H", we define a finite rank operator (u®x):H —H by,
(u®x)y=u(y)x forall yeH , where ueH",and xeH isaunitvector, with:

Ju®x||=sup{|(u®x)y|:yeH.|y| <1} =sup{Ju(y)x|: vy eH.[y]<1}
:sup{|u(y)|||x||: ye H,||y||£1} :sup{|u(y)|: ye H,||y||sl} :|u(y)|.

In this paper, we use finite rank operators to determine the norm of E,. We first review some known results
on the norm of the Jordan elementary operator U, ¢ :B(H)— B(H), W — TWS+SWT , forall W e B(H)
with T,SeB(H) fixed. We will then proceed to show that for an operator W e B(H) with |W|=1 and
W (x)=x forall unit vectors x e H , then:

2
€l =2 ImlIs:]

Some mathematicians have attempted to determine the norm of E, . Timoney, used (matrix) numerical
ranges and the tracial geometric mean to obtain an approximation of E, [1], while Nyamwala and Agure used
the spectral resolution theorem to calculate the norm of E, induced by normal operators in a finite dimensional
Hilbert space [2].

The study of the norm of the Jordan elementary operator has also attracted many researchers in operator
theory. Mathieu [3], in 1990, proved that in the case of a prime C*-algebra, the lower bound of the norm of

Uy canbe estimated by U, | 2%||T llS]- 1n 1994, Cabrera and Rodriguez [4], showed that

Uz o] 2 muT lIs|. for prime JB*-algebras.

On their part, Stacho and Zalar [5], in 1996 worked on the standard operator algebra which is a sub-algebra of
B(H), that contains all finite rank operators. They first showed that the operator U, ¢ actually represents a
Jordan triple structure of a C*-algebra. They also showed that if A is a standard operator algebra acting on a
Hilbert space H ,and T,S € A, then ||UT,S||2 2(x/§—1)||T||||S|| They later (1998), proved that

”UT,s || >|T|S|| for the algebra of symmetric operators acting on a Hilbert space. They attached a family of Hil-

bert spaces to standard operator algebra, using the inner products on them to obtain their results.
In 2001, Barraa and Boumazguor [6], used the concept of the maximal numerical range and finite rank opera-
tors to show that if T,SeB(H) with S =0, then:
st ]
IISII

otz e |
W, (T°8) = {2 € C:3x, € H x| =L lim(T"Sx,,x,) = 2, lim [sx, | = s].

where,

leWS T s
neon nN—o0

is the maximal numerical range of T'S relativeto S ,and T" is the Hilbert adjoint of T .
Okelo and Agure [7] used the finite rank operators to determine the norm of the basic elementary operator.
Their work forms the basis of the results in this paper.

2. The Norm of Elementary Operator

In this section, we present some of the known results on elementary operators and proceed to determine norm of
the elementary operator E,.
In the following theorem Okelo and Agure [7], determined the norm of the basic elementary operator.
Theorem 2.1 [5]: Let H be a complex Hilbert space and B(H) the algebra of bounded linear operators
on H.Let M; :B(H)—B(H) be defined by M, (W)=Tws forall weB(H) with T,S as fixed
elementsin B(H). Ifforall W eB(H) with |[vv||_1 we have W (x)=x for all unit vectors x e H , then;

M- sl=ITlIs]-
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Proof: Since "MT'S |B(H)||:sup{ ||MT,S (W)":W € B(H),"\N"zl} , we have, Ve>0;

M« [B(H )| <M o ()] W < B(H), [w]-=1
Therefore:
[M: s [B(H)| -~ <[Tws <[T[]s].
Letting & — 0, we obtain:
[M:s[B(H)|<ITls] - (1)
On the other hand, we have:
Mz [B(H)|2[Mr s W)], vW B(H), [W]=1,
with:

M5 (W) :sup{"(MrS (W ))x" :VxeH, || :1} :

So, setting T =u®x, Vx, eH, |x]=1,and S=v®x,, Vx, e H, |x,| =1, we have:
[Mr s [B(H)|2 My s (W)], YW e B(H), [W]=1,with T,S fixedin B(H).

=|| (U®x )W (v®x y||—||u®xl)W(v(y)x2)||
=[(u@x)v(y)w () =y (v)[[(u@x)w (x|
=[v(y)fJu(w (x) X1||—|" Nu(w () Ix]=ITlls]-

v

For any vectors y,zeH , the rank one operator, y®zeB(H), is defined by (y®z)x=(x,z)y, for all
XxeH.

In the following three results Baraa and Boumazgour give three estimations to the lower bound of the norm of
the Jordan elementary operator. See [6]. Recall that the Jordan elementary operator is the operator

UT,S :B(H)—>B(H), W —TWS +SWT , forall W eB(H) with T,SeB(H) fixed.

Theorem 2.2. Let U, ¢ be the Jordan elementary operator with T,S e B(H) fixed, and with S # 0. Then

otz s {lisiro s

2eW, S T's
where, W, (T*S) is the maximal numerical range of T'S relativeto S, as defined earlier.

Proof: Let AeW; (T*S). Then there exists a sequence {xn}n21 of unit vectors in H such that

obtaining;

2|rls] @

T,S

Hence, from (1) and (2), we obtain

M B = Irfls]- 0

Iim<T*an,xn>:/1 and ,!'_TOMSXV‘":"S" Consider unit vectors y,ze H, and recall the rank one operator,

n—oo

y®zeB(H), defined as (y®z)x=(x,z)y, for all unit vectors x e H . For fixed operators T,SeB(H),
we have;

[(Urs (@))%, < rsfIvlisxl <[ s s

)
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Thatis U, s[|S]> "(UT,S (y®sx,))x,
Thus we have:

ursllisl=|(us s (y®$x,))

:||T(y®an)an+S(y®an T, | =T (S%,.5%, )y + S (Tx,. 5%, ) y|

T(y®Sx,)S+S(y®Sx,)T)X,

- ” Isx, ||2 Ty + <xn ,T*an>8y”.
Hence

||UT'S || 2ﬁ“||8xn ||2 Ty+<xn,T*an>Sy”. 3)

Letting n — o, we obtain:

"UTSH ||S||Ty+" "Sy

and this is true for any A eW, (T*S) and for any unit vector yeH .

Now, consider the set {‘||S||Ty+ 9] Sy” A eW, (T*S), yeH,|y| :1}.

We have:

WLSHpr{|

A
S| Ty +7= Sy
STy 57

AeW(T'S),ye H,||y||:l}

But sup{H”S"Ty+ ] Sy“ A eW, (T S) yeH.,|y|= 1}—sup{H||S||T+ ] H /IeW }

Therefore:

ISIT +5r

wm"sw{ s 4ew4rg}

and this completes the proof. O
Corollary 2.3: Let H be a complex Hilbert space and T,S be bounded linear operatorson H . Let

0eW, (T"S)UW; (S'T). Then we have |U; <[> [T][S]-
Proof: Let 0eW, (T'S)UW, (S'T). Then, 0eW(T"S) or 0eW, (S'T), and therefore, either there is a

sequence {x,} . of unit vectors in H such that !im(T*Sx X >:0 and Iim||Sx =S| or, there is a se-

n>1

quence {y,} , ofunitvectorsin H such that rI]im<S*Tyn,yn> 0 and lim|Ty,|=|T].

n—oo

Recall that in the previous theorem (Inequality (3)), we obtained:
||UT'S || > ﬁ“”an Iy +<xn ,T7Sx, > Sy“
This is equivalent to:

"UT s |> ” " ”"Syn | Ty+<S TV, Y, Sy” @)

considering the sequence {y,} .,
Taking limits in either (3) or (4), we obtain

e s = s

C2)
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and this is true for any unit vector ye H.
Now, consider the set {||||S||Ty|| yeH,|y| :1} _

We have:
Us <] = sup{{ls|Ty]: y € Huy] =1}

But sup{J|S|Ty]: v < H.|y|=1} =[T]|s]-
Therefore:

[urs|=ITlis]

and this completes the proof. O
Proposition 2.4: Let H be a complex Hilbert space and T,S be bounded linear operatorson H . If

T ls] < w: (S*T)QWT* (ST*) then:
[ur s =2Imlis] -

Proof: Suppose [T[[S[|€W; (S'T)NW...(ST"). Then [T[[S|eW;(S'T) and [T||S|eW..(ST"), and

therefore we can find two sequences {x,}  and {y,} . ofunitvectorsin H such that:

Iim<S*Txn,xn>=||T||||S||, lim|[Tx, | =|[T|| and Iim<ST*yn,yn>=||T||||S||, Iim||T*yn

n—oo n—o n—oo n—oo

=[Tl-

Since ‘<S*Txn,xn>

,then lim||Sx,||=|S| and

n—w

sy,

<[, 8%, | and KST*yn,yn>

<[y,

lim

n—o0

"y,

=[Sl
Foreach n>1, we have:
[(Urs (3, @y))8 v [ =[(T(x @ ¥,)5 +5 (%, @y,)T)S"y,
= ||T (x,®Y,)SSy, +S(x,®y,)TS"y, g “<SS*yn,yn>Txn +<TS*yn, yn>an
‘||S*yn

“Tx, +<TS*yn , yn>an>

2

2

2 2

=[(S7y,, Sy, )Tx, +(TS"y,,y, ) Sx, Tx, +(TS"y.,y, )SX,
I )T+ ) T+ )

(I

= H||Sy

“Tx, +<TS*yn, yn>an, Sy,

2 *
T, SV,

2
Jsx.

‘|

i +2Re<<TS*yn, yn>an,

2Txn>+KTS*yn, yn>

I +[s"ya 22Re<Ts*yn,yn>(an, Txn)+KTS*yn,yn> 5%,

) Re<TS*yn, yn><T*an , xn>+‘<TS*yn, yn>

=[5y,
=[s",

Now, we have:

4 . 2
7, +s"ys s [

Sy,

< (5 © )87y,

S"UT,s (x, ®Yy,)
< ||UT.S "Xn ® yn”

<[orsl Is,

Sy,

Therefore:
sy,

+ KTS*yn : yn>

C2)

0I5 215 T <[ 2e(7s°y,.3,) (7755,

2
sl
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Letting n— o we obtain:
2
Uz s [ IS = IS ITI" +2[[ [T + s T = 4l

Thatis U, | > 4|S|F|T|" and this implies that U, ] > 2[S||T].
Clearly, ||UT,S || <2|S||T| and therefore we obtain "UT,s || =2|s||7|- 0

We recall that an elementary operator, E,:B(H)—B(H), neN, isdefinedas E (W)= TWS,, forall
i=1

W eB(H) where T,,S, eB(H) arefixed, for i=12,--,n. When n=2, we have E,(W)=TWS, +T,WS,,
forall weB(H) and T,S, eB(H) fixed, for i=12.

The following result gives the norm of E,.

Theorem 2.5: Let H be a complex Hilbert space and B(H ) be the algebra of all bounded linear operators
on H: Let E, be the elementary operator on B(H) defined above. If for an operator W e B(H) with
W] =1, wehave W (x)=x forall unit vectors xeH , then:

2
[E1=2Imllsi]

Proof: Recall that E,:B(H)—B(H) is defined as E,(W)=TWS, +TWS,, for all weB(H) and
T,,S, eB(H) fixed, for i=12.
We have:

|E;|B(H)|=sup{|E, (W)]|:W e B(H), W[ =1}.
Therefore, ||E2|B(H)||2||E2(W)|| forall weB(H) with |w|=1.
So,forall £>0, |E,|B(H)|-&<|E,(W)| forall weB(H) with |w|=1.
2
Therefore, |[E,|B(H)|-¢< Z:;,"T. Ils:]) -

Letting & — 0, we obtain:
2
[E:B(H)]< Il ©)
Next, we show that [E,B(H)|> 3 Is,]
i=1

since [, (W)||:sup{||(E2 (W))X"ZXG H,||x||=1} . then we have |E, (W)||2||(E2 (W))x” for all
xeH,|x|=1.But E,(W)x=(TWS,+T,WS,)x.

Now, let u,,v,:H — R* be functionals for i=1,2.

Choose unit vectors y,ze H and define finite rank operators T, =u;®y and S, =v,®z on H, for
=12 by Tx=(u®y)x=u(x)y forall xeH with |x|=1,for i=12, and Sx=(v,®z)x=v,(x)z,
for xeH with ||x|=1,for i=12.

Observe that the normof T, for i=12 is,

ITll= sup{"(ui ®y)x|:xeH [x|< 1}
=sup{Ju; (x)y] : x e H.[x| <1}
=sup {|u; ()[[lyl]: x e H. x| <1}
= sup{|ui ()| x e H x| <1} =u; (x)|

Thatis [T||=|u;(x) forany unitvector xeH with |x|=1,for i=12.
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Likewise, the norm of 'S, is [S,[|=|v; (x)| for any unitvector xeH with |x|=1,for i=12.
Therefore, forall xe H with |x|=1, we have

E,(W)x=(TWS, +T,WS, ) x = (T\WS, ) x+(T,WS, ) x
(U, ® Y)W (v, ®Z)x+(u, ® Y)W (v, ®2)X
(U, ® Y)Wy, (X)z+(u, ® Y)Wy, (x)z

L () (U ® Y)W (2)+v, (x)(u, ® Y)W (2)

L (X)uy (W (2)) y+v, (X)u, (W (2))y.

=<

I
<

2

x>u1(vv(z))v2<x)uzvv( )+ {le (ol (w (@)

»(W(z)) are all positive real numbers, we have
|

N {|v1 (x)||ul (W
Now, since v, (x),u, (W (z)),
vl(x):|v1(x)|:|81|, u, (W (z ):|u1(W(z))
U, (W (2)) =|u, (W (2))| =T
Thus |E,[B(H)|" 2 {[T||Su|}" + 2T [Su[Tol[S2) +{[T2l[S. ]} = {[Tal[Si +[Tal|S.]}” and hence we have
"E2|B(H)”— [T[[8:]+ |T2||Sz|}=§||Ti”"Si"'

That is,

=T, vz(x):|v2(x)|:|82|, and

[Ex[B(H)]= 2Tl (6)

Now, (5) and (6) implies that:
2
[E-lB ()l = ZImlsi

and this completes the proof. O

G2
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