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Abstract 
In this paper, we study the existence of exponential attractors for strongly damped wave equa-
tions with a time-dependent driving force. To this end, the uniform Hölder continuity is estab-
lished to the variation of the process in the phase apace. In a certain parameter region, the expo-
nential attractor is a uniformly exponentially attracting time-dependent set in the phase apace, 
and is finite-dimensional no matter how complex the dependence of the external forces on time is. 
On this basis, we also obtain the existence of the infinite-dimensional uniform exponential attrac- 
tor for the system. 
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1. Introduction 
In this paper, we study the following non-autonomous strongly damped wave equation on a bounded domain 

3Ω ⊂   with smooth boundary Ω∂ :  

( ) ( )

( ) ( )( ) ( )0 1

,
0,

, , ,

tt t t

t

u u u u f u g t
u
u u u uτ τ

α γ

τ τ
∂Ω

 − ∆ − ∆ + + =


=
 =

                                (1.1) 

where ( ),u u x t=  is a real-valued function on [ ), ,τΩ× +∞  , 0,α γ >  ( )1 , ,f C∈    ( ) ( )1
0 0 ,u x Hτ ∈ Ω  

( ) ( )2
1 .u x Lτ ∈ Ω  Let ( ) ( )

0
d ,

u
G u f s s= ∫  we make the following assumptions on functions ( ) ( ), :G u f u  
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( )
2| |

liminf 0;
u

G u
u→+∞

≥                                   (1.2) 

( ) ( )1
2| |

liminf 0;
u

uf u c G u
u→+∞

−
≥                                (1.3) 

( ) ( )2 1 , with 0 2;rf u c u r′ ≤ + ≤ <                          (1.4) 

where 1 2,c c  are positive constants. And we assume that the external force g  belongs to the space ( )( )2,L L∞ Ω  
and satisfies  

( )( )2,L Lg M∞ Ω
≤                                   (1.5) 

for some given (possibly large) constant M . 
Wave equations, describing a great variety of wave phenomena, occur in the extensive applications of mathe- 

matical physics. Equation (1.1) can be regarded as a perturbed equation of a continuous Josephson junction 
where ( ) sinf u u= , see [1]. There is a large literature on the asymptotic behavior of solutions for strongly 
damped wave equations (see, for instance, [1]-[9]). In [9], the author showed the uniform boundedness of the 
global attractor for large strongly damping and obtained an estimate of the upper bound of the Hausdorff dimen- 
sion of an attractor for strongly damped wave Equation (1.1) when g  is independent of t . But when the 
equations depend explicitly on t , the case can be complex. 

Recently, motivated by [6], the authors have given a new explicit algorithm allowing to construct the expo- 
nential attractor, and this method makes it possible to consider more general processes in applications [10] [11]. 

An exponential attractor   is a compact semi-invariant set of the phase space whose fractal dimension is 
finite and which attracts exponentially the images of the bounded subsets of the phase space Φ . In non-autono- 
mous dynamical systems, instead of a semigroup, we have a so-called (dynamical) process ( ),U t τ  depending 
on two parameters ,t τ ∈  (or ,t τ ∈  for discrete times). The asymptotic behavior of non-autonomous dy- 
namical systems is essentially less understood and, to the best of our knowledge, the finite-dimensionality of the 
limit dynamics was established only for some special (e.g. quasiperiodic) dependence of the external forces on 
time. Indeed, there exists, at the present time, one of the different approaches for extending the concept of a glo- 
bal attractor to the non-autonomous case which is based on the embedding of the non-autonomous dynamical 
system into a larger autonomous one by using the skew-product flow. This approach naturally leads to the so- 
called uniform attractor un  which remains time-independent in spite of the fact that the dynamical system 
now depends explicitly on the time, see [12]. We note that however the uniform attractor reduces to an autono- 
mous system via the skew-product flow. It seems natural to generalize the concept of an exponential attractor to 
the non-autonomous case, see [11] [13] [14]. But in all these articles, the uniform attractor’s approach was used 
in order to construct an exponential attractor for the non-autonomous system considered and, consequently, an 
(uniform) exponential attractor remained time-independent. Since, under this approach, an exponential attractor 
should contain the uniform attractor, all the drawbacks of uniform attractors (artificial infinite-dimensionality 
and high dynamical complexity) described above are preserved for exponential attractors. 

In the present article, we study exponential attractors of the system (1.1) based on the concept of a non-au- 
tonomous (pullback) attractor. Thus, in the approach, an exponential attractor is also time-dependent. To be 
more precise, a family ( )t t→  of compact semi-invariant (i.e., ( ) ( ) ( ),U t t tτ ⊂  ) sets of the dynami- 
cal process (1.1) is an (non-autonomous) exponential attractor if  

1) The fractal dimension of all the sets ( )t  is finite and uniformly bounded with respect to :t   

( )( ), .F t CΦ ≤ < ∞dim  

2) There exist a positive constant β  and a monotonic function Q  such that, for every , 0t s∈ ≥  and 
every bounded subset B  of Φ ,  

( ) ( )( ) ( ), , e .sU t s t B t s Q B β−
Φ Φ

+ + ≤dist                         (1.6) 

We emphasize that the convergence in (1.6) is uniform with respect to t∈  and, consequently, under this 
approach, we indeed overcome the main drawback of global attractors [13]. 
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This article is organized as follows. In Section 2, we first provide some basic settings and show the absorbing 
and continuous properties in proper function space about Equation (1.1). In Section 3 and Section 4, we prove 
the existence of the uniform attractor and exponential attractor of Equation (1.1), respectively. Finally, we prove 
the existence of infinite-dimensional exponential attractor, and compare it with the non-autonomous exponential 
attractor in Section 5. 

2. Preliminaries 
We will use the following notations as that in Pata and Squassina [15]. Let A  be the (strictly) positive operator 
on ( )2L Ω  defined by  

A = −∆  with domain ( ) ( ) ( )2 1
0 ,D A H H= Ω Ω  

and consider the family of Hilbert spaces ( )2 ,sD A s∈  with the standard inner products and norms, respec- 
tively,  

( ) ( ) ( )2
2 2, ,s

s s
D A A A⋅ ⋅ = ⋅ ⋅  and ( )2

2 .s
s

D A A⋅ = ⋅  

Then we have  

( ) ( ) ( ) ( ) ( ) ( )0 2 1 2 1 1 2 1
0, ,D A L D A H D A H− −= Ω = Ω = Ω  

and the compact, dense injections  

 ( ) ( )2 2 , .s rD A D A s r∀ >
 

In particular, naming 1λ  the first eigenvalue of A , we get the inequlities  
( ) ( )22 2 2

1 , .r sr s sA A D Aφ λ φ φ−≤ ∀ ∈  

We recall the continuous embedding  

 ( ) ( ) ( )6 3 22 3, 0, ,
2

ssD A L s−  Ω ∀ ∈    
and the interpolation results: given ,s r q> >  for any 0ε > , there exists ( ), ,C C s r qε ε=  such that  

( )2 2 2 2, ,r s q sA u A u C A u u D Aεε≤ + ∀ ∈  

and let  

( ) ( ) ( ) ( ) ( )1 2 2 1 1
0 0 0, .E H L H H H= Ω × Ω = Ω Ω × Ω  

Equation (1.1) is equivalent to the following initial value problem in the Hilbert space E  

( )
( ) ( )T

0 1

, , ,

, ,

Y PY F Y t t

Y Y u u Eτ τ τ

τ

τ

 = + ≥


= = ∈



                               (2.1) 

where ( )T, ,tY u u=  ( ) ( ) ( )( )T
, 0, tF Y t u f u g tγ= − − +  and  

0
.

I
P

A Aα
 

=  − − 
 

It is well known (see, e.g., [3], [9]) that, under the above assumptions, Equation (2.1) possesses, for every 
τ ∈  and ,Y Eτ ∈  a unique (mild) solution ( ) [ )( ), , , , .Y t Y C E tτ τ τ∈ +∞ ≥  Thus, Equation (1.1) defines a 
dynamical process ( ){ }, , ,gU t tτ τ τ≥ ∈  in the phase space E  by  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1, := , where , solves 2.1 with , .g tU t Y Y t Y t u u Y u uτ τ ττ τ= =       (2.2) 

Define a new weighted inner product and norm in E  as  

( ) ( ) ( ) ( )1 21 2 1 2
1 2 1 2, , , , , ,E EEA u A u v vϕ φ µ ϕ ϕ ϕ= + =  
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for any  

( ) ( )T T
1 1 2 2, , , ,u v u v Eϕ φ= = ∈  

where µ  is chosen as  

( )
( )

2
1 1

2
1 1

4 1 ,1 .
24 2

αλ γ α γ λ
µ

αλ γ α γ λ
+ + +  = ∈ + + +  

                          (2.3) 

Obviously, the norm 
E⋅  in (2.3) is equivalent to the usual norm ( ) ( )1 2

0H LΩ × Ω
⋅  in E . 

Let 

( )T, , ,tu v v u kuϕ = = +  

where k  is chosen as  

( )
1

2
1 1

,
4 2

k αλ γ
αλ γ α γ λ

+
=

+ + +
                                  (2.4) 

and then the system (1.1) can be written as  

( ) ( ) ( ) ( )T
0 1 0, , , , , ,t H F t u u ku tτ τ τϕ ϕ ϕ ϕ τ τ τ+ = = + ≥ ∈            (2.5) 

where  

( ) ( ) ( )
0

, ,F t
f u g t

ϕ
 

=  − + 
 

( ) ( ) ( ) .
ku v

H
Au k A k u ku k v Av

ϕ
α γ γ α

− 
=  − − − + − + 

 

Lemma 2.1 For any ( )T, ,u v Eϕ = ∈  we have  

( )( ) 2 21
0, ,

2EE
H vαλ γ

ϕ ϕ σ ϕ
+

≥ +  

where  

( ) ( )
2 2

1
0 1 1 2 1

1 11 1 2

, 4 , .
λα γ γ γσ γ αλ γ α γ αλ γ α

λ λγ γ γ
+

= = + + + = + +
+

               (2.6) 

Proof. Since ( ) ( )D A D A×  is dense in E , and 1u kα= − ; we only need to prove lemma 2.1 for any  

( ) ( ) ( )T, ,u v D A D Aϕ = ∈ ×   

( )( ) ( )2 2 2 21 1
0 0 0

1

, .
2 2EE

kH v k u k v u vαλ γ αλ γ γϕ ϕ σ ϕ σ µ σ µ
λ µ

+ + − − ≥ − + − − − ⋅ 
 

 

By (2.4) and (2.6), elementary computation shows  

( )
2 2

1
0 0

1

4 .
2

kk kαλ γ γσ σ
λ µ

+ − − − ≥ 
 

 

The proof is completed.  
Lemma 2.2 Let assumptions (1.2)-(1.5) be satisfied. For any initial data Eτϕ ∈ , there exists a positive con- 

stant ρ  depending only on the coefficients of (1.3) and (2.4) and Ω  such that the following dissipative esti- 
mate holds:  

( ) ( )( ) ( )
1e , ,t

E E
t Q M tρ τϕ ϕ τ τ− −≤ + ≥  
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where Q  is a monotonic function and where the positive number 1M  depends also on M  (but is indepen- 
dent of the concrete choice of g ). 

Proof. Write ( ) ( )d .G u G u x
Ω

= ∫  Let ( )T,u v Eϕ = ∈  be the solution of the system (2.5) with the initial  

value ( ) ( )T
0 1 0, .u u ku Eτ τ τϕ τ = + ∈  Taking the inner product ( ), E⋅ ⋅  of (2.5) with ϕ , we have  

 ( ) ( )( ) ( )( ) ( )( )21 d 2 , , , .
2 d E E

G u H k f u u g t v
t

ϕ ϕ ϕ + + + =                    (2.7) 

By (1.2), (1.3) and Poincaré inequality, there exist two positive constants 1 2, 0k k ≥  such that  

( )( ) ( ) ( )2 1
1 2 0

1, 0, ,
8

u f u c G u u k u H− + + ≥ ∀ ∈ Ω                        (2.8) 

( ) ( ) ( )2 2 1
1 1 0

1

1 10, 0, .
8 32

G u u k G u u k u H
c

+ + ≥ + + ≥ ∀ ∈ Ω                    (2.9) 

By (2.4) and (2.6), 0
1 .
2

k kσ< <  Let ( ) ( )2 2
1

12 2 0.
4E Ey t G u kϕ ϕ= + + ≥ ≥  By (2.8)-(2.9), we have  

( )( ) ( )( ) ( ) 21
2 1 1

1, , ,
2 2E

H k f u u y k k c k vαλ γ
ϕ ϕ ρ

+
+ ≥ − + +                    (2.10) 

where ( )1
1 , min 1,16 .

32
k cρ ϑ ϑ= =  By (2.7) and (2.10),  

( )2
1 1 2

1

d 1 2 .
d

y y g k c k k
t

ρ
αλ γ

+ ≤ + +
+

 

By Gronwall’s inequality, we have an absorbing property:  

( ) ( ) ( )

( )
( ) ( )( )

2
2 1 1 2

1

2
4 e 4 1 e , .t t

E

k c k kMt y tρ τ ρ τϕ τ τ
αλ γ ρ ρ

− − − − +
≤ + + − ≥  + 

 

This completes the proof.  
Theorem 2.1 Given any 0b >  and for the solutions of (2.5) with any two initial data 1 2, Eτ τϕ ϕ ∈  such that 
1 2,b bτ τϕ ϕ≤ ≤ , we have the following Lipschitz continuity in E  

( ) ( ) ( )1
1 2 1 2, , e , ,K t

g g EE
U t U t tτ

τ τ τ ττ ϕ τ ϕ ϕ ϕ τ−− ≤ − ∀ ≥  

for some ( )1 1K K b= . 
The proof is similar to Theorem 2 in [15].  
Theorem 2.2 For the solutions of (2.5) with different external forces 1g  and 2g  satisfying (1.5) and with 

the initial data 1τϕ  and 2 Eτϕ ∈ , the following contiuity holds:  

( ) ( ) ( ) ( ) ( )( )2
1 2

2 22
1 2 1 2 1 2, , e d , ,

tK t
g g EE

U t U t C g s g s s tτ
τ τ τ τ τ

τ ϕ τ ϕ ϕ ϕ τ−− ≤ − + − ≥∫  

where C  and 2K  are independent of tM ,  and .τ  
The proof is similar to Lemma 4 in [5]. 

3. Existence of the Uniform Attractor 
The dissipativity property obtained in Lemma 2.2 yields the existence of an absorbing set for the process 

( ),gU t τ  on E . In the following section, we assume that 6cσ ≥  holds, where 6c  is specified in (3.11). 
Theorem 3.1 The process ( ){ },gU t tτ τ≥  possesses a uniform attractor un  in .E  

Proof. We consider ( )( )2,g L L∞∈ Ω  such that  

( )2 ,Lg g
Ω

− <                                     (3.1) 

and we introduce the splitting ( ) ( ) ( ) ( )1 1 2 2, , , ,u v p q w wρ ρ= + +  where ( ),p q  satisfies  
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( ) ( ) ( ) ( ) ( )
( ) ( )

0,
,

0, 0,

t

t

p kp q
q Ap k A k p A k q q kp f u g t
p q

α α γ
τ τ

+ − =
 + − − + − + − + =
 = =

                 (3.2) 

( )1 1,w ρ  satisfies  

( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 1

1 1 1 1 1 1

1 1

0,

,

0, 0,

t

t

w kw

Aw k A k w A k kw g t g t

w

ρ

ρ α α ρ γ ρ

τ ρ τ

 + − =
 + − − + − + − = −


= =

                   (3.3) 

and ( )2 2,w ρ  is the solution of  

( ) ( ) ( )
( ) ( )

2 2 2

2 2 2 2 2 2

2 2
0 1

0,

0,

, .

t

t

w kw

Aw k A k w A k kw

w u uτ τ

ρ

ρ α α ρ γ ρ

τ ρ τ

 + − =
 + − − + − + − =


= =

             (3.4) 

We now define the families of maps ( ){ }1 ,kU t tτ τ≥  and ( ){ }2 ,kU t tτ τ≥  in ,E  where  

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )1 1 1 2 2 2
0 1 0 1, , , , , , , , .k kU t u u p t q t w t t U t u u w t tτ τ τ ττ ρ τ ρ= + =  

First step: We prove that ( ),p q  is bounded in   that the solution of (2.5) is starting in bounded sets of 
initial data τϕ . The system (3.2) can be written as  

( ) ( ) ( ) ( )T0 0 0 0
0 0 , 0,0 ,t H Fϕ ϕ ϕ ϕ τ+ = =                         (3.5) 

where ( )T0 ,p qϕ = ,  

( ) ( ) ( )

( ) ( ) ( ) ( )

0
1

0
1

0
,

.

F
f u g t

kp q
H

Ap k A k p A k q q kp

ϕ

ϕ
α α γ

 
=  − + 

− 
=  − − + − + − 

                    (3.6) 

Similar to Lemma 2.1, we have  

( )( ) 2 20 0 0 1
1 0, ,

2EE
H qαλ γ

ϕ ϕ σ ϕ
+

≥ +  

where 0σ  is as (2.6). Multiply (3.5) by ( ),p q , so we get  

( )( ) ( )( )2 2 20 0 1
0

1 d , , .
2 d 2E E

q f u q g t q
t

αλ γ
ϕ σ ϕ

+
+ + ≤ − +                        (3.7) 

Similar to Lemma 2.2, applying (3.7) and Young, Poincaré, Gronwall inequalities, we obtain  

( )20
1 1 2 1

0

1 , , , , , , , .
E

C g k k k cϕ α λ γ
σ ∞

≤   

Now we multiply (3.5) by ( ),Ap Aq  and integrate over Ω  to obtain  

( )( ) ( )( )
2 2 21 1 1

0 0 12 2 2
0

1 d , , ,
2 d 2

E E

A A A q f u Aq g t Aq
t

αλ γ
ϕ σ ϕ

+
+ + ≤ − +                 (3.8) 

with  

( )( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2d, , , , , .

dt tf u Aq A f u A p kp A f u A p A f u u A p k A f u A p
t

       
′− = − + = − + −              

       
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Then from (3.8) we have  

( ) ( )

( )

2 21 1 1 1 1 1
0 02 2 2 2 2 2

21 1 1 1 1
1 2 2 2 2 2

1 d 2 , ,
2 d

, , ,
2

E E

t

A A f u A p A k A f u A p
t

A q A f u u A p A g A q

ϕ σ ϕ

αλ γ

    
 + + +           

   + ′≤ − + +      
   



 

i.e.,  

( ) ( )

( ) ( )

2 21 1 1 1 1 1
0 02 2 2 2 2 2

21
2

1 1
2 2

1

1 d 2 , ,
2 d

, ,
2

E E

t

A A f u A p A k A f u A p
t

A g
A f u u A p

ϕ σ ϕ

αλ γ

    
 + + +           

 
′≤ +   + 



                (3.9) 

for the first term on the right-hand side of (3.9), we have  

( ) ( ) ( ) ( )( ) ( )

( )( ) ( )

6

1 11
66 6 62

3 4

1 1
22 2 2

5

1

1 d d .

r
t t tL

r
t

A f u u c f u u c u dx u dx

c u x u x

Ω Ω Ω

Ω Ω

′ ′≤ ≤ + ⋅

≤ +

∫ ∫

∫ ∫

             (3.10) 

By (3.9), (3.10), and Lemma 2.2, there is 1( ) ,T Q τ≥  such that for all 1,t T≥  

( ) ( ) ( )

21
2

2 21 1 1 1 1 1
0 02 2 2 2 2 2

6 1
1

d 2 , 2 2 , 2 ,
d

E E

A g
A A f u A p c A k A f u A p M

t
ϕ σ ϕ

αλ γ

    
 + + − + ≤ +       +     



       (3.11) 

let { }6min , 0,c kρ σ′ = − ≥  using the Gronwall’s lemma, we have  

( )

( ) ( )( ) ( ) ( ) ( )

21 1 1
02 2 2

2 21 1
2 2

2 1 11 1 1
0 2 1 12 2 2

1 1

2 ,

2 2
0 2 0 , 0 e .

E

t

E

A A f u A p

A g A g
M MA A f u A p ρ

ϕ

ϕ
αλ γ ρ ρ αλ γ ρ ρ

′−

 
+   

 

  
 ≤ + + + = +   ′ ′ ′ ′  + +  

 

     (3.12) 

By (1.2), (1.3) and (2.8), (2.9), from (3.12), we obtain  
21 1

02 2
1 1 2 1 2

1 , , , , , , , , .
E

A C A g k k k c cϕ α λ γ
ρ

∞

 
≤   

 
                          (3.13) 

Lemma 2.2 and (3.13) imply that ( ),p q  is bounded in  . 
Second step: Let ( )1 1 1,wϕ ρ= , we will prove that there exists 0K >  independence of   such that  

21 .
E

Kϕ ≤   

Multiply (3.3) by ( )1 1,w ρ , we thus obtain  

( ) ( )
2 2 21 1 1 11

0
1 d ,
2 d 2E E

g t g t
t

αλ γ
ϕ σ ϕ ρ ρ

∞

+
+ + ≤ −   
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due to Gronwall and Poincaré inequalities, then  

( ) ( )
( ) ( )

2
221

0 1 0 1

4 .
E

g t g t
ϕ

σ αλ γ σ αλ γ
∞

−
≤ ≤

+ +
 

                         (3.14) 

Since the embedding       E  is compact, (3.13), (3.14) and the following lemma imply that ( ){ }1 ,kU t tτ τ≥  
is compact in E . 

Lemma 3.1 (see [16]) Let X  be a complete metric space and Λ  be a subset in X , such that  

( )( )0, , ,K B CΛ ⊂ + ∀    

with ( )0lim 0C→ =   and K  is compact in X , then Λ  is compact in X . 
Third step: Let ( )2 2 2,wϕ ρ= , the same arguments in the Equation (3.4) lead to  

( ) ( )( )2 2 22
0 1 0exp 2 .

E
u u tτ τϕ µ σ τ≤ + − −                          (3.15) 

Then from (3.15), Lemma 2.2, and the compactness of ( )1 ,kU t τ , the system (2.5) exists a uniform attractor 
un  in .E  
It is easy to see that the process  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )TT1 2
0 1 0, , , : , , , ,k k k tU t U t U t u v u ku u t u t ku t E Eτ τ τ ττ τ τ= + = + → + →  

defined by (2.5) has the following relation with ( ),gU t τ :  

( ) ( ), , ,k k g kU t R U t Rτ τ −=                          (3.16) 

where kR  is an isomorphism of :E   

{ } { }: , , .k t tR u u u u ku→ +  

Since the process ( ){ },kU t tτ τ≥  possesses a uniform attractor ,un E⊂  by (3.16), ( ){ },gU t tτ τ≥  also 
possesses a uniform attractor .un

kR=    

4. Existence of Exponential Attractors 
The main result of this section is the following theorem. 

Theorem 4.1 Let the function f and the external force g satisfy the above assumptions. Then, for every ex- 
ternal force g enjoying (1.5), there exists an exponential attractor ( )gt t→  of the dynamical process (1.1) 
which satisfies the following properties: 

1) The sets ( )g t  are semi-invariant with respect to ( ),gU t τ  and translation-invariant with respect to 
time-shifts:  

( ) ( ) ( ) ( ) ( ), , ,
sgg g g g TU t t t s tτ τ ⊂ + =                         (4.1) 

where , , ,t s tτ τ∈ ≥  and { },hT h∈  is the group of temporal shifts, ( )( ) ( ).hgT t g t h= +  
2) They satisfy a uniform exponential attraction property as follows: there exist a positive constant 2β  and a 

monotonic function Q  (both depending only on M ) such that, for every bounded subset B  of E , we have  

( ) ( )( ) ( ) ( )2, , e , .t
E g g Edist U t B t Q B tβ ττ τ− −≤ ∀ ≥ ∈                   (4.2) 

3) The sets ( )g t  are compact finite-dimensional subsets of :E   

( )( ) 1, , ,F gdim t E C t≤ ∈                            (4.3) 

where the constant 1C  is independent of t  and g . 
4) The map ( )gg t→  is Hölder continuous in the following sense:  

( ) ( )( ) ( ) ( ) ( )( )3
1 2

2
2 1 2, e d ,

t t ssymm
E g gdist t t C g s g s s

η
β

τ

− −≤ −∫                 (4.4) 

where the positive constants 2 3,C β  and η  are independent of 1 2,g g  and t , symm
Edist  denotes the symme- 
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tric Hausdorff distance. In particular, the function ( )gt t→  is uniformly Hölder continuous in the Hausdorff 
metric:  

( ) ( )( ) 1
3, ,symm

E g gdist t s t C s η+ ≤                             (4.5) 

where 3C  and 1η  are also independent of tg,  and s .  
Proof. Firstly, we construct a family of exponential attractors for the discrete dynamical processes associated 

with Equation (2.5). According to Lemma 2.2, it only remains to construct the required exponential attractors for 
initial data belonging to the ball  

{ }0 0, ,RB B E Rϕ ϕ= = ∈ ≤  

where 0R  is a sufficiently large number depending only on M  given in (1.5), is a uniform absorbing set for 
all the processes ( ),gU t τ  generated by Equation (1.1). Moreover, from Theorem 2.1, Theorem 2.2 and Theo- 
rem 3.1, it follows Lipschitz continuity and smooth properties for the difference of two solutions ( )1 tϕ  and 

( )2 tϕ . Thus, by Theorem 2.1 in [13], the family of discrete dynamical processes  
( ) ( ), , , , ,g gU m l U mT lT m l m lτ τ τ= + + ∈ ≥  possess exponential attractors ( ), , .gl l lτ→ ∈   For obtain- 

ing exponential attractors of the family of dynamical processes ( ), ,gU t tτ τ≥ ∈ , we need the Hölder 
continuity of the processes ( ),gU t τ  with respect to the time, see the following lemma. 

Lemma 4.1 Let the above assumptions on Equation (1.1) hold. Then, for every ,Eτϕ ∈  we have  

( ) ( ) 1 2, , ,g g E
U t s U t C sτ ττ ϕ τ ϕ+ − ≤                              (4.6) 

where the constant C  depends on M , and is independent of , 0.t sτ≥ ∈ ≥  Moreover, for every 0,T >  
we also have  

( ) ( ) ( ), , e , , 0 2,qK t
g g TU t s s U t C s t T s Tτ

τ τϕ τ ϕ ′−′+ − ≤ ≥ ≤ ≤


                 (4.7) 

where q′  is a positive number and the positive constant TC′  depends on T  but is independent of τ,t  and 
s .  

Proof. Note that there is a 0 0s >  such that  
1 2

0e , ,s s s sρ− ≤ ∀ ≥  

and ( )tϕ  is uniformly bounded in E  and Lemma 2.2, which imply the Hölder continuity (4.6). In order to 
verify (4.7), we note that, due to (4.6) and Theorem 2.2, for every Eϕ ∈ , we have  

( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )1 2 1 2

, ,

, , , , , ,

e , e ,

g g E

g g g g g gE E

K t s K t
T T g TE

U t s s U t

U t s t U t s U t s U t s U t s U s

C s C U s C s

τ τ

τ τ τ τ

τ
τ τ

ϕ τ ϕ

ϕ ϕ ϕ τ ϕ

ϕ τ ϕ− −

+ −

≤ + − + −

′≤ + − ≤

 

where all the constants depend on T , but are independent of stM ,,  and .τ  Using the previously mentioned 
interpolation inequality in Section 2 finishes the proofs of estimate (4.7).  

Now, we can define the exponential attractors for continuous time by the following formula  
( ) ( ) ( ),g g gt U t τ τ=   

with respect to .τ  The proofs of the semi-invariance with respect to ( ),gU t τ  and translation-invariance with 
respect to time-shifts is similar to [11] [13]. Estimate (4.2) follows in a standard way from Lemma 2.2, Theorem 
3.1 for the processes ( ),gU t τ . Thus, it only remains to verify the finiteness of the fractal dimension of ( )g t . 
In order to prove this, we first note that, according to the Hölder continuities Theorem 2.1 in [13] and (4.7), we 
have  

( ) ( ) ( ) ( )( ) 2
1 1 2 2 1 2, 0, , , 0, ,symm

E g g g gdist U t s s U t s s C s s ητ τ τ τ− − − − ≤ −   

for all [ ]1 2, 0,s s t τ∈ − , t∈  and 20, 0C η> > . Since the map ( ),gU t sτ −  are uniformly Lipschitz conti- 
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nuous, Theorem 3.1 in [13] implies that  

( )( ) 2
2

1, log ,g
CH t E Cε η ε

′≤ +  

for a given 0ε > , and some constant C  and C′  which are independent of t . The proof of Theorem 4.1 is 
completed.  

5. Infinite-Dimensional (Uniform) Exponential Attractor and  
Non-Autonomous Exponential Attractor 

Finally, we compare the non-autonomous exponential attractor ( )gt t→  obtained above with the so-called 
infinite-dimensional (uniform) exponential attractor constructed in [11] [13]. To the existence of the uniform at- 
tractor for strongly damped wave equations, we use the results in [4] and [5] as a model example. 

Let ( )( )2,g L L∞∈ Ω  be some external force. Let ( )g  be the hull of g  in ( )( )2,L L∞ Ω , i.e.,  

( ) ( )
( )( )2,

: ,
L L

g T h g h ∞ Ω
 = ∈ 


  

where [ ] ( )( )2,L L∞ Ω
⋅   denotes the closure in ( )( )2,L L∞ Ω . Evidently, ( ) ( ) ( )T h g g=   for any h∈ .  

Using the standard skew product flow in [4] and [5], for every external forces g  satisfying (1.5), we can embed 
the dynamical process ( ),gU t τ  into the autonomous dynamical system ( )t  acting on the extended phase 
space ( ): E gΦ = ×  via  

( )( ) ( ) ( )( ) ( )0 0 0, : ,0 , , , , 0.t Y U t Y T t Y E g tσσ σ σ= ∈ ∈ ≥  

It is known that ( )t  is a semigroup. If this semigroup possesses the global attractor ( )g= ⊂ Φ  , then, 
its projection ( ) ( )1:un g g=∏   onto the first component of the Cartesian product is called the uniform at- 
tractor associated with problem (1.1). 

It is also known that the uniform attractor ( )un g  exists under the relatively weak assumption that the hull 
( )g  is compact in ( )( )2,L L∞ Ω , but, unfortunately, for more or less general external forces ,g  its Haus- 

dorff and fractal dimensions are infinite. Instead, the following estimate for its Kolmogorov’s ε -entropy holds, 
see [4]. 

Proposition 5.1 Let the above assumptions hold and the hull ( )g  of the initial external forces be compact. 
Then, Equation (1.1) possesses the uniform attractor ( )un g  and its ε -entropy can be estimated in terms of 
the ε -entropy of the hull ( )g  as follows:  

( )( ) ( )( ) ( )
0 0

2

0
2 02

0, log
, ,logun un

K
a

g C g gε ε ε ε
αε

ε
ε ε

αε ′  
 
 

 
 ≤ + + Π ∀ >
 
 

             (5.1) 

for some positive constants 2 0, ,C Kε ′  and a  depending on f . 
Definition 5.1 [11] [13] A set ( )un g  is an (uniform) exponential attractor of Equation (1.1) if the fol- 

lowing properties are satisfied:  
1) Entropy estimate: ( )un g  is a compact subset of the phase space E  which satisfies estimate (5.1) 

(possibly, for larger constants 2 ,C K ′  and a ). 
2) Semi-invariance: for every ( )0 ,unY g∈  there exists ( )h g∈  such that ( ) ( )0,0 un

hU t Y g⊂  for 
all 0.t ≥  

3) Uniform exponential attraction property: there exists a positive constant ρ̂  and a monotonic function Q  
such that, for every ( )h g∈  and every bounded subset B E⊂ , we have  

( ) ( )( ) ( ) ˆ, , e , .un t
E h Edist U t B g Q B tρτ τ−≤ ∀ ≥ ∈                    (5.2) 

[13] points out that a uniform exponential attractor ( )un g  can be constructed if the (non-autonomous) 
exponential attractor ( )gt t→  has been constructed, so we have 

Theorem 5.1 Let the assumptions of Theorem 4.1 hold and let, in addition, the hull ( )g  of some external 
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forces satisfying (1.5) be compact. Then, there exists a uniform exponential attractor ( )un g  for problem 
(1.1) which can be constructed as follows:  

( ) ( )
( )

( ): 0 .un
g h

t h gE

g t
∈ ∈

 = =  
 



  


 

Remark 1 When 0α = , Equation (1.1) reduces to the following damped wave equation on a bounded 
domain 3Ω ⊂   with smooth boundary Ω∂ :  

( ) ( )

( ) ( )( ) ( )0 1

,
0,

, , ,

tt t

t

u u u f u g t
u
u u u uτ τ

γ

τ τ
∂Ω

 − ∆ + + =


=
 =

                               (5.3) 

Equation (1.1) reduces to the damped wave equation modeling the Josephson junction in superconduction 
which was studied by many authors (see [1] [6] [17]). We assume that the function f  satisfy (1.2)-(1.4). The 
Equation (5.3) also possesses a finite dimensional exponential attractor. 

Remark 2 When 0γ = , Theorem 4.1 remains valid for the following strongly damped wave equation was 
studied by many authors (cf. [7] [18]):  

( ) ( )

( ) ( )( ) ( )0 1

,
0,

, , ,

tt t

t

u u u f u g t
u
u u u uτ ττ τ
∂Ω

 − ∆ − ∆ + =


=
 =

 

if we assume that the function f  satisfy (1.2)-(1.4). 
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