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Abstract 
An asymptotic method has been developed for investigation of kinetics of formation of compact 
objects with strong internal bonds. The method is based on the uncertainty relation for a coordi-
nate and a momentum in space of sizes of objects (clusters) with strongly pronounced collective 
quantum properties resulted from exchange interactions of various physical nature determined 
by spatial scales of the processes under consideration. The proposed phenomenological approach 
has been developed by analogy with the all-known ideas about coherent states of quantum me-
chanical oscillator systems for which a product of coordinate and momentum uncertainties (dis-
persions) accepts the value, which is minimally possible within uncertainty relations. With such 
an approach the leading processes are oscillations of components that make up objects, mainly: 
collective nucleon oscillations in a nucleus and phonon excitations in a mesostructure crystal lat-
tice. This allows us to consider formation and growth of subatomic and mesoscopic objects in the 
context of a single formalism. The proposed models adequately describe characteristics of forma-
tion processes of nuclear matter clusters as well as mesoscopic crystals having covalent and qua-
si-covalent bonds between atoms. 
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1. Introduction 
In works [1]-[6] various physical objects and their environment are described. They are of interest not only in 
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terms of their individual properties determined by their structure and sizes but also in terms of determining a 
spatial boundary between macro- and microcosm (macrophysics and microphysics). Object sizes “intermediate” 
between atoms and solid bodies in mesoscopic crystal structures (in which behaviors conform to the rules of 
both quantum mechanics and classical physics) can reach considerable values, at which the lower complexity 
limit of a macroscopic crystal is reached. Fundamental considerations and assessments of quantum representa-
tion feasibility show that the “coordinate-momentum” uncertainty relation can fit for bodies with the sizes about 
10–7 m, i.e., at a level of nanometer scales [2]. Currently more and more papers deal with investigations of for-
mation, evolution and properties of nanostructures and nanostructure-based materials. These investigations cov-
er processes of various physical and chemical nature proceeding in a mesoscopic region of spatial scales up to 
10–10 - 10–4 m: from formation of atomic clusters on a molecular level and nanocrystal synthesis to global 
changes of a macroscopic continuum state [7]-[13]. Mechanical behavior of nanostructured objects is described 
using molecular dynamics methods and using statistic models allowing for both thermodynamic and kinetic as-
pects of problems under consideration. These problems cover incompleteness of classical description of process 
running in mesoscopic scales, necessity of developing new models including phenomenological ones that take 
into account formation of quantum systems and determine growth regularities and nanostructure consolidation, 
and determination of phase transformation size dependencies, in particular, ascertainment of the effect of poly-
morphic transformations on synergy of crystal structures. 

In this connection it is important in principle to determine general features of dynamics of object growth both 
in microcosm and in “mesocosm”. With this purpose this paper investigates kinetics of formation of various in 
physical nature compact objects having strong internal bonds and considerably different spatial scales: nuclear 
matter clusters [14] and nanostructured mesoscopic structures with covalent and quasi-covalent bonds between 
atoms in a crystal lattice [15]. A typical feature of these objects is the existence of purely quantum effect of ex-
change interaction. Virtual meson exchange occurs between nucleons; electron exchange occurs in crystal 
structures having covalent bonds. The effect of exchange interaction allows these objects to be viewed as com-
pact clusters with strongly pronounced collective quantum properties (“quantum” clusters). In case of nuclei 
these quantum properties are connected with strong interactions and manifest themselves in the existence of os-
cillatory and rotator shells. In mesocrystals quasi-particles (phonons) are excited. 

The above creates the necessary precondition for investigating kinetics of object formation from a common 
point of view. We will consider closed stochastic systems of compact quantum clusters randomly interacting 
with each other. In accordance with standard ideas of physical kinetics the irreversible aggregation of objects is 
described using the concept of distribution density wave ( ),a tϕ  in the space of cluster sizes a, propagating in 
time t in direction of cluster size increase. It is noted in Ref. [16] that the behavior of a wave packet of any 
physical nature is subject to a universal ratio (resulting from Fourier theorem) for half-width of a wave packet 
and half-width of a spectral line ∆a∙∆k ≥ 1∕4π, where k is a wave number. This results in the uncertainty relation 
for coordinate and momentum in the space of cluster sizes. For quantum-mechanical systems being in a coherent 
state (harmonic oscillations), the above product takes the minimum value, the uncertainty relation is fulfilled as 
an accurate equality, and a process trajectory in a phase space is classical [17]. This means that it is possible to 
consider relatively large objects, the sizes of which exceed values corresponding to the lower limit of complexi-
ty for a macroscopic solid. Thus, the proposed phenomenological approach describes a limiting asymptotic stage 
of cluster growth process. Under this approach “the leading” processes appear to be oscillations of components 
that compose objects, for example collective oscillations of nucleons in a nucleus or phonon excitations of me-
sostructure crystal lattice.  

It should be noted that the proposed asymptotic method in no way can replace the developed fundamental 
methods of investigations and physical models of microcosm and mesocosm dynamics described in the above 
Refs. [1]-[10] and represented in [18]-[21]. On the other hand it is well known that “when interacting with outer 
space, physical objects never discover their complete internal complexity potential. Hence incomplete or even 
phenomenological description of physical phenomena or physical objects sometimes responses better to the 
main point, and to the understanding of what is going on” [2]. 

For example, when solving kinetic equations, the fitting parameters determined using experiments are intro-
duced, as a rule. When planning experiments with new or weakly studied objects, there appears necessity to 
perform preliminary evaluations of final dimensional and timing characteristics of the investigated processes, 
i.e., to determine dependence between typical object sizes and the time of their growth. In this respect, the pro-
posed asymptotic models can be useful when first meeting this or that problem, evaluating it or analyzing pri-
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mary experimental data. For example, when studying cluster radioactivity described in [22], this method made it 
possible to determine the spectrum of the most probable mass numbers of relatively light nucleon clusters 
formed inside heavy nuclei [14] [23]. This method also makes it possible to evaluate both average and maxi-
mum mass numbers of super-heavy nuclei and formed inside supernovas, and to determine mass numbers cor-
responding to the “peaks” of abundance of elements in Galaxy, numerically computed in [24]. In addition, it 
turned out to be possible to get estimates of time formation and typical sizes of neutron stars at supernova out-
bursts. In the field of mesoscopics this approach is valid and reasonably effective for materials with profound 
strong interatomic bonds: carbon nanostructures with covalent bonds as well as for nanostructured particles of 
light actinides with strong approach of atoms [15]. The expediency of pursuing development of asymptotic 
models [15] in the field of mesoscopics is connected with both the creation of ultra-hard carbon materials and 
the problem of phase stability and plutonium polymorphic transformations. 

Below are arguments for substantiating and more detailed presenting of formalism of a general kinetic ap-
proach to description of formation and growth of objects. Also, it is reasonable to present the expanded fields of 
application for the proposed asymptotic models. 

2. General Kinetic Approach 
Let us consider formation and growth of compact clusters in conservative stochastic systems defined as assem-
blies of total-mass-limited quantum objects interacting with each other randomly. We will describe the process 
of the irreversible aggregation of objects using the concept of distribution density wave ( ),x yϕ  in the space 
of cluster sizes a. The wave propagates with the time t toward an increase in the cluster size. Such 
one-dimensional approach allows one not to take into account deviation of a geometric shape of the object from 
the ideal one. On the assumption of the above the universal relation for a wave packet half-width and a spectral 
line half-width for coherent processes one can write down the following uncertainty relation for a coordinate and 
a momentum in the space of cluster sizes [25]: 

2
a p∆ ⋅ ∆ ≅

 .                                  (1) 

Here, p p m a t∆ ∼ = ∆ ∆  is momentum uncertainty, m  is cluster mass,   is reduced Planck constant. 
Momentum uncertainty is equal to the momentum itself in the order of magnitude, i.e., interaction of objects ei-
ther occurs or does not occur. Physical meaning of relation (1) is in the fact that during the time interval t∆  of 
elementary (single) act of interaction between objects the exact cluster size cannot be determined until this inte-
raction is finished either through capture of one object by another or their partial or complete disruption, or elas-
tic scattering. It is connected with the fact that unless the elementary act is finished, it is impossible to determine 
to which object each of the interacting surface elements (nucleons in case of nuclear matter and atoms in case of 
crystal mesostructures) is assigned. The sign of approximate equality reflects quasi-coherent behavior of consi-
dered systems specified by possible fluctuations connected with the specific character of high intensive 
processes (high-velocity collisions breaking the initial structure of objects; inharmoniousness of atomic oscilla-
tions at environment high temperature).  

Formally, it follows from the relation (1) that a t∆ ∝ ∆ , i.e., an instantaneous velocity of growth of object 
size is infinitely large:  

0 0
d d lim lim 1

t t
a t a t t

∆ → ∆ →
= ∆ ∆ ∝ ∆ = ∞  

Because of random character of aggregation process of investigated objects the analytical derivative d da t  
cannot be determined, and the index of the fractional derivative is equal to 1/2. To describe such a stochastic 
process using any analytical function F(a) one should use a differential of the type ( ) ( )2d d 1 2 dF F a F a′ ′′= +  
[26]. 

In the closed system of clusters the distribution density function ( ),a tϕ  satisfies the condition of total mass 
conservation:  

( ) ( ) ( ) ( ) ( )
max

0

, , d const
a

nucl cl nuclM t M t M t a t m a t aϕ+ = + =∫ ,                (2) 

where ( ) ( ),  nucl clM t M t  are current total masses of seeds and clusters, respectively, amax is the maximum clus-
ter size in the system; and the mass of volumetric close-packed cluster can be defined either as ( )3

0 0m m a a= , 
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where 0 0,  a m  are size and mass of a cubic shape seed, or as 3m aαρ= , where ρ  is cluster material density, 
α is geometric factor (for a cube α = 1, for a sphere α = π/6). At the end of aggregation process the total mass of 
seeds is infinitely small, and hence, the first term in conservation Equation (2) can be neglected. Total cluster 
mass can be considered as integral of motion, i.e., one can consider that the mass increment ( )clM t∆  at t→tf 
tends to zero (tf is the time instant of aggregation completion). Revealing increment of a certain integral in ex-
pression (2), we obtain  

( ) ( ) ( ){ }max max
3

0 0

lim lim , , d lim , d 0.
f f f

a a

clt t t t t t
M a t m a t a a a t aϕ αρ ϕ

→ → →
 ∆ = ∆ = ∆ = ∫ ∫           (3) 

Since at the end of the process cluster sizes and quantities are large comparing to those of seeds, the “simulta-
neous” failure of a significant number of clusters at their interaction with seeds is highly unlikely. Frozen distri-
bution of clusters in sizes is established in the system, and an integrand in expression (3) does not change its 
sign, at least, within the time interval (tf – ∆t, tf). Hence from (3) it follows that 

( )3lim , 0
ft t

a a tϕ
→

 ∆ =   

Introducing the dimensionless variable a/a0 and revealing the last expression according to rules [26], for the 
above differential dF we obtain: 

( ) ( ) ( ) 2
0 0 0

3d ln 3 d ln d , .
2 fa a a a a a t tϕ   = − + →   

 

With high 0a a  the second term in braces can be neglected. It is finally found that the density function of 
size distribution of large clusters at the end of the aggregation process finϕ  can be approximated by the follow-
ing relationship:  

–3 1
0, , .fin fa m a a t tϕ −∝ ∝ →

                             (4) 

This asymptotic kind of distribution obtained using uncertainty relation (1) is not connected with the initial dis-
tribution ( )0 aϕ , and does not depend on the type of a kinetic equation for ϕ . Distribution (4) can be regarded 
as “invariant” of any kinetic equation describing behavior of clusters with quantum properties.  

In accordance with the above kind of analytic function differential, evolution of distribution density function 
( ),a tϕ  during a stochastic process of aggregation can be described in diffusion approximation using Fokker- 

Planck equation written for the space of cluster sizes a: 

( ) ( ) ( )
2

2

, 1, , 0
2

a t
a t a t

t a a
ϕ

νϕ ηϕ
∂ ∂ ∂

+ − =      ∂ ∂ ∂
                       (5) 

Here, ( )2d d ,  d dv a t a tη= =  is the average rate of kinematic transport of ϕ  and diffusion coefficient 

in the space a, respectively. To linearize this equation and obtain approximate solutions we will accept that the 
average rate of kinematic transfer of ϕ  matches in order of magnitude the growth rate of an average cluster 
size:  

d d d da t a tν = ≅  

In accordance with the ratio (1) the diffusion coefficient can be written as:  

( )3
0 02 2 .m m a aη ≅ =   

We introduce dimensionless variables 0 , ia a t tξ τ= = , where it  is a typical time scale of object interac-
tions determined by their nature and aggregation mechanism. Then, taking into account the accepted assump-
tions, Equation (5) takes the following form:  

( ) ( ) ( ) ( )
2

3
2

, , 1 , 0.
2

ϕ ξ τ ϕ ξ τ
τ β ϕ ξ τ ξ

τ ξ ξ
−∂ ∂ ∂  + Ψ − ⋅ = ∂ ∂ ∂

                   (6) 

Here, ( ) d dτ ξ τΨ =  is dimensionless growth rate of average size of clusters, and 2
0 02it m aβ ≅  . To 

estimate the value β  we will draw on ratio (1) and the mass conservation law in an elementary process of inte-
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raction between a cluster and a seed in the assumption that seed mass gets equally “smeared” on a cluster sur-
face:  

( )33 3
0 .a a a aρ ρ ρ+ = + ∆  

Here, ρ  is the density of cluster matter. From the conditions 0 ,a a a a< ∆   we will find that 3 2
0 3a a a∆ ≅ . 

Then, from ratio (1) we obtain that ( )( )01 81 1a aβ ≅ 
. Hence β  is a small parameter.  

Revealing the derivative in the third term of Equation (6), we obtain the following equation:  
2

3 2 4 5

3 6 0.
2

ϕ ϕ β ϕ β ϕ β ϕ
τ ξ ξξ ξ ξ ξ

∂ ∂ ∂ ∂
+ Ψ − + − =

∂ ∂ ∂∂
                         (7) 

The study into asymptotic properties of Equation (7) performed in [25] has shown the following. With high 
1ξ   , the law of average size growth becomes: 

0 .
i

ta a
t

Ζ
 

≅ Κ  
 

                                    (8) 

The constants ,Κ Ζ  are determined by an expression coming from uncertainty relation (1) transcribed for an 
average size of clusters: 

( )2

.
2

a
m

t
∆

≅
∆

                                    (1') 

At it t∆ = , we obtain the following expression: 
2 5

2 2
2

00 0

.
2

i at
am a

−
Ζ

Ζ  
Ζ ⋅Κ ≅  

 



                              (9) 

Value Ζ  is given from the condition constΚ ≡ , i.e., a right-hand portion of expression (9) should not de-
pend on a . Specific values of constants in law (8) are related with the value it , i.e., they are determined by a 
mode and mechanism of object interactions in a closed system.  

Partial solution of Equation (7) at 1ξ   looks like:  

( ) ( )2exp ,Cλϕ λ λ ξ ξ ξ τ Ζ = − − ≅ Κ                        (10) 

Here, C(λ) is a function of the arbitrary real number λ. General solution fitting the law of mass conservation 
and asymptotic distribution (4) (with C(λ) = Βλ5, Β ≡ const), can be written as:  

( ) ( ) ( ) ( )32, exp d 2! , 1.Cϕ ξ τ λ λ ξ ξ λ ξ ξ ξ
∞

−∞

 = − − = Β − ∫            (11) 

Comparing this expression with distribution (4) one can conclude that at t→tf the condition maxfina a  is 
to be satisfied. At the end of the process of object irreversible aggregation as a result of interaction between 
large clusters and small seeds in a stochastic conservative system the distribution density of large clusters is in 
inverse proportion to their masses, and average size of clusters is significantly less than the final maximum size.  

Approximate view of ϕ -function close to maximum of distribution density in size curve can be determined 
by omitting in Equation (7) terms with the first variable derivative ξ , since in small neighborhood of local 
maximum the analytical function changes poorly: 0ϕ ξ∂ ∂ ≅ . Having written the function ϕ  as a product of 
space and time factors and having solved the equation for the spatial factor P by Ventzel-Kramers-Brillouin me-
thod [16], we obtain the following expression:  

( ) ( )
( )

1 4 1 2 1 2 2 5
2 5

1 4 2 52 5

2 2 2sin ln const ,
5 2

n
n

n

c ccc
c cc

ξβ ξ λ λ ξ
β ξξ

  + +   Ρ = + − +  
   + −+    

      (12) 

where, 2 26c β λ≡ . The presence of the oscillating factors in {…} in the expression (12) means that function P, 
in principle, can have variety of local maximums with nξ  coordinates. What this means is existence of variety 
of the most probable (stable) sizes of clusters. The constant in the expression (12) is found from the condition 
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that the first maximum (n = 0) corresponds to seeds ( )0 1ξ = . Since 1, 1β λ > , the parameter 2 1c  . Then 
the condition of maximums looks like:  

( )5 22 2 1 π, 1, 2,3,
5 n n nλ ξ

β
− ≅ = 

.                      (13) 

The condition of Ρ -function “zeros” with consideration for small 2c  and c  values looks as: 

5 22 2 const π , 1,2,3, .
5 k k kλ ξ

β
′+ ≅ = 

                     (14) 

The presence of many “zeros” in Ρ -function means the existence of unstable sizes of clusters. 
We consider size distribution of “small” clusters for which kinematic transport of distribution density is ex-

pressed weaker than diffusion. Having omitted in Equation (7) the second term responsible for transport and 
having solved the obtained equation, we will get the following expression for a space factor:    

2
3 8

20
λξ ξΡ = − .                                 (15) 

Function maximum condition (15) takes the form: 
2 2

2 7 68 563 0, 6 0.
20 20
λ λξ ξ ξ ξ′ ′′Ρ = − = Ρ = − <                     (16) 

“Joining” of maximum condition (16) with the first maximum condition in expression (12) 00,  1n ξ= =  
allows one to determine the arbitrary constant λ : 

2 28 153 0 , 21 0.
20 2

λ λ ′′− = ⇒ = Ρ = − <                       (17) 

With the knowledge of λ , it is possible to determine the coordinate of Ρ -function first “zero”: 
1 5

2

200 1.216728684.ξ
λ

 Ρ = ⇒ = = 
 

                       (18) 

“Joining” of expressions (14) and (18) with k = 0 makes it possible to find a constant value in expression (14) 
and write the following condition for coordinates of function P “zeros”: 

5 22 2 20 π , 1,3,5,
5 k k kλ ξ

λβ

 
− ≅ =  

 


.                     (19) 

What this means is existence of unstable clusters with corresponding to expression (19) sizes, the first “unsta-
ble” size in this case is equal to 1.216728684ξ = . 

Expression (15) shows that with 1ξ <  the distribution density of seed failure products is approximately 
proportional to their masses. This is incompliance with the concept that disintegration of seeds into reasonably 
large fragments is more likely (advantageous in energy), than complete failure into individual components.  

The linearization of Fokker-Planck kinetic Equation (5) allows one to establish basic properties of cluster size 
distribution density function. Expressions (8), (9) can be used for finding laws of time-dependent average size 
growth of large clusters ( )0a a . We consider two limiting growth modes: 1) seed small flux, when each of 
the seeds has time to occupy its energy advantageous place on cluster surface before interaction with the fol-
lowing seed begins; 2) seed large flux, when seeds affect the cluster almost simultaneously which is equivalent 
to cluster collision. In the first case ti parameter does not depend on a cluster size and the law of growth can be 
written as: 

( ) ( ) ( )2 5 2 5
0 1 1 0 05 2 2 , 2 2 5 .ia a t t t a m t≅ =                   (20) 

Here t1 is the time unit in the mode of seed small flux. In case of seed large flux we accept the ti parameter 
equal to the perturbation back-and-forth travel time in a cluster: 02 cati = , where c0 is velocity of pertur-
bation spread in cluster substance (sonic velocity). Then the law of growth can be written as:  

( ) ( )1 3 1 3
0 2 2 0 0 0 03 2 , .a a t t t a a m c≅ =                         (21) 
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Here t2 is the time unit in the seed large flux mode (cluster collision). 
It should be noted that laws of growth for average size objects can be deduced directly from uncertainty rela-

tion (1'), if to substitute it t∆ =  in it, determine a∆ , and then to solve the differential equation 
d d ia t a t a t≈ ∆ ∆ = ∆  with zero initial condition. With the seed small flux we obtain the following 
chain:  

1 23 2 3 2 3 2
3 20 0 0

3 2 3 2
0 0 0

d
d d .

2 2 d 2
i

i i

a at a a a
a a a t

m t m t t m ta a

∆  
∆ ≅ → ≅ ≅ → ≅  

∆  

 
  

Solving the last differential relation in quadratures, we will obtain the following expression: 
1 53

2 50

0

25
.

8 i

a
a t

m t
 

≅  
 



                                   (22) 

This exactly agrees with law (20), if to reveal the t1 parameter there. Similarly, with 02t a c∆ =  we ob-
tain: 

1 61 3 3
1 30 0

0

3 .
2

c a
a t

m
  ≅   

   



                                (23) 

This agrees with law (21). In the first approximation one can assume that time-dependent laws of growth (22), 
(23) for average size of objects are invariants of any kinetic equation describing aggregation of clusters with 
quantum properties.  

In number of problems connected with investigations of high-intensive processes with high energy (for exam-
ple, at high temperatures of crystal objects) it is reasonable to determine the value of t∆  time interval of ele-
mentary interaction act based on the “energy-time” uncertainty relation: 

.t E∆ ≅ ∆                                       (24) 

Here, E∆  is energy level width of an isolated excited state of a quantum mechanical system. Substituting 
expression (24) in relation (1'), one can write the following chain of differential relations:  

1 2 1 23 3
3 20 0

3 2
0 0

d1 d d .
2 d 2

a aa E a E
a a t

t m t ma

∆    ∆ ∆
≅ ≅ → ≅   

∆    
                  (25) 

The E∆  value is determined by nature of objects and a process mode. For example, in case of phonon exci-
tation of mesoscopic crystals at high temperatures B chark T ω   ( Bk  is Boltzmann constant, charω  is charac-
teristic frequency), the E∆  value is directly proportional to Ν  number of atoms, covered by phonon excita-
tions: 3 BE k T∆ ≅ Ν  [27]. The value Ν  can depend on the average size a  of an excitation region. Having 
solved differential relation (25) in quadratures one can find approximate laws of average size a  growth with 
time in high-intensive processes of object aggregation followed by multiple production and elimination of pho-
nons at high temperatures.  

We consider an issue of upper limits of object sizes. From uncertainty relation (1) and mass conservation 
condition in elementary interaction between a large cluster and a seed, when 3 2

0 3a a a∆ ≅ , we obtain the fol-
lowing expression for the maximum object size  

6 3
0 0 0

max
min min

2 2
9 9

a m a
a

t t
ρα≅ ≅

∆ ∆ 

                            (26) 

Here, mint∆  is a minimum time interval of an elementary act of object interaction determined by physical 
nature of the process. 

3. Subatomic and Astrophysical Objects  
In this section various nuclear phenomena are viewed from unified point of view as processes of formation and 
growth of compact clusters with pronounced collective quantum properties (strong interaction) in a closed sto-
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chastic nucleon system in an excited state. As the excited closed system one can consider a mother nucleus, or two 
contacting nuclei after their collision (double system). At the initial time such system consists of nuclear matter 
seeds: alpha-particles and (or) their fragments—tritons and deuterons. As a result of random interaction of these 
seeds their coalescence takes place. Compact accumulations of nuclear continuum (clusters) are formed. Nucleon 
oscillations on the surface of adjoining “nuclear” clusters having temporarily (virtually) broken external bonds can 
result in mutual compensation of these unused bonds. As a result the adjoining clusters consolidate, and larger 
nuclear objects with various masses (mass numbers A) are formed. Due to Coulomb repulsion these objects can 
escape from the region of interaction. The proposed model can be applied to the following problems: 1) calcula-
tions of the most probable mass numbers A of clusters within the entire range of the existing nuclide systemati-
zation [28] [29]; 2) computed estimation of a discrete spectrum of the most probable numbers A, typical for cluster 
radioactivity investigated in [30] [31]; 3) discovering the most probable average mass numbers A  of clusters 
formed in processes of spontaneous nuclear fission [32] [33]; 4) determination of the most probable values A and 
evaluation of the average value A  of superheavy clusters formed in processes of nucleosynthesis in stars [24] 
[34]. Only fast intranuclear processes (r-processes) that go during lifetime of excited states are considered. These 
states are given by the energy of oscillatory and rotational levels determined in shell model of nucleus. The time of 
processes of approaching equilibrium is within the interval between the time of direct nuclear reactions (with 
typical nuclear time of ~10–22 s) and the lifetime of a compound nucleus (10–16 - 10–15 s [29] [35]-[39]). In addition, 
there are some attempts to determine separately typical formation times and nuclear matter cluster sizes in as-
trophysical scales, in particular, for neutron stars. 

The basis for analytical description of the processes under consideration is a phenomenological concept (given 
in Section 2) of the object distribution density wave ( ),a tϕ  in space of their sizes a. Such one-dimensional ap-
proach allows one not to take into account deviation of a real geometric shape of nucleus from spherical one. 
Evolution of function ( ),a tϕ  during a stochastic process of object aggregation can be described in diffusion 
approximation using Fokker-Planck Equation (5) written for the space of cluster sizes. To determine the most 
probable mass numbers we will use expression (12) with an arbitrary real number 15 2λ =  found out in 
Section 2 and known expressions [29] [39] connecting the nucleus radius R = a/2 and the mass number:  

1 3
0R r A≅                                        (27) 

where r0 = 1.3 fm is a typical parameter of strong interaction. If one accepts that this expression is approximate-
ly fulfilled for seeds as well, then from Equation (12) it is possible to obtain the following expression for the 
most probable mass numbers An: 

6 5

0
5 π 1 , 1,2,3, .

2 2nA A n n
β

λ
 

≅ + =  
 


                     (28) 

Here, A0 is seed mass number, and the parameter 2
0 02it m aβ ≅   is determined by a seed mass and size and the 

typical time scale ti of interaction between objects. It is reasonable to accept as such scale a period of high-frequency 
nucleon oscillations in a nucleus. This parameter can be determined as –23

0 02 5 10 si hft T r с= = = × , where 
7 1

0 5 10 m sc −= × ⋅  is an average thermal velocity of nucleons in degenerate Fermi gas determined by the known 
value of average kinetic energy of ideal Fermi gas per a nucleon, equal to EF  = 22 MeV [39].  

To find typical average sizes of cluster nuclides we will use expressions (22) and (23) obtained in Section 2 
and transcribe them as follows:  

( ) ( )
2 5 1 5 2 5

1 5 2 2 6 π ia t tρ≅  ,                           (29) 

( ) ( )1 61 3 1 3
02 3 2 6 πa c tρ≅  .                            (30) 

Here, ρ is density of nuclear matter. In order to eliminate the parameter a0 from equations, it was accepted that 
( ) 3

0 0π 6m aρ≅ . The absence of a seed size in (29) and (30) reflects an asymptotic stage of the process, when 
the system “forgets” about initial conditions and its evolution goes on according to internal dynamics of nucleus. 
This dynamics is connected with excitation of oscillatory and rotational energy levels.  

General time of the process is determined by shell energy level Γ using Heisenberg rule [35] [36]:  

τ = Γ .                                      (31) 
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It is correct for isolated excitation of level in quantum system.  
Verification of the proposed formalism can be implemented by the example of “rigid” (deep inelastic) 

processes involving hadrons described in [40] [41]. We consider these processes as the following chain of events: 
head-on collision of “nucleon-nucleon” or “lepton-nucleon”→quark knocking-out from gluon cloud→random 
interactions in intra-hadron medium→new particle formation (hadron jets). In [23] [25] the new particles are 
considered as clusters consisting of intra-hadron medium components (partons): quarks, gluons, quark-antiquark 
couples. A condition of generation of new particles can be written as: 

( ) 2 2
0 .elem clM M c M c+ =  

Here, 2
elemM c  is total energy of partons, 2

clM c  is total energy of new particles, 2
0M c  is total energy of 

two original colliding particles. At the end of this process all the partons transformed into bound states, 
0elemM = , therefore relation (3) is fulfilled, and the proposed in Section 2 stochastic approach is applicable. 

Then law (21) for describing the evolution of cluster average size provides the following relation between length 
aunit, time tunit and mass munit units under deep inelastic interaction of fundamental particles:  

3 2
unit unit unitm a t c=  .                                  (32) 

Here c is the maximum velocity of interaction propagation in hadron medium: the speed of light in vacuum. 
Based on relation (32) and the data from [19] for “conventional” quark masses (u- and d- quarks) deep inside 
hadrons and for typical distances, one can obtain the following estimation of the time unit af

unitt  for current 
quarks (cq) in the state of asymptotic freedom (af):  

–16 26~ 10 m, ~ 5 MeV, ~ 7 MeV; ~ 10 s.af cq cq af
unit unit u unit d unita m m m m t −≈ ≈ ⇒  

The quark transition time ttrans from asymptotic freedom to a bound state (confinement) inside a hadron is 

evaluated according to Formula (21) as ( )3 2310 saf conf af
trans unit unit unitt t a a −∼ ∼  ( )1510 mconf

unita −∼ . The obtained value 
corresponds to the time scale of strong interaction.  

In processes considered in [40] the minimum value of length unit is min 1810 munita −∼ . It can be considered as 
the top estimation of current quark size. Then it goes from relation (32) that min 2910 sunitt −∼ , and the time form

hadrt  
for formation of hadrons having an average size of 1510 ma −∼ , in accordance with Formula (21), is 

( )3min min 2010 sform
hadr unit unitt t a a −≈ ∼ . This value is significantly higher than the life time of unstable hadrons (“re-

sonances”) 2110 sres
lifet −≤ : form res

hadr lifet t
. This reflects formation of stable hadron jets in described processes of 

catastrophic collisions.  
If in accordance with the results of [42], we accept that perturbation propagation rate in quark-gluon medium 

is equal to sonic speeds cs = 0.3 c and 0.57 c, then in the above estimates of the time units (the time of quark 
transformation into a bound state and the time of hadron formation) factors 1.8 and 1.3 will appear. These cor-
rections do not change the estimate of strong interaction time scale and increase the inequality form res

hadr lifet t
 re-

flecting the formation of stable hadron jets. 
The asymptotic distribution ϕ ∝ m–1 means that: 1) probability of nucleon fragmentation in deep inelastic 

scattering is higher than probability of their conservation; 2) the number of pions in hadron jet is 1.5 times high-
er that the number of nucleons. These conclusions are in compliance with concepts of [40] about nature of rigid 
processes. In particular, at proton frontal collision the following reaction takes place: pp→π0π+π+nn. One can 
see that there are 3 pions and 2 neutrons in the formed hadron jet. 

Consequently, the proposed formalism allows adequate description of an asymptotic form of well-known ac-
cidents in the world of elementary particles. This gives grounds to try to apply it in solving the above described 
problems of intranuclear processes description. 

Values An calculated in [14] [25] with the help of Formula (28) with three types of seeds correspond to the 
mass numbers of the nuclides and their isotopes over the currently known range [28] [29], including the trans-
fermium elements. In addition, calculated mass numbers of cluster nuclides are also in compliance with standard 
concepts [29] [43] on isotope “stability valley”. It should be kept in mind that the calculated clusters are formed 
deep in the sea of nuclear matter and not in particular reactions. In escaping from either the parent nucleus or the 
double system clusters can emit or capture individual nucleons and seeds of nuclear matter.  
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The established correspondence allows the characteristic values for various processes of approaching equili-
brium (cluster radioactivity, spontaneous fission, synthesis of heavy and superheavy elements) to be extracted 
from the above values.  

Calculated mass numbers of clusters formed inside heavy nuclei in processes of cluster radioactivity make up 
the following discrete spectrum: A = 6, 7, 9, 11-16, 18, 20, 24, 26, 28, 30, 32, 34, 37-40. In experiments on clus-
ter radioactivity the values A = 14, 24, 28, 32 were recorded. Under discussion is the possibility of recording the 
outgoing clusters with mass numbers close to stated predicted spectrum (e.g., see [22] [30] [31]).  

In the field of spontaneous fission it is possible to single out two sets of the most probable cluster mass num-
bers, each being repeated for two or three seed types: A1 = 72, 79, 84, 88, 103, 108 и A2 = 126, 134, 139, 142, 
147, 155, 158. The arithmetic means for the two sets of mass numbers are equal to 1 90A ≅  и 2 140A ≅ . The 
obtained values correspond to the coordinates of the maxima of the total nuclear fission yields [32] [33]. It is 
possible to describe spontaneous nuclear fission as a result of excitation of the first rotational level with the 
energy Γrot = 100 keV using the Formulae (27) and (30). The total time of an intranuclear process corresponding 
to the given value Γrot, is equal to τrot = 6.287 × 10–21 s, and the Formulae (27) and (30) determine an average 
mass number of light fragments as 100lightA = . An average mass number of heavy fragments < A>heavy is de-
termined from the condition of mass conservation mat light heavyA A A= + ; Amat is mass number of parent 
nucleus. In case of light actinides (Th, U) we get heavyA  = 135-138. In diagrams [32] [33] of fragment mass 
distribution in spontaneous heavy nuclear fission (A = 235, 238) an average mass number of lighter fragments is 
90-100, an average mass number of heavier fragments is about 140.  

If one assumes that fast nucleosynthesis in stars occurs as a result of transition of nucleon system from 
high-frequency vibration level with the period ti = 5 × 10–23 s to the first rotational level with the typical energy 
100 keV during the lifetime of this level τrot = 6.287 × 10–21 s, then Formulae (27) and (29) provide the follow-
ing estimate of an average mass number of superheavy elements: superheavyA  = 330. The obtained value agrees 
with the prediction from [24] about possibility of nucleus formations with A > 300 in neutron stars. As for the 
induced fission as the process competing with nucleosynthesis, in this case one can accept as a typical scale it  
the sonic wave travel time 0t  in a nucleus formed as a result of nucleosynthesis: t0 = a/c0. With A = 330, c0 = 5 
× 107 m⋅s–1, we obtain ti = 3.6 × 10–22 s. Then from Formulae (27) and (29) we obtain that with the above life-
time of the first rotational level 6.287 × 10–21 s the average mass number of light fragments of superheavy ele-
ments is 100lightA = . In compliance with the mass conservation law the average mass number of heavy frag-
ments is equal to 230lightA = . The obtained values correspond approximately to the first and the last peaks of 
final abundance of elements in Galaxy [34]. This compliance gives grounds to expect that the above estimate of 
the average mass number of superheavy elements that can be formed as a result of nucleosynthesis in superno-
vas and neutron stars is reliable.  

One can try to estimate a mass number of the final nuclide Aend formed in r-processes of nucleosynthesis in 
stars, if he uses expression (26) for the maximum cluster size in a closed system and the known expression (27) 
for the mass-number-dependence of nucleus radius. If as mint∆  in (26) we assume the travel time of an elec-
tromagnetic wave over a nucleus equal to a/c (c is the velocity of light in vacuum), then from espressions (26) 
and (27) we will obtain the following equation for a mass number of the final nuclide:  

( )
3 2 3 2

32 3
0 0

π 4
27end

cA r Aρ   ≅    
   

 

This, with alpha particle (A0 = 4) taken as a seed, yields to Aend = 470. According to the expression (28) mass 
number 470 corresponds to triton as the seed. This value is by approximately 15% higher than value 408 re-
sponsible for hypothetical continuation of 2β-stability line [43]. Hence the obtained estimate is in compliance 
with the known systematization of nuclei. 

The above time τrot ∼ 10–20 s of intranuclear processes of nucleosynthesis and fission is negligible as com-
pared to the given in [24] [34] times τyield = 0.3 - 2 s, when performing numerical simulation of nucleosynthesis 
and fission yield in astrophysical phenomena. In accordance with concepts about supernovas and neutron stars 
published in encyclopedia [44] [45], the times τyield are connected with hydrodynamic processes of neutron star 
formations in supernova outbursts as a result of gravitational compression of the star central region.  

It is possible to determine times of neutron star formations by an analytical way. For this purpose we will use 
the analogy with the concept [19] on introduction of phenomenological constants. From considerations of di-
mensionality and by analogy with the notion of Planck mass ( )1 2

p Nm c G=  , determined through the action 
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constant   in microcosm, the gravitation constant GN and the light speed c, we will write the following expres-
sion for the action constant KG in the “world” of collapsing stars:  

2
421.72 10 J sCh N

G
G

K
c

Μ
= = × ⋅                            (33) 

Here 1.4Ch SΜ = Μ  is the Chandrasekhar critical mass [45] [46] above which the star gravitational compres-
sion begins, SΜ  is the mass of the Sun. When postulating the uncertainty principle in gravitational processes 
by analogy with Heisenberg “energy-time” uncertainty relation for microcosm [46], one can write the following 
expression for the lifetime of excited state in gravity system:  

G
grav

K
E

τ =
∆

.                                   (34) 

Here ∆E is energy level width of an excited system determined by the energy removed by radiation of every 
type (neutrino, gamma, etc.). With Type I supernova outburst the radiated energy is equal to ∆E = 1042 - 1043 J 
[44] [45]. Then from relations (33) and (34) with 301.99 10 kgSΜ = × , GN = 6.67 × 10–11 kg–1∙m3∙s–2, we obtain 
that the excited state lifetimes of collapsing stars are within the range 0.17 1.7 s-gravτ = . The obtained values 
correspond to generally known astrophysical concepts about times of “cold” neutron star formations as a result 
of supernova outburst. With Type II supernova outburst the radiated energy is equal to 1041 J [45]. According to 
relations (33) and (34) this provides the lifetime of the star excited state 17 sgravτ = . This value corresponds to 
astrophysical concepts about the time of cooling-down of a “hot” neutron star formed as a result of slow escape 
of supernova shell [45] which is equal in order of magnitude to 10 s. It should be noted that the discovered time 
range of fast and slow neutron star formation 0.17 - 17 s covers the range (set in [24] [34]) of times of nucleo-
synthesis and forced fission yields and times of formation of final element abundance in Galaxy. Hence the time 
τrot ∼ 10–20 s corresponds to formation of heavy and superheavy clusters inside composite nuclei, and the times 

0.17 7 s-1gravτ =  correspond to formation of recorded distribution of elements bulk formed during processes of 
gravity compression of supernova central regions.  

We try to determine a size of the gravitating nuclear matter cluster (neutron star) on the basis of “momentum- 
coordinate” uncertainty relation, written for astrophysical objects:   

2
G

s
K

p a MVa∆ ⋅ ∆ ≅ ≥ .                            (35) 

Here, M is object mass, V is typical velocity of compression process, as is object localization, i.e., size of star. 
From here we get the following expression for object localization:  

2

2 2
G Ch N

s
K G

a
MV MVc

Μ
≅ ≅ .                            (36) 

In case of relativistic collapse (V ∼ c) the object size is equal to 2 22s Ch Na G Mc≅ Μ . Since M ∼ ΜCh , as is 
lower than the gravitational radius rg = 2MGN/c2, which means the formation of black hole. If a typical process 
velocity corresponds in order of magnitude velocity of supernova shell escape (about 20,000 km∙s−1 [45]), then 
object localization is 1.56 × 104 m. The obtained value corresponds to the minimum size of a typical neutron star 
equal to 16 km [44]. 

4. Mesoscopic Objects 
Since the proposed kinetic approach provides an adequate description of processes in microcosm, it is possi-

ble to try to use it for considering object growth processes in mesoscopic scales. This section provides a data re-
view are in view on development of the proposed asymptotic method for investigating “mesokinetics” of growth 
of various nanostructured objects with strong interatomic bonds [15]. Among these are carbon nanostructures, 
for example, single-wall nanotubes and detonation nanodiamonds [21] [47] (covalent bonds) as well as light ac-
tinides with strong approach of atoms [9] (“quasi-covalent” bonds). It is assumed that the growth of nanostruc-
tures is caused by their phonon excitations and vibrational interactions, leading to mutual compensation of free 
electronic bonds of “boundary” (i.e., surface) atoms in adjoining objects and to consolidation of these objects 
into more large patterns, which are compact clusters.  

At the initial stage of crystal objects growth, as a result of random interactions between seeds carrying crystal 
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structure elements, small crystalline particles having the short-range-order are formed. These small particles 
continue to interact with seeds and between themselves, causing their growth. In the process of this growth the 
quasi-long range crystal ordering arises in the particle, and the lower limit of complexity for a macroscopic solid 
is reached. Hence the growth process of mesoobjects with nanocrystalline structure can be considered as forma-
tion of clusters in continuum initially consisting of seeds with the set spatial orientation of atoms [15] [25].  

With phenomenological description of single-wall carbon nanotube growth as a result of capture of hexagon 
seeds based on uncertainty relation (1) the following formula was obtained for estimating a typical nanotube 
diameter [48]: 

2
cov3 3

2π π
u B vl Am k

d
θ

=


 

where θv is characteristic oscillation temperature of covalent bond tension in C-C carbon atoms, lcov is carbon 
covalent bond length ( um is atomic mass unit, Bk  is the Boltzmann constant). It follows here from that a typi-
cal diameter of a single-wall carbon tube is d = 2.2 nm (θv = 2154 K, lcov = 0.15 nm). This value is in the middle 
of experimental range d = 1 - 4 nm given in [21]. The expression obtained in [48] for the growth of an average 
length of a single-wall carbon nanotube looks like:  

1 2

02
tl

m
 

=  
 



                                    (37) 

The parameter 02m , by analogy with quantum mechanics [49], can be determined as the upper limit of a 
diffusion coefficient in the space of cluster sizes. The expression obtained for l  represents a quantum analog 
of a classical diffusion solution [50] of a problem about growth of particle of new phase and specifies the least 
possible time of growth in the system initially consisted of seeds (hexagons). From expression (37) we obtain 
that the least growth time for a single-wall carbon nanotube with the given in [21] length of 40 nm is 4 µs. It 
should be noted that in this case we are dealing with the time of growth for an individual nanotube, not with 
hardware time of synthesis of a bulk of these objects. Of some certain interest is the condition determination for 
performance of experiments, when single-wall nanotubes with the given average size specified according to ex-
pression (37) will grow as a result of phonon effects.  

When considering formation and growth of volume-packed objects at average temperatures compared to Debye 
temperature, we will distinguish between “small” clusters in which atom behavior corresponds to oscillation 
spectrum of seeds not having a crystalline structure, and “large” clusters in which behavior of atoms corresponds 
to dynamics of crystal lattice oscillations. A crystal lattice can have either the short-range-order or quasi- 
long-range ordering depended on a cluster size. At the initial stage in processes of collisions between seeds the 
“first” clusters are formed. As a result of interactions between these clusters and seeds the larger objects are 
formed in the system. A typical time scale for them can be evaluated as a product of a number of bonded seeds in  
an object equal by order of magnitude to ( )3

0a a  and the time exct  of excitation of a single seed: 

3

0

.i exc

a
t t

a
 

≈  
 

 

The parameter exct  can be determined as a product of number N of chemical bonds in a seed and the inverse 
typical frequency 1

vν −  of atom oscillations in its structure, namely, 1
exc vt Nν −= . Characteristic oscillation fre-

quency can be expressed through the relevant characteristic temperature vθ  based on the relation 
2π v B vkν θ= . Then in compliance with the expressions (8) and (9) the approximate law of growth for an aver-
age size in processes of interaction between small clusters and seeds and between them will be written the fol-
lowing way:  

1 2 1 2
1 4 0

0 02 , sc exc
unsc

un

m tta a t a
t

   ≅ =   
   

.                         (38) 

Here, sc
unt  is a time unit in interaction processes between small clusters. By classical analogy with notions [50] 

the exponent 1/2 in the Formula (38) corresponds to the diffusion of seeds at the cluster. 
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Clusters of size progressively increasing in time are formed in the system. They can interact with both seeds and 
between themselves as well. The minimum object size 

mina  at which an oscillating spectrum of a small cluster 
switches over an oscillating spectrum of a large cluster “by a jump”, corresponds to the occurrence of the crystal 
short-range ordering, and represents the lower boundary of transition region from mesoscopic structures to ma-
croscopic bodies. As crystal structures grow, they tend to the quasi-long-range ordering, and the dynamic system 
itself “forgets” about initial conditions. It would appear natural that at a certain time some critical average cluster 
size a

∗
 is reached in this system. This size does not depend on a seed size and is determined only by dynamics 

of atom oscillations in investigated objects. This corresponds to the quasi-long-range crystal ordering emerged in 
the system, i.e., to the lower limit of complexity reached in a macroscopic crystal body. The given size corres-
ponds to the upper boundary of a transition region from mesoscopic structures to macroscopic bodies.  

The characteristic size 
mina  of objects, beginning with which the cluster has got the crystal lattice with 

short-range order, and the characteristic size a
∗
, such that quasi-long-range crystal ordering arises in the 

cluster, and the appropriate times of achievement of these sizes were obtained in [15] [25] on the basis of the 
laws (38), (22, 23) as follows:  

1 21 3

0 1 3min

9 4π
8 3

D

v

Na a
n

θ
ϑ

  ≅      
                             (39) 

1 3
1 3 018 4π exp

25 3 2
vE E

a n
kT

−
∗

− ≅  
 

                            (40) 

1 22 3
0 0

min
9

8 2
excm c t

t
 

≅  
 

                                (41) 

1 25 5 6
0 0

3
0

16 3
5 5

sm c t
t

a∗

  ≅   
   

                                (42) 

Here, Dθ  is Debye parameter, n is concentration of atoms in a crystal lattice, ( ) ( )02π exp 2s B D v Bt k E E k Tθ  = −  , 
E0 is seed energy in the environment determined by equations for inner energy of nonlinear polyatomic molecules 
given in [51]; vE  is seed energy inside a large cluster determined by an oscillating spectrum of a small particle [52]:  

( )

( ){ }
( ) ( )

( ){ }
1 2

0 1 21 1

3 6
3

exp 1 exp 1

N N
v v

v vv v

M NT T
E kT kT

NT T

θ θ

θ θ= =

 
− − = + + 

   − −     
∑ ∑  

( ) ( )1,  2j
v jθ =  are typical temperatures of tension vibrations and flexural vibrations of atom bonds in a mo-

lecule, respectively; M  is number of atoms in a molecule, N  is number of bonds:  

( ) ( )
0

3 exp 1 d ,  2π
D T

D D
V DE M DkT T x x x x kT

θ
χ θ ν

   = + − =  
  

∫   

Here, Dkχ θ≅  is energy of the basic lattice oscillating state (energy of “zero” oscillations), D  is internal 
(dynamic) fractal dimensionality of cluster, ν  is oscillation frequency of atoms in the lattice. Formulae (39), (40) 
determine the area of average cluster sizes { }mina a a

∗
∈   which is a transition region from mesoscopic 

structures to macroscopic particles.  
The growth laws for crystal particles from seeds (polyatomic molecules) look like [15] [53]:  

1 5

3
2 50

0

25

16 exp
2

D

V
u

k a
a t

E EAMm
kT

θ
 
 

≅  −  
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                            (43) 
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Here, M is number of atoms in a seed. Formula (43) describes growth of large clusters under small flux of 
seeds, Formula (44) corresponds to both large flux of seeds and interaction between large clusters, sound speed  

being recorded in Debye approximation as ( )1 32
0 6πDc k nθ≅ 

.  

In case of detonation synthesis of nanodiamonds, a “Lagrangian” layer of shock compressed confined matter 
(i.e., a layer with a constant mass) is viewed as a closed system [53]. It is assumed that deformation and frag-
mentation of benzene rings are taking place in a shock wave front that results in production of structural seeds of 
diamond phase with cubic modification—molecules of cyclohexane carbon skeleton. An effective size of such a 
seed is determined by the length of a covalent bond of carbon atoms and is equal to a0 = 0.3 nm. The estimated 
time of seed formation tnf ∼ 10–12 s was obtained in [53] from kinetic considerations. As shock compressed layer 
expands, crystal diamond-like clusters are formed in it as a result of seed coalescence and oscillating interactions 
between evolving nanostructures and seeds and between themselves.  

The minimum average size of diamond-like nanoclusters starting from which they possess a crystal lattice, is 

estimated as 9
min 10 ma −∼ . The cluster of this size has ( )3 3

0min 3a a ≅  seeds, i.e. about 160 carbon atoms. 

In accordance with Formula (41) the formation time of such cluster can be estimated as 12
min 10 st −∼ . Using 

Formula (40) and the time of seed capture determined in [54] as 133 10 sst
−= ×  one can estimate the cluster 

minimum size starting from which it can be regarded as a macroscopic particle: 92 10 ma −
∗

∼ × . This cluster 

includes ( )3 3
0 7a a

∗
≅  seeds, i.e., approximately 2000 carbon atoms. From Formula (42) we obtain that the 

time of synthesizing of this particle is equal to 104 10 st −
∗ ∼ × . The further growth of diamond-like particles is  

described by Formulae (43) and (44). Estimates provided in [53] [54] show that an average size of detonation 
nanodiamonds about 4 nm can be reached in a time of about (2 − 5) × 10–9 s. These estimates as well as asymp-
totic mode (4) of cluster size distribution and the idea about existence of local maximum variety within this dis-
tribution agree with key experimental data obtained by different authors (see [25]).  

Shock-induced coalescence of detonation nanodiamonds of “water” synthesis under dynamic loading in reco-
verable ampoule is described in [53] [55]-[57]. Growth of particles is described by the following formulae ob-
tained using the above laws (22), (23): 

1 5
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Formula (45) corresponds to a small flux of seeds (nanodiamonds), when an average size growth occurs as a 
result of “particle-seed”—type interaction. Formula (46) corresponds to a large flux of seeds, when growth oc-
curs as a result of “particle-particle”—type interaction. Because the compression pulse duration is short (τ ∼ 10–5 

s), it is natural to assume that the crystal particles predominantly grow under metastable conditions for the di-
amond in the phase diagram of carbon: at zero pressure and increased residual temperatures. Cooling-down time 
for shock heated porous carbon sample is determined using the solution of problem about a heat wave starting 
from an instant plane source (a thin disk) formed under shock compression of nanodiamond powder and propa-
gating of this wave in material of the ampoule. Estimates performed according to Formulae (45), (46) show that 
during a cooling-down time of about t ∼ 102 s two subsystems of crystal diamond-like particles with average 
sizes about 1.5 × 10–5 m and 1.5 × 10–4 m are formed in porous sample of nanodiamonds. The mechanism of 
crystal growth resulted from consecutive connection of “small” seeds to a “large” particle described by Formula 
(45) provides by an order of magnitude larger sizes than the mechanism of large particle coalescence described 
by Formula (46). The calculated results agree with the given in [57] experimental bimodal distributions of poly-
crystalline diamond particles under consideration.  

Behavior of light actinides in conditions of internal self-irradiation and external effects in many cases is de-
termined by their phase stability and a character of crystal phase polymorphic transformations [9]. The problem of 
phase stability and polymorphic transformations of light actinides is considered in terms of phenomenological 
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concepts about evolution of nanoclusters as a result of their phonon excitation and oscillating interactions [15]. 
The basis for such concepts is, for example, the existence of strong (quasi-covalent) bonds in multiphase pluto-
nium resulted from f-electrons effect on atoms approaching each other [9].  

First, we will single out the following process: a) spontaneous formation of plutonium alpha-phase (α-Pu) 
from plutonium delta-phase (δ-Pu) as a result of sample aging; b) martensitic transition of plutonium delta-phase 
into alpha-prime (α′) phase on cooling of samples and reverse transformation on their subsequent heating. We 
will suppose that at the initial time there is a fairly large number of starting seeds of a certain crystalline phase 
which could be generated, as a result of temperature fluctuations, on defects of the initial structure either af-
fected by intrinsic radioactive radiation, or as a result of local shear deformations on lattice defects under exter-
nal action. Since the α′ phase of Pu differs from the α-phase by the presence of a relatively small number of gal-
lium (Ga) impurity atoms (∼ 1% - 2%) and crystal lattice parameters of these phases are close to each other (see, 
for example, [9]), we are going to consider the «pure» transitions δ →α →δ  for simplicity. 

Therefore, the influence of impurity atoms on kinetics of phase transformations is ignored in a proposed mod-
el. As starting seeds of α-Pu we will consider nanoclusters consisting of eight atoms with the only crystallo-
graphically possible mutual orientation described in [9]. A characteristic size of an α-phase seed, accepted to be 
equal to the most linear size of an elementary crystal cell, is a0α = 1 nm; the time of its formation from dimmers 
of δ-phase is evaluated as: 

1242π exp 10 sn
B v B

t
k k T

α δ
α

ε ε
ϑ

−−
= ∼

  

Here, εα is internal energy of α-phase seed, and εδ is internal energy of the dimer. Due to connection of two 
such clusters a unit cell is generated which consists of 16 atoms, and which forms α-Pu monoclinic lattice. 
Dimmers, tetrahedrons, as well as plane formations of six atoms generating glide planes of face-centered cubic 
lattice (fcc) can be considered as structural seeds of δ-Pu. Irreversible aggregation of seeds results in formation 
of small (nano-) particles with quasi-crystal (short-range) ordering of atoms in a lattice. Estimates show that the 
minimum size and time for forming a particle with a short-range ordering in α-Pu crystal lattice are equal to 

mina  ∼ 2 × 10–9 m, tmin ∼ 1.9 × 10–10 s, respectively. Estimated parameters determine premartensitic state de-
scribed in [9]. The following coalescence of such nanocrystal objects brings to formation of larger particles with 
quasi-long range ordering. 

Based on uncertainty relation (1') and the resultant expression (46) in Debye approximation for description of 
nanoparticle coalescence in [58], it was stated that at modest temperatures the spontaneous generation of α-Pu 
polycrystals with sizes of about 10–7 m occurs for the time t = 6 × 10–3 s. Formally it was also obtained that α-Pu 
“macroscopic” particles with sizes 0.1 - 1 mm can be generated for times of 2 × 10–1 - 2 × 102 years. It should be 
noted that these estimates are in compliance with the generally known concepts about slow kinetics of sponta-
neous transformation of alloyed δ-Pu in normal storing conditions.  

The main mechanism of martensitic transition in the proposed model is addition of starting seeds (polyatomic 
molecules) to large clusters in the regime of small flux of seeds, when each of them has time to occupy its energy 
advantageous place on a surface of a large cluster before the interaction with the following seed begins. In this 
case growth of a martensite particle is described by Formula (22) in which the process finish time, according to 
concepts [59] about ordering kinetics at phase transformations, is determined as:  

0exp v
end

B

E Elt
c k Tδ

−
=                                 (47) 

Here, l is a characteristic size of an initial matrix from δ-Pu, e.g., a grain average size in a homogenized sam-
ple, cδ is velocity of propagation of minor elastic perturbations in the initial matrix. A limited average size of 
particles formed as a result of capturing the seeds with oscillating spectrum of polyatomic molecule [60] auto-
matically follows from (22), (43), (47):  
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Here, θDα. is Debye parameter of α-phase. Temperature T0 of the beginning of martensitic transformation is 
determined from the condition that an average α-phase particle size becomes equal to a characteristic longitu-
dinal size llong of a twin. If this value does not depend on T, then it follows from Formula (48) that with the de-
creased l, the value T0 has to decrease as well, since in oscillating spectrum Ev of solid particles there is a tem-
perature-independent term connected with zero oscillations of a crystal lattice [15] [52]. Finish temperature T∗ of 
martensitic transition is determined from the condition that average particle size of α-phase becomes equal to a 
critical size at which a quasi-long-range ordering appears in the system, that is from the condition of intersection 
of the curve ( )*a f T=  (geometric place of points in a plane ( a , T) determined according to Formula (40)) 
with the curve in the plane ( a , T) by Formula (48): 

*lim
a aα = . In this case the condition *endt t=  is ful-  

filled automatically. With lower temperatures T < T∗, when *endt t< , 
*lim

a aα < , the quasi-long-range or-
dering does not have time to be formed, and the system does not reveal explicit macroscopic properties. From 
the condition 

*lim
a aα =  we obtain the following equation to determine a “critical” temperature of marten-

sitic transition finish:  
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From here, it follows that with the decreased l, temperature T∗ should increase through the presence (in the 
expression for Ev) of the term responsible for zero oscillations and independent on temperature.  

The calculated curves T(l) given in [25] with characteristic temperatures of martensitic transition show that in 
a diffusion model [60], with the decreased matrix grain size, transformation “blurring” determined as the differ-
ence T0 – T∗, decreases also, which is caused by the effect of crystal lattice zero oscillations under significant 
sample.  

Now, we consider the reverse transformation α→δ during the heating of the sample preliminary cooled to the 
“critical” temperature T∗. In this case, the vibration spectrum of the small α-Pu particle surrounded by the δ-Pu 
matrix transforms into the vibration spectrum of the environment due to the interaction of atoms at the interface. 
This process propagates deep into the particle and leads to the transformation of its vibration spectrum in the 
bulk; i.e., the polymorphic transformation occurs. According to the differential relation (25) when 3n aΝ = , 
we can obtain the following relationship for the growth of the reverse transformation region during the heating 
over the entire volume: 

( ) 1 2
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                                 (49) 

Here, D(x) is the tabulated Debye function with x = θD/T [61]. Formula (49) determines the lower time boun-
dary of the inverse transformation which is evaluated in [15] [60] as tmin ~ 10–8 s.  

As the size of inverse transformation region increases, which is described by Formula (49), this region can 
capture some individual groups of atoms (atomic clusters) from the initial matrix surface from the δ-phase in the 
region of “contact” with α-phase and recovered δ-phase. In addition clusters can be captured from α-phase mar-
tensitic particles. The inner energy of clusters can correspond to either intermediate state between two crystal 
phases (diatomic and polyatomic molecules), or atom oscillation spectrum in a solid. The law of growth of re-
verse transformation region in the mode of a small flux of seeds described by Formula (43) looks like:  
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                      (50) 

Here, E0i is the energy of the captured object determined by a number of atoms in a cluster, index i is phase, 
Evδ is energy of the captured object inside the region of inverse transformation, determined by an oscillating 
spectrum of a solid particle. It is taken into consideration here that as a result of elasticity here, we took into ac-
count that the elasticity softening leads to a decrease in the Debye parameter according to the linear law 
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( )0 1Di i iATθ θ= − , θ0i is Debye parameter at T = 0 [62]. Formula (50) determines the upper time boundary for 
the inverse transformation within the proposed model estimated as 2.4 s [15] [60]. 

In case of capturing seeds directly from α-phase, when their vibration spectrum Evα corresponds to the solid 
body vibration spectrum, expression (43) for an average size of δ-phase particles looks like:  

( )
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                     (51) 

Within the temperature range of the reverse transformation α→δ the linear dependence [62] for Debye para- 
meter can be approximately written as ( )0 expD A Tδ δ δθ θ≈ − . In case of dimmers as δ-phase seeds, the internal 
cluster energy is written as:  
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where the first two expansion terms (using Bernoulli numbers Bn [63]) are taken into consideration: 
( ) ( ) ( ) ( )2 4

1 2e 1 1 2 2! 4! ,xx x B x B x− ≈ − + − +  2 24πx  , B1 = 1/6, B2 = 1/30, ···. If one neglects terms of 
the second (or higher) order of smallness, the temperature factor in Formula (50) in the first approximation can 
be written as:  
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From the condition of extremeness:  
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we obtain the following expression for determining the “relevant” temperature: 

1 .
4
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iT

Aδ

ϑ
=  

At this point the second derivative is negative: ( ) 0F T′′ < . The values Ti determine temperatures at which 
particle sizes growing from dimers of this or that phase reach their maximum in a plane ( a , T). In case of 
δ-phase dimers the Ti value corresponds to the temperature Ts of the beginning of the reverse transformation 
α→δ: 
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In case of α-phase dimmers, the Ti value corresponds to the temperature Tf of the reverse transformation α→δ 
finish: 
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Knowing the critical temperature T∗ of martensitic transition finish and the temperature Ts of the reverse 
transformation beginning at heating one can determine the temperature hysteresis Ts – T∗.  

A temperature factor in Formula (51) for an average size of the reverse transformation region is written as:  
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It is taken into consideration that at high temperatures DT θ  the vibration energy in a crystal lattice per an 
atom is equal to (see [51])  
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In the plane (F, T) there exists a special point, in which exponent index is equal to zero, and F(T) = 1, i.e., 
elastic vibrations of atoms are balanced by elasticity softening. With higher temperatures elasticity softening 
becomes predominant and inverse transformation “decelerates”. From here we obtain the following expression 
for the value TM corresponding to the decrease of average size growth rate with temperature for the given num-
ber of atoms M in cluster seed with vibrational spectrum of the solid:  
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It can be seen from relationship (54) that there exists a discrete spectrum of characteristic temperatures TM each 
of which corresponds to a particular number M. This discrete spectrum determines a stepwise character of par-
ticle growth during the heating due to the capture of clusters with different numbers of atoms. 

Discrepancy in calculated and experimental data [64] relating to characteristic temperatures of the martensitic 
transition beginning and finish and of the reverse transformation is 2% - 24% [60]. The calculated, using For-
mula (54), discrete set of temperatures TM = 318, 335, 350, 364 K at which rate of growth of a particle average 
size with atom numbers in the seed M from 6 to 9 decreases, corresponds to the temperature interval [65] 328 - 
360 K. Within this interval one can observe “steps” on dilatometric curves for relative extension of samples and 
the corresponding “bursts” on curves for velocities of sample extension in experiments [65].  

The established correspondence gives foundation for determining the least grain size of the δ-phase initial 
matrix at which martensitic transformation into α-phase is still possible. As a necessary condition for martensitic 
transformation one can accept that an average size of a martensite particle should be no less than a characteristic  
longitudinal size of a twin llong: longlim

a lα ≥  . The proper equation for the minimum grain size of δ-phase matrix 
lower which the martensitic transformation does not occur, since a typical twin size is not reached at cooling down 
to reasonably low temperatures about 100 K obtained from (48), looks like: 
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Hence at llong = 1 µm [9] we obtain lmin = 2.2 µm. This grain size is in compliance with the calculated temper-
atures of the beginning T0 and finish T∗ of martensitic transition equal to 140 and 110 K, respectively. Values lmin 
= 2.2 µm, T0 = 140 K and T∗ = 110 K can be considered as limiting for this mechanism of martensitic  
particle growth. From Formula (48) it follows that 

lim
0.45a lα ≈ . This means that the grain size less than lmin =  

2.2 µm can be reached as a result of thermal cycling, i.e., with sequential cycles of “cooling down to α-phase 
transition→heating back up to δ-phase→the following cooling down to α-phase transition” and so on. Since with 
δ-phase recovery a typical matrix grain size decreases to the value 0.45 l, with the following cooling, the mar-
tensitic particle size will be equal to 0.2025l, hence at heating, a typical grain size of δ-Pu matrix will be equal to 
0.2025l and etc. in decreasing geometric progression. With the given initial size l, it is possible to obtain in just 
several cycles such size of δ-phase matrix grain that will be lower than lmin. The fact that the size of α-phase 
martensitic particle is always less than that of δ-phase initial matrix grain means that the martensite total volume at 
the following cycles will be always less than the martensite total volume at the previous phase. And at each further 
cycle the temperature of the martensitic transition beginning will be lower than that at the previous cycle. The 
results are in qualitative agreement with the experimental data [66] relating to δ-Pu stabilization at thermal 
cycling.  

Under long annealing of samples the homogenizing and increase of their grain sizes occur after each cycle that 
brings to martensite transformations in their former volume. Sample homogenizing can take place as a result of 
coalescence of particles undergone the α→δ inverse transformation. With a point contact of such particles the 
parameter Ν in Equation (25) is equal to number of atoms in a channel formed by linear chain of elementary 
crystal cells arranged within the length 2 a : where Nc is a number of atoms in a cell, and ac is a typical cell size. 
Then from (25) we obtain the following equation for the growth of average size of the homogenized region a :  
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                             (55) 

Estimates in accordance with this formula show that with the temperature T = 600 K at the time t = 30 min the 
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size of the region of homogenization reaches a value of about 2 cm. Exactly this explanation can be applied to 
the data [67] on plutonium sample annealing. 

In [15] the nature of δ-Pu→α-Pu transition with the sample cooling down to the lower temperatures than 
those used in [64] is determined. In this case an α-phase particle with the minimum size mina  = 2 nm (the 
particle having a short-range crystal ordering) can take out of the surface of δ-phase surrounding matrix groups 
of atoms (clusters) with the solid body vibration spectrum. In the course of the interaction of the cluster with the 
particle the vibration spectrum of the cluster is transformed into the vibration spectrum of the α-phase. 

With temperatures DT θ  the Equation (48) for the limiting average size of an α-phase particle is written 
as:  
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Here, it is taken into consideration that in Debye approximation [51] at minor temperatures the “specific” in-
ternal energy of a solid per an atom is equal to:  
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The value 
lim

aα  basically can reach a typical size of δ-phase initial matrix (for example, the size of a ho-  
mogenized grain), i.e., full transition from δ-phase into α-phase occurs. The temperature Tft of full δ→α trans-
formation is determined from the condition 

lim
a lα = . At very low temperatures, when in previous equations 

one can neglects the terms proportional to T3, we obtain the following approximated equation for the tempera-
ture of full transformation:  
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In accordance with Formula (47), the time when a martensitic particle achieves the size l, can be written as: 
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Hence we obtain that with the grain size δ-Pu l = 30 µm the temperature of full δ → α transformation is Tft = 
13.5 K, and the time of this transformation is about 9 × 10–2 s. If as a result of preliminary thermocycling with 
moderate cooling the δ-Pu grain size is decreased to the critical value lmin = 2.2 µm, then the temperature of δ→α 
full transformation is Tft = 17 K, and the corresponding time is about 1.3 × 10–3 s. With the given temperatures 
critical sizes of α-phase particles 

*aa  estimated according to Formula (40) significantly exceed the sizes of in-
itial δ-phase grains. For example, at Tft = 13.5 K we have 

*aa  = 220 µm which is significantly higher than the 
initial grain size l = 30 µm. This means that in the α-phase particle the long-range ordering is not reached. Such 
particle does not have macroscopic properties and represents a mesostructure with a short-range crystal ordering. 
At the same time sizes of such object are large as compared to those of a martensitic particle formed at cooling 
down to reasonably low temperatures about 100 K, when a lα < . 

An important issue is the one relating to growing of macroscopic size plutonium crystals for investigation of 
their mechanical properties [67]. In the proposed models one can use as seeds nanoparticles with a critical size 
a∗, at which a particle has quasi-long-range crystal ordering. With small seed flux, when each seed has time to 
occupy its energy advantageous place on a cluster surface before it interacts with the following nanoparticle, the 
size of a phonon excitation region can be approximately equal to a∗. Then a number of excited atoms is equal to 

( )3
0N M a a∗ ∗≡ Ν = , where a0 is a characteristic size of an atomic cluster (crystal structure seed), M is a num-

ber of atoms in cluster. From (25) we obtain that the law of growth looks like:  
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Equation (56) determines growth rate of Pu crystals in the mode similar to a free-molecular flux of seeds. In 
this case nanoparticles play a role of seeds. From considerations of translation symmetry we will accept, for 
example, that the minimum size of δ-Pu initial nanoparticle is equal to a∗ = 2ac = 0.9274 nm. Then with T = 700 
K, t = 10 days we obtain that 10 mma = . The estimate corresponds in order of magnitude to the experimen-
tal data given in [67] on Pu large crystal growth by the “strain-annealing” method. Formula (56) can be useful 
when choosing conditions for growing large crystals of any material with strong interatomic bonds by the me-
thod of nanopowder sintering. 

5. Discussion of Results 
The above obtained approximate analytical expressions for characteristics of object formation include funda-

mental physical constants, physical properties of substances, and phenomenological parameters of objects. We 
will consider an issue about relation (32) between time-space scales and mass scales in subatomic physics. For-
mally relation (32) is exactly fulfilled for Planck values of mass Plm , length ( )Pl Pll m c=   and time 

Pl Plt l c=  which proves validity of this relation. Using this relation it was shown in Section 3 that in 
quark-gluon substance least time unit corresponding to the minimum value of the length unit min 1810 munita −∼  
that can be considered as the upper estimate of a current quark size with ~ 5 MeVcq

unit um m = , is min 2910 sunitt −∼ . 
A time unit for current quarks in the state of asymptotic freedom with a spatial scale 1610 maf

unita −∼  is 
2610 saf

unitt −∼ . Based on relation (32) one can obtain the following estimate for the unit time in processes of inte-
raction with participation of constituent quarks in the state of confinement: 1510 mconf

unita −∼ , 
300 МэВunit u dm m m= ≅ ≅ ⇒ 244 10 sconf

unitt −∼ × . Time of transition from asymptotic freedom to confinement is 
evaluated in Section 3 as 2310 stranst −∼  that corresponds to the time scale of strong interaction, and the time of 
stable hadron formation is evaluated as 2010 shadr

formt −∼ . Thus the relation (32) in principle shows that processes 
in microcosm are characterized by a spectrum of time units of “measurement”. It should be noted that close to 
the upper boundary this spectrum is overlapped with the “lower” region of the spectrum of typical nuclear times 
10–23 - 10–22 s in case of direct reactions. In this way Formula (32), demonstrating that up to distances of about 
10–18 - 10–16 m and times of about 10–29 - 10–26 s the “ordinary” space-time relations are valid, is in compliance 
with generally accepted concepts about space-time scales in microcosm [68].  

One can try to estimate the value of fundamental mass fundm , if one accepts that the least space unit (funda-
mental length) is the value afund ~ 10–18 m, and that this value is in compliance with the time scale un fundt a c= . 
Then from relation (32) we obtain the following expression for fundamental mass:  

.fund
fund

m
ca

=
  

Hence we obtain that 2 196 GeVfund fundm c c a= =
 [25]. This value fits into the expected (indicated in book 

[29]) experimental range in which neutral Higgs H0-boson mass 0H
m  should fall in: 0

2115 250 GeV
H

m c< < . 
In addition this value is close to the “critical” mass 180 - 200 GeV above which H0-boson can disintegrate into 
couples of W- and Z-bosons [69].The reason for this compliance is in the fact that the proposed model of 
“quantum” compact cluster formation is scalar, it does not include spin parameters or object charges, and hence 
it can be applied to the scalar neutral boson H0 with zero spin.  

It should be interesting to perform, using relation (32), a qualitative analysis of a wide spectrum of processes 
with the participation of fundamental and elementary particles. For example, one can try to estimate the state of 
the heaviest of available quarks: t-quark (tq) having conditional mass 176 GeV [19]. Using Formula (32) the 
minimum time unit for t-quark, corresponding to the minimum length unit estimated in [40] as min 1810 munita −∼ , 
is evaluated as 2710 stq

unitt −∼ . Then it follows from Formula (21) that for formation of a bound state with a 
characteristic size of about 10–15 m, the required time would be 2110 stranst −∼ . The resultant estimate corres-
ponds to the lifetime of unstable resonances; therefore t-quark cannot form stable hadrons. The result does not 
contradict to the known concepts according to which t-quark is the only quark that comes into being and dies 
free [19]. 

Within the nuclear scales the proposed method allows one to estimate the time of the process of approaching 
equilibrium based on characteristic mass numbers and the corresponding nuclide sizes. Such task was solved in 
[70] to fit the study into kinetics of deep inelastic interaction between a beam of heavy copper ions and a target 
of gold with the collision energy 365 MeV [39]. It has been demonstrated that the times of formation of interac-
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tion products, having average mass numbers A  = 60 and 100 typical for the process under consideration, are 
in the order of magnitude 10–20 s. The resultant values are significantly lower than the lifetime 10–16 - 10–14 s of 
an intermediate compound nucleus. This allows us to speak about relatively fast (explosive) process progress. It 
should be noted that the established in [39] product distribution behavior in the reaction corresponds qualita-
tively to asymptotic properties of a distribution density function established in Sections 2 and 3. Thus for large 
mass numbers law (4) is approximately fulfilled, and against the background of a smooth curve local maximums 
take place at A = 56 and 63. Calculations based on Formula (28) show that the most probable mass numbers of 
cluster nuclides in the interregion between cluster radioactivity and spontaneous fission are equal to 51, 58, 65, 
67.  

In case of mesostructures the developed qualitative models include the constants , ,u Bm k , physical characte-
ristics of the material , , , , , ,V D c cA n a Nϑ θ  phenomenological parameters a0, lcov, and operate with the minimum 
necessary number of variable in the experiment parameters (observed values): the environment temperature T, the 
grain initial size l, the time t of object growth process and their average size a  reached by the end of the process. 
It should be noted that the constant   is omitted from final expressions for an average size of volume-packed 
mesoobjects. This factor is connected with a large number of elementary acts of object interactions, i.e., with 
quasi-classical nature of growth processes of nanostructured diamond particles and light actinides. And yet, the 
expressions for a typical diameter and an average length of a single-wall carbon nanotube include constant   
explicitly. This makes it possible to consider carbon nanotube as a purely quantum object.  

The proposed in Ref. [15] [53] mechanism of macroscopic diamond particle formation from nanodiamonds 
covered all the available at that time data related to both artificial diamonds produced under static and dynamic 
synthesis, and natural diamonds that could have been formed as a result of cataclysm, e.g., impact of meteorite. 
In addition we will consider an issue about mesoscopic “limits” based on Formula (26) for the maximum size of 
a crystal cluster. As mint∆  it is reasonable to take the residence time of seed at one place on the surface of a 
particle-cluster, i.e., characteristic oscillations period 2π B Dk θ . One can see that the above limits significantly 
depend on the seed size. By the example of diamond we will consider the following types of seeds: carbon ske-
leton of cyclohexane with the characteristic size 0.25 nm, as well as nanodiamonds with the “critical” size 

2 nma∗ =  at which quasi-long range crystal ordering originates (see Section 4). For diamond the value mint∆  
is 2.12 × 10–14 s. If we consider synthesis from molecules of carbon skeleton of cyclohexane, then the maximum 
size turns out to be amax = 100 nm. This value can be considered as the “theoretical” limit of detonation nano-
diamonds. If a seed size is equal to 2 nm, then the maximum size at 14

min 2.12 10 st −∆ = ×  is evaluated as amax ≈ 
3 cm.  

Like a theory of fuzzy martensitic transitions developing according to diffusionless mechanism [10], the 
model [15] [60] of the δ-Pu→α-Pu transformation, as diffusion formation of crystal particles, shows that with 
the decreased grain size l of the initial phase, the temperature T0 of the martensitic transition beginning decreas-
es, and with l < lmin martensitic transition is “blocked”. Yet, as l decreases in diffusion model the temperature T∗ 
of martensitic transition finish increases and “fuzzing of temperature transformation” decreases, which is deter-
mined in [25] as the difference T0 – T∗. It is connected with phonon effect (in particular, “zero” crystal lattice os-
cillations). The established in section 4 agreement between the calculated and experimental data for plutonium 
provides grounds for using the model in describing behavior of other light actinides with strong approach of 
atoms [9] (Pa, U, Np). In addition the model [15] [60] predicts the possible reverse α-Pu→δ-Pu phase transfor-
mation under pulsed heating of the sample preliminary cooled down to temperatures of about 100 K and the ab-
sence of the reverse pulsed transformation in the sample preliminary cooled down to temperatures of about 15 K.  

With all variety of above processes one can single out the following common features of growth dynamics of 
compact objects having strong bonds and significantly different space scales: 
 At the end of the aggregation process the function of distribution density ( ),a tϕ  of large clusters with sizes 

0a a  (a0 is seed size) is in inverse proportion to a3 (to cluster masses), and an average size a  of clus-
ters is much lower than the maximum size amax: maxa a

; 
 There are many local maximums of function ( ),a tϕ  connected with the most probable cluster sizes, and 

there is a set of zeros of this function reflecting cluster instability at certain sizes; 
 The obtained approximate laws of average size growth of large clusters in time a tΖ∝  with small and 

large seed fluxes describe aggregation processes both in microcosm and in mesoscopic scales. 
Every power exponent Z with t obtained in this work are positive which is indicative of suppression of an in-

verse damage wave and formation of resultant direct wave of object growth even in case of cluster interaction 
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between themselves. This result is in agreement with the concept of “persistence” in cluster-cluster aggregation 
[8]. By analogy with the theory of dispersive waves [71] one can try to introduce the concept of “phase” and 
“group” velocities in dimensionless space 0a aξ = . Phase velocity of growth process is infinitely large: 
d dξ τ → ∞ . This means extremely fast spreading of any initial cluster distribution and “instant” formation of 
density wave ( ),  ϕ ξ τ  in space ξ . Group velocity d dξ τΨ =  of density wave in the majority of growth 
mechanisms decreases with time: 

1d d ,  0 1ξ τ τ Ζ−∝ < Ζ ≤  

This reflects broadening of wave packet and slowing down of its propagation. At the final stage of the process 
of irreversible cluster aggregation in closed system such wave packet of a non-Gaussian shape has a decaying 
sudden change in a wave “front”, associated with the maximum possible size maxξ : 

3
max, ;ϕ ξ ξ ξ ξ−∝ ≤

 

max0,ϕ ξ ξ= >  

These considerations bring to a conclusion that the developed asymptotic method for investigation into kinetics 
of formation of compact objects having strong internal bonds has a certain degree of generality to use it in solving 
problems in physics of high density energy and high-intensive processes.  

In particular, in [25] the consideration is given to a problem of nuclide “stability islands” [29] [43], and the 
fact of such islands existence is explained in terms of formation of clusters with the most probable sizes from 
nuclear matter seeds. As an example the element roentgenium with Z = 111 has the mass number of A = 273. In 
the proposed model, this value of A obtained from Formula (28) corresponds to tritons as the seeds. At Z = 114, 
in compliance with 2β-stability, the number of neutrons is equal to 184 and the mass number is equal to A = 298 
[43]. In the model [25], the mass numbers closed to it are 299 and 302. These values obtained from the Formula 
(28) correspond to tritons and deuterons as the seeds, respectively. Work [72], which is dedicated to the produc-
tion and the decay of element 114, mentions its isotopes with A = 288 and 289. In the model [25], the values A = 
290 and 293 are the closest mass numbers corresponded to the tritons and deuterons as the seeds, respectively. 
Using various calculation options of the β-stability band the islands of stability are predicted also at Z = 164 and 
with neutron numbers of 272 or 318 [43]. Respective mass numbers A = 436 and 482 are close to the approx-
imate value of the mass number of the final nuclide Aend ≈ 470 calculated in [14]. In the model [25], mass num-
ber A =436 corresponds to deuterons as the seeds. The closest to the mass number of 482 are the following val-
ues calculated with the help of Formula (28): A = 483 for the tritons as the seeds, and A = 485 for deuterons as 
the seeds. Thus, one can presume that the developed asymptotic model of clusters formation in the nuclear mat-
ter complements the method for predicting nuclear mass with the help of radial basis function [73], which makes 
it possible to find mass numbers in the range from 20 to 260.  

As for high-intensive nuclear processes, when a target is affected by fast, including relativistic, particles, then 
to describe them one should use Equation (25). From this equation as well as from Formula (27) one can derive 
the following expression for the time of formation of cluster nuclides with an average mass number A :  

1 2
1 3

0
2

2 nucl
form

exc

m
t r A

E
 

≅  
 

 

Here, mnucl is nucleon mass, which can be accepted as an average value between proton and neutron masses, 
Eexc is nucleus excitation energy per a nucleon. If we accept the average kinetic nucleon energy in degenerate 
ideal Fermi-gas as Eexc, then from the previous equation we will have:  

1 30

0

4ac
form

r
t A

c
≅  

Here, c0 is average thermal nucleon velocity (see Section 3). In such “acoustic” (ac) approximation the time 
of light nuclide formation with <A> ≈ 10 is equal to 2 × 10–22 s, for heavy nuclides with<A> ≈ 100 this time is 5 
× 10–22 s. If one takes the maximum possible energy mnuclc2 as Eexc, the time of nuclide cluster formation is ex-
pressed as:  

1 302 2ur
form

r
t A

c
≅  
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In such “ultrarelativistic” (ur) approximation the times of nuclide formation are 2 × 10–23 s and 4 × 10–23 s. 
The obtained estimates do not contradict to the generally known notions about typical time of direct nuclear 
reactions [29] [35] [36].  

Another example of using the developed method is explanation and description of diamond synthesis in condi-
tions of cavitation experimentally studied in [74] [75]. In [76] a solid stage of the process is considered, at this 
stage diamond particle growth in extreme condition occurs. Asymptotic models of nanostructured mesoobjects 
with strong interatomic bonds make the basis of this consideration [15]. These models include description of 
crystal growth models at high temperatures T, when Bk T ω  . For obtaining laws of diamond particle growth 
in conditions of cavitation Equation (25) was used. It has been shown that nanodiamonds are produced at the first 
stage of synthesis. Hence production of diamond particles in a solid phase occurs as a result of nanodiamond coa-
lescence and consolidation of the produced objects into larger particles both at the final stage of cavitation bubble 
collapse, and in the process of collapse “products” expansion as well.   

The next example is the problem of determining the width of detonation zone in solid high explosives (HE) 
[77]. In this case the subject to be investigated is not formation of an object with strong internal bonds, but fail-
ure of strong covalent bonds between carbon atoms, resulting in relaxation processes of new bonds formation 
and energy release. The detonation zone is considered as quantum mechanical system, being in an excited state. 
For example, it can be excitation of quasi-particles, phonons, caused by shock wave. As a result of system pho-
non excitations, there occur atom oscillations with relatively high amplitude with which bonds between atoms 
break and new bonds are formed that are typical for decomposition products of the original substance: various 
chemical compounds (molecules, radicals), carbon clusters, and others. 

Relaxation processes in a detonation are considered using the concept of distribution density wave ϕ(x, t) of 
objects with new interatomic bonds, formed when former bonds broke as a result of “excitation” of oscillations. 
The wave ( ),x yϕ  propagates with time t within a quantum mechanical system along the axis of HE charge 
(x-axis) from the shock wave front towards the surface, where chemical reactions of energy release finish. The 
motion of the wave ϕ  within the detonation zone goes up to the time t = τ, whereτ is duration time of detona-
tion-related chemical reactions. The estimates obtained for the average (in terms of its charge width section) de-
tonation zone fit into the range of generally known data for typical solid HE, and indicate that it is possible to 
produce explosives with nanometer energy release regions [77].  

One can try to apply the proposed asymptotic method to estimate grain sizes formed as a result of recrystalliza-
tion process in aluminum alloys at an impact of a group of solids with a rate of 1200 - 1300 m/s [78]. Numerical 
calculations have shown that the material temperature of crater walls formed, when solid impactors penetrate 
aluminum alloy targets, is T = 500 K, and a full time of impactor penetration up to its stopping is t = 40 µs. One 
can accept this calculated time as an estimate of life duration of intensive phonon excitations in the system “im-
pactor-target material”. As in a previous example, the process of grain formation and growth can be represented 
as a process of coalescence and growth of nanocrystals formed under failure of target original material structure 
as a result of solid shock action and stress wave interference generated by neighboring impactors.  

Since the calculated temperature is comparable with Debye aluminum parameter θD = 443 K [79], then with 
small flux of nanocrystal seeds the time dependence of an average size of crystal particles (grains) is described by 
Formula (45). From here, we get that at t = 40 µs, the grain average size is 0.4 µm. This value can be accepted as 
a grain size estimate at primary recrystallization. This estimate corresponds to grain sizes at a crater bottom speci-
fied in [78] using scanning electronic microscope.  

In general, the proposed phenomenological approach seems to be useful when considering the following 
problems from the list given in review [68]: mesoscopics, clusters, nanotubes, super-heavy elements, mass spec-
trum, quarks and gluons, fundamental length, particle interaction at high energies, neutron stars, and supernovas. 

It should be noted that the estimated in [25] fundamental mass 196 GeV does not differ strongly from the 
mass 125 - 126 GeV [80] of the new particle with Higgs boson properties discovered on the Big Hadron collider 
in CERN. It could not be ruled out that the above new particle is a product of disintegration of another heavier 
particle. It is also important to mark approximate accordance of obtained evaluation for fundm  to the value of 
the upper limit of the Higgs mass identified in [81] as 170 GeV. These factors argue in favor of validity of rela-
tion (32) in terms of fundamental processes in microcosm.  

Hence the developed models can be useful both for theoretical studies and experiments as well as for primary 
analysis of their first data. 
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6. Conclusions  
The proposed phenomenological approach allows one to consider formation and growth of subatomic and 

mesoscopic objects under single formalism. 
Based on linearization and qualitative analysis of solutions of Fokker-Planck kinetic equation the basic prop-

erties of a size-distribution density function of volume-packed bodies were established and approximate rela-
tions between average object sizes and their growth times were obtained.  

An approximate differential relation for determining object growth in high-intensive processes with high 
energy was obtained. 

The proposed asymptotic model provides adequate estimates of mass characteristics of typical intranuclear 
processes. 

The calculated data obtained for formation of nanostructured mesoobjects having strong interatomic bonds 
agree well with generally known experimental data. 
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