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Abstract 
For a one-dimensional conservative system with position depending mass, one deduces consis- 
tently a constant of motion, a Lagrangian, and a Hamiltonian for the nonrelativistic case. With 
these functions, one shows the trajectories on the spaces ( )x v,  and ( )x p,  for a linear position 
depending mass. For the relativistic case, the Lagrangian and Hamiltonian cannot be given expli- 
citly in general. However, we study the particular system with constant force and mass linear de- 
pendence on the position where the Lagrangian can be found explicitly, but the Hamiltonian re- 
mains implicit in the constant of motion. 
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1. Introduction 
Position depending mass systems have been relevant since the foundation of the classical mechanics and modern 
physics [1]-[5] (see reference there in). Actually, the interest for these type of problems has grown in modern 
physics due to fabrication of ultra thin semiconductors [6] [7], inhomogeneous crystals [8], quantum dots [9], 
quantum liquids [10], and neutrino mass oscillations [11] [12]. We also need to mention that this topic is im- 
portant due to its relation with the foundation of the classical mechanics [13], and its not invariance under 
Galileo or Poincar-Lorentz transformations [13] [14]. Most of the approaches dealing with position depending 
mass problems use an intuitive way to write down a Lagrangian or Hamiltonian for the system, and then solve 
the corresponding equations [15] [16]. In this paper, one obtains a constant of motion, a Lagrangian, and a 
Hamiltonian in a consistent way for conservative nonrelativistic systems and study the harmonic oscillator with 
position depending mass as an example. For relativistic systems we point out the difficulty to get the same func- 
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tions.  

2. Dynamical Functions 
A non relativistic conservative system with position depending mass is described by Newton’s equation  

( )( ) ( )d ,
d

m x x F x
t

=                                    (1) 

where x  denotes the velocity of the body with position depending mass ( )m x , and with a force ( )F x  act- 
ing on it. This problem can be written as the dynamical system  

( )
( )

2, ,xF x m
x v v v

m x m
= = −                               (2) 

where xm  is the differentiation of the mass with respect the position. A constant of motion of this system is a  
function ( ),K K x v=  [17] [18] which satisfies the following first order partial differential equation  

( ) ( ) 21 0.x
K Kv F x m v
x m x v

∂ ∂ + − = ∂ ∂
                           (3) 

This equation can be solved by the characteristics method. The equations for its characteristics curves are  

( )
( ) 2

dd d .
0x

m x vx K
v F x m v
= =

−
                               (4) 

From the last term, one knows that the solution of (3) must be of the form  

( ) ( )( ), , ,K x v G C x v=                                 (5) 

where ( ),C x v  is the characteristic curve obtained from the first two terms of (4), and being G  and arbitrary 
function. This characteristic curve can be found arranging these two terms of the form  

( ) ( ) 2d ,
d x
vm x v F x m v
x
= −                               (6) 

and defining a new variable, 2vξ = , to get the equation  

( ) ( )d 2 2
d xm x m F x
x
ξ ξ+ =                               (7) 

which can readily be integrated to obtain the characteristic curve  

( ) ( ) ( ) ( )
2

2, d .
2

m x
C x v v m x F x x= − ∫                           (8) 

Choosing the initial conditions ( )0 0x = , ( )0 0v ≠ , and ( ) 00m m= , and selecting the functionality  
( )( ) ( ) 0, ,G C x v C x v m= , the constant of motion is  

( ) ( ) ( )
2

2

0

, ,
2 eff

m x
K x v v V x

m
= +                             (9) 

where effV  is the effective potential due to the position depending mass,  

( ) ( ) ( )
0

1 d ,effV x m x F x x
m

= − ∫                             (10) 

and this constant of motion has the right expression when constant mass is considered. Using now the known 
expression [19]-[21] to get the Lagrangian from a constant of motion,  
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( ) ( )
2

,
, d ,

v K x
L x v v

ξ
ξ

ξ
= ∫                                  (11) 

The Lagrangian, generalized linear momentum and Hamiltonian are given by  

( ) ( ) ( )
2

2

0

, ,
2 eff

m x
L x v v V x

m
= −                                (12) 

( ) ( )2

0

, ,
m x

p x v v
m

=                                   (13) 

and  

( )
( )

( )20
2, .

2 eff
m

H x p p V x
m x

= +                              (14) 

The above expression for the dynamical functions show that there are two main modifications from the usual 
expression when position depending mass is considered. Firstly, an effective potential is created which depends  
on ( )m x  (10). Secondly, the kinetic energy like term is not of the form ( )2 2p m x  but it is of the form  

( )2 2
0 2m p m x . These two modification are really important to deal correctly with an specific mass position  

depending conservative problem.  

3. Harmonic Oscillator m(x)  

Consider the harmonic oscillator, ( )F x kx= − , with a linear position depending mass, ( ) 0 1m x m m x= + .  
Thus, the effective potential, constant of motion, and Hamiltonian are given by  

( ) 2 31

0

,
2 3eff

m kkV x x x
m

= +                                 (15) 

( ) ( )2
0 1 2 2 31

0 0

, ,
2 2 3

m m x m kkK x v v x x
m m
+

= + +                          (16) 

and  

( )
( )

2 2 30 1
2

00 1

, .
2 32

m m kkH x p p x x
mm m x

= + +
+

                         (17) 

Figure 1(a) and Figure 1(b) show the trajectories on the spaces ( ),x v  and ( ),x p  generated by the 
constant of motion and the Hamiltonian above with 0 200m =  and for 1 0m >  ( 0 200m = ; 1 0m =  (1), 

1 5m =  (2), 1 10m =  (3), 1 20m =  (4)). Figure 2(a) and Figure 2(b) show also the trajectories on those spaces 
with 0 1000m =  and 1 0m <  ( 1 0m =  (1), 1 1m = −  (2), 1 1.5m = −  (3), 1 2m = −  (4)). From Figure 2(a) one 
notes a singular behavior in the velocity which comes from (16) and does not appears in the Hamiltonian 
formulation (17).  

Note that due to relation (10), it is not possible to know the potential (effective) without the acknowledge of 
the position depending mass previously.  

4. Relativistic Case 
The relativistic motion [22] of a body with position depending mass is not invariant under Poincaré-Lorentz 
transformation [13], but it still can be described by the equation  

( )( ) ( )
1 22

2

d , 1 ,
d

xm x x F x
t c
γ γ

−
 

= = − 
 



                          (18) 

where c  is the speed of light, and it can be written as a Newton's equation with a velocity depending force of  
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               Figure 1. Trajectories for 1 0m > .                                    
 

 

               Figure 2. Trajectories for 1 0m < .                                     
 
the form  

( ) ( )
( )

3 222 2

2 22

d 1 .
d 1

xx mx xm x F x
t cx c

    = − −    − 






                        (19) 

In turns, this equation defines the dynamical system  
,x v=                                        (20) 

( ) ( ) 2 31 .xv F x v m
m x

γ γ − = −                               (21) 

As before, a constant of motion of this autonomous system is a function ( ),K K x v=  satisfying the equation  

( ) ( ) 2 31 0.x
K Kv F x v m
x m x v

γ γ −∂ ∂ + − = ∂ ∂
                         (22) 
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The equations for the characteristics are  

( )

( )
3 22

2
2

dd d .
0

1x

m x vx K
v vF x v m

c
γ

= =
 

 − −  
 

                          (23) 

Thus, this constant of motion is an arbitrary function of the characteristic obtained from the first two term of  
this expression, ( )( ),K G C x v= , and from the first two terms one gets the following equation in terms of the  

variable 2 2v cη = ,  

( ) ( ) ( )
2 2

3 2d 1 .
2 d 1

xm x c m c
F x

x
ηη η
η

 
= − − 

−  
                         (24) 

The constant of integration of this equation will represent the characteristic curve ( ),C x η . Of course, in 
general the solution of this equation is not expressed in close form. This means that the Lagrangian and the 
Hamiltonian of the system can not be found in general. However, there is a particular case where one can do 
something analytically, and this case consists of having a constant force with mass linearly dependence on the 
position.  

4.1. Constant Force with ( ) +m x m m x0 1=  
In this particular case, one has that 1xm m=  and ( ) constantF x F= = , and the variables can be separated for 
the integration in (24), bringing about the characteristic curve  

( )
( )

( )0 12
3 2 11

d 2, ln .
1

1

C x m m x
c mmF

ηη
η η
η

= − +
 

− −  − 

∫                   (25) 

By selecting the constant of motion as  

( ) ( )
2

20
0 0

1

, , ln ,
2

Fm c FaK x C x m m c
m

η η= + −                        (26) 

that is,  

( )
( )

( )
2

20 0 0
0 1 0 0

3 2 1 11

d, ln ln ,
2

1 1
1

m c m F Fm
K x m m x m m c

m mm
F

ηη
η η
η

= − + + −
 
− −  − 

∫        (27) 

one has the following limit  

( )
1

2 2
0 00

lim , ,
m

K x m c Fx m cη γ
→

= − −                             (28) 

which corresponds to the relativistic case of constant mass. Now, considering the condition  

1 1,
1

m
F

η
η

≤
−

                                   (29) 

one can write the constant of motion as [23]  

( )
( )

( ) ( )
( )

22
2 2 0

0 0 1 2
0

1
2

00 1 1
3 2

3 3 1 0

d,
2 2 1

1d .
2 11

k
kk

k k

m cFxK x m c Fx m c m
m

Fmm c m m x
m k mF

η ηη γ
η

η η
ηη

−
∞ ∞

= =

  = − − + + 
−  

  −   + +    −−   

∫

∑ ∑∫

             (30) 
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or  

( ) ( )

( ) ( )
( )

22
2 2 0

0 0 1
0

1
2

00 1 1
3 2

3 3 1 0

1, ln 1
2 2 1

1d ,
2 11

k
kk

k k

m cFxK x m c Fx m c m
m

Fmm c m m x
m k mF

η γ η
η

η η
ηη

−
∞ ∞

= =

   = − − + + − +  −   

  −   + +    −−   
∑ ∑∫

               (31) 

where the summation represents terms of order two or higher in the parameter 1m . The Lagrangian of the sys- 
tem (refLa) in terms of the variable η  is  

( ) ( ), d
, .

2
K x

L x
η ρ ρη

η
ρ ρ

= ∫                               (32) 

So, using the above constant of motion in this expression, one gets  

( ) ( )

( )
( )

22
2 2 0

0 0 1
0

1

1
2

00 1
3 2

3 3 1 0

3 1
, 1 ln ln 1 1

2 2 2 1

d
1 1d

4 1

k

kk

k k

m cFxL x m c Fx m c m
m

m
F Fmm c m x

m k m
η η

η η
η η η

η

ρ ρ
ρη η

η η ρ

−

∞ ∞′

= =

  − + = − − + + + − + − − −  
+    

 
  − −  ′  + −  

′ ′ −  
∑ ∑∫ ∫

         (33) 

The generalized linear momentum in terms of the variable η ,  

2
,Lp

c
η

η
 ∂

=  ∂ 
                                     (34) 

is given by  

( ) ( )

1

1
2

01 0
0 3 2

3

d
111 dln

2 2 1 21 1

η η

ρ ρ
ρη ηη ηγ η η

η ηη η η ρ

−

∞ ′

=

        −′− + ∂   = + + +   
− ∂ ′ ′+ −   

  
 

∑ ∫ ∫

k

k

m
Fm cm m c

p m c
c c

  (35) 

Now, as one can see from this expression, even a first order in 1m  it is not possible to obtain ( ),x pη η=  
in order to get the Hamiltonian of the system. Therefore, one can not have explicitly the Hamiltonian of the 
system but it remains implicit through the constant of motion (31). 

4.2. Total Force Equal to Zero 
This is another important case related with neutrino mass oscillations since during the traveling of a relativistic 
neutrino specie, this one change to another specie,  

( ) 1

2

if 0
if

m x L
m x

m x L
≤ ≤

=  >
                                (36) 

where 1 2m m> . Starting from (18) with 0F = , one gets immediately the following constant of motion  

( )m x v cteγ =                                      (37) 

For the mass given by (36), we have  

1 1 1 2 2 2 ,m v m vγ γ=                                     (38) 

where ( ) 1 221i iγ β
−

= − . Assuming 1v  is known (measured), the normalized velocity of the particle with mass  
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               Figure 3. 2β  as a function of 1 2m m .                                
 

2m  is  

1
1 1

2
2 2

2 21
1 12

2

.

1

m
m

m
m

γ β
β

γ β

=

+

                                    (39) 

Clearly, if 1 2m m=  one has that 2 1β β= . Figure 3 shows the behavior of 2β  with respect 1 2m m  for 
5

1 10β −=  (1); 5
1 5 10β −= ×  (2); 410β −=  (3); 3

1 10β −=  (4); and 210β −=  (5). Note from the above 
expression that the distance where this change of mass ( )L  happens can not be obtained from here (one 
expects this point of mass change to have statistical character). In addition, for non relativistic initial velocities  
( )2

1 10β −< , knowing the velocity 1β  and measuring the normalized velocity 2β , the ratio 21/mm  can be  

determined from this plot, but for relativistic bodies ( )2
1 10β −≥  it looks a hard matter since small variation on  

the measured 2β  implies a big variation on the ratio 1 2m m . We need to point out that one can used the 
constant of motion (37) in the expression (11) to obtain the Lagrangian for this system, and then, the linear 
momentum can be calculated. However, as the above case, it is no possible to obtain explicitly ( ),v v x p= . 
Therefore, it is not possible to obtain explicitly the Hamiltonian of the system. 

5. Conclusion 
We have shown that mass position depending problems for non relativistic conservative systems bring about a 
modification to the potential and kinetic energy terms. The constant of motion and Hamiltonian of these systems 
differs greatly since the generalized linear momentum depends on the position and the velocity of the body. This 
differences are shown with the trajectories on the spaces ( ),x v  and ( ),x p . For the relativistic conservative 
systems with mass position depending, the full integrability is not so simple in general, but we analyzed the par- 
ticular case of constant force with mass linear dependence on position system. As we showed, though we can get 
the Lagrangian for the system, it is not possible to obtain the inverse relation ( ),v v x p= , and therefore, the  
Hamiltonian of this system. 
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