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Abstract

A new exact solution for nonlinear interaction of two pulsatory waves of the Korteweg-de Vries
(KdV) equation is computed by decomposition in an invariant zigzag hyperbolic tangent (ZHT)
structure. A computational algorithm is developed by experimental programming with lists of eq-
uations and expressions. The structural solution is proved by theoretical programming with sym-
bolic general terms. Convergence, tolerance, and summation of the ZHT structural approximation
are discussed. When a reference level vanishes, the two-wave solution is reduced to the two-soli-
ton solution of the KdV equation.
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1. Introduction

Since the discovery of the N-soliton solution of the Korteweg-de Vries (KdV) equation by experimental compu-
tation [1], various analytical methods, like the inverse scattering transform, the Backlund transform, generalized
functions, etc. [2]-[5], were developed and implemented by theoretical computation [6]. Further developments
of the theory of solitons comprise effects of vorticity [7]-[9] and viscosity [10], while computational methods
evolved from asymptotic methods [11]-[13], to series approximations [14]-[16], and structural decompositions
in invariant structures [17] [18]. In the current paper, an invariant zigzag hyperbolic-tangent (ZHT) structure is
developed to treat nonlinear interaction of two pulsatory waves of the KdV equation. A zigzagging pattern is a
ubiquitous phenomenon in fluid-dynamic, biological, and chemical systems [19]-[21].

The structure of this paper is as follows. In section 2, experimental computation with lists of equations and
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expression is used to develop a computational algorithm in Maple™ and explore the convergence of the ZHT
structural approximation. Theoretical computation with symbolic general terms is utilized in Section 3 to devel-
op differentiation and multiplication formulas for the ZHT structure, show its invariance, and consider summa-
tion, convergence and tolerance of the structural approximation. The two-wave solution is visualized and com-
pared with the two-soliton solution in Section 4, which is followed by a summary of main results in Section 5.

2. Experiment on Interaction of Two Pulsatory Waves in the ZHT Structure
2.1. Formulation of an Experimental Problem in the ZHT Structure

Explore experimentally a structural solution of the canonical form of the KdV equation

¢ ¢%+@—0

)

for nonlinear interaction of two pulsatory waves. Construct the structural solution in the ZHT structure of alge-
braic order M =3, which is used to illustrate a computational algorithm,

(X 1) =h+2p" 117 Zg + 2,018 +(Zy 8+ Zy ta® | T+ (2, 0% + Z, pta | TO? +(Zy ta® + Zy 12 TH° |, (2)

where h is areference level, Z and z, . arestructural coefficients, ta=tanh(uX) and

m+2,m

Tb=qtb=tanh(vY) are structural functions, y:%\/u —6h and v:%\/\_/ —6h are wave numbers such

that 0<v<u, X=x-Ut—a and Y =x-Vt—b are propagation variables, U and V are celerities, a
.. . . 14 2 . .
and b are initial locations of first and second pulsatory waves, q=— and p=+/1-Q° are interaction and
7]

complementary parameters such that 0<q<1 and O0< p<1, respectively. When p =1(q = 0), Zy =1,

and Z,,=- p?, the two-wave solution is reduced to a one-wave solution
p(x.t)=h+24% (1-ta*)

3
=h+ ;(U —6h) sechz(zx/u 6h(x—Ut—a)j, ©

which becomes the one-soliton solution ¢(x,t) :% sech? (%\/U(X—Ut—a)j [3] for h=0. Consider an in-
stance of (2) with h=1/8,U =3V =1,q=1/3, p=2/2/3, 4 =3/4, and v =1/4. The ZHT structure then is
$(x,t)= %+ Zyo+Zyota’ +(Z,ta+ Z ta’ ) Th

@)
+(Z,,ta® + 2, ,ta* | To® +(Z, ta’ + Z, ta® ) TH°.

2.2. Experimental Differentiation of the ZHT Structure

Primarily, symbolic computation of a spatial derivative of differential order N =1 of two-wave solution (4)
yields the ZHT structure of algebraic order M +N =4

¢_A1 ota+ Aygta’ +( Ay, + A, ta” + A, ta* ) Th
+(Al'2ta+ A, ta’ + A ta’ )sz -
+(A2,3ta2 + A ta’ + A e’ )Tb3 +(A3,4ta3 + A ta° )TbA,

with a general term A ta"Th™ , where structural coefficients A, are

)
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3 1 3 1
Ai,O 2 Zzo _21,11 A3,o = __Zz,o +EZ3,11
3 9
'%1 42111A21 11+ 231"‘6222’
9 1 3
A4,1 2_223,1 +EZ4,2’ Ai,Z = _Zzl,l +Ezz,2|
3 3 1 1
A3,2 = _ZZ31 _522‘2 +3Z4,2 +Zza,3’ As‘z = _324,2 +Zzs,3v
3 9 3 9 15
As=—72Z,,+— 233’ Az = E 42 _223,34’725,3'
9
A63 531A34 Zs,stsAZ__Zss
4

(6)

Secondly, computation of a temporal derivative of differential order N =1 also returns the ZHT structure of
algebraic order M +N =5

Zt—"’ =T,ota+Tyota’ +(Ty, +T,,ta” + T, ,ta* ) Th

+(T, ta+ T, ta’ + T, ta’ ) Tb?

+(T, st +T, ta’ + T, ta® ) To®

+(T, uta® +T, ,ta® ) T
with a general term T, ta"Th™ and the following structural coefficients T, :
9 1 9 1
Tl,O = 2 Zz,o _Ezm’ T3,o = Ezz,o _EZSJ’
9 9 27 1
T01 4211! T2,1:ZZl,1_TZS,1_gZZ,2’
27 1 3 9
T4,1 = TZ3,1 _624,2! T1,2 = Zzl,l _Ezz,z’
3 9 1 1
T3,2 = ZZS,l +EZZ'2 _924,2 _223,3' T5,2 = 924,2 _225,3'
3 27 3 27 45
T2,3 = Ezz,z _Izs,s! T4,3 = 524,2 +Tzs,3 _725,31
45 9 9
T6,3 2725,3’ T3,4 2223,3: T5,4 = ZZ5,3-

Finally, a spatial derivative of order N =3 again produces the ZHT structure of order M + N =6

with a general term B, ta"Th™ , where structural coefficients B,

a3¢
ox®

= B,ota+ By gta’ + By ota’ + (B, + B, ta’ + B, ta* + By ta® ) Tb

+(B, ta+ By ,ta’ + B, ta° + B, ,ta’ ) Tb?

+(By, + B, ta? + B, ta’ + By ta° + By ta’ ) Tb?

+(B,ta+B, ta + B, ta° + B, ta’ ) Tb*

+(B,sta’ + By gta’ + By gta® ) Tb®

+(Byta® + By 4ta® ) TH

become

U]

®)

©)
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27 7 27 1
Bl,O == 4 20 ﬂzm"'ﬁzs,ﬁ'ﬁzz,z!
135 9 61 1 1 1
Bs,o_ 8 2,0 5 1,1_5 3,1_16 22"‘5242"‘@23,3'
81 27 1 1
Bs,o = _E 2,0 +E 31 _g 4,2 +ﬁzs,3'
9 81 9
Bo,1 = _gzl,l +3_223‘1 +Ezz,21
117 837 7 27 9
Bz,l = 3_221,1 _3_223,1 _gzz,z +?Z4,2 +§Zs,3v
81 783 27 109 9 15
B, = Y Z, +EZ“ +Ezz,z _EZ“ _ﬁza,s +§Zs,3l
405 45 15 93 243 81 81
B = _anl +?24,2 _525,31 B, = ﬁzn _523,1 -92,, +524,2 +§Zs,3v
81 741 153 549 253 135
Bs,z = _521,1 +§Zs,1 +?Zz,2 _?24,2 _523,3 +EZ5,3v
243 81 873 81 685
Bs,z = _Eza,l _Ezz,z ?24,2 +E 33 _E 53
405 405 81 81 81 (10)
B7,2 = _TZ“ +§Zs,3l Bo,s = 5 1,1 _E 2,2 +§ 33
81 243 177 243 1053 405
B,s = TR +3_223,1 +?Zz,z g e _3_223,3 +Fzs,3’
B 243 2 243 N 663 7 . 891 2295
43 T T T of 317 .p f22 T T g L4 T T 4337 T L 453
' 32 7 16 ~© 8 ' 16 16 '
405 405 6615 2835
Bs,a = _724,2 _Eza,s +3_225,31 Bs,3 = _3_225,37
81 243 729 81 243 243 1179 1215
B, = Y Zy, +Ezz,2 —Ezs,sl By, = —523,1 _Ezz,z +?Z4,2 +Fzs,3 _Tzs,av
243 729 3123 3645
Bs, = —?24,2 _Eza,s +Fzs,3’ B, = —325,3:
81 729
Bos =——2Z,, +—— 233,
' 8 ~ 16
81 729 1215 1215
BA,S = _EZA,Z _Eza,s +Fzs,3v Be,s = _Fzs,sl
405 405
Bs,e == _Zs,s-

6 2o B =g

2.3. Experimental Multiplication of the ZHT Structures

Symbolic computation of a product of two-wave solution (4) and first spatial derivative (5) once more produces
the ZHT structure of algebraic order 2M +N =7

)
¢a—f = Pota+ Py ta’ + P gta® + (P, + P, ta” + P, ta’ + P, ta® ) Th

+(Pta+ P, ta’ + P ta® + P, ta’ ) Tb? + (P, ta” + P, jta’ + P, jta® + P, ta’ ) Th° 1)
+(Pyta’ + Py ta° + Py ta” + P ta® ) Th* +(P, sta’ + P, sta’ + Py sta’ +P,y sta*® ) Tb°

+(Pygta® + P gta” + Py gta’ + B gta' ) Th® + (PR, ,ta’ + By ,ta’ + By ta'® ) Tb’

)
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with a general term P, ta"Tb"™ and the following structural coefficients P,  :
Po [ZOO+ inO, o = (ZOO+ JA30+ZZOA10,
Poo=2Z0A0, Py = (ZOO+ jADl,
P, (ZOO+ jA21+ZZOA01+Z“AlO,
P, = (Zo,o +§] A+ Zy0A + 23 A+ 23 A,
Po1 =231 A0+2Z,0A, Py = (ZOO+ jAlerZ“Abl,
P, (ZOO+ jAu+ZZOA12+231A01+ZMA21+222A0,

Ps,z (Zoo + )Asz +ZzoA32 +231A21+211A41+Z42A10+222Aaov
P7,2 = 24,2 As,o +Zs,1A4,1 + Zz,oAs,ZI

1
Pz,a = (Zo,o +_j Az,s + Zl,lAi,Z +Zz,2 A(),l’
P4, (Zoo + JA43+ZzoA23+231A12 +Z11A32 +Z42A01+222A21+233A1m

Pe (2004‘ )A‘es+zzoA43+ZslA32+211A52+Z42A21+222A41+253A10+233A30
Ps,s :Zs,sAzo +242A41+231A32 +ZzoAssv

P3.4 (Zoo"’ JA34+211A23+222A12+233A\)11

P5 (ZOO+ )&4+ZZOA34+231A23+211A43 +Z42A12+222A’32+ZS3A01+Z33A21‘

Pra=ZsaPoy 2o R + Ly Ay + Lgy A s + 2,0 A + Lo oAy + 211 A
Poa =ZsaPAa+2Z,,A 0+ 231”5,

Pis =Z33Ao+ 2,05 + 21,1A3,4l

Pos = ZsaAo T Zu2Ps tZasPy T 2o Au + 25, A + 20, Ay, (12)
Fos =ZsaPso 240 As + Zas Ao + Ly Ay + 250 A

RLO,S = Z5,3'%,2 + Z4,2 Ae,sl Ps,e = 23,3A2,3 + Zz,z %,47

Pro=ZsaPos+ZioAu+Z33As + 250K

Poo =ZsaPus+ZioA s+ 233 s Pus = Zs3Ms e Bor = ZsaAs

Bz =ZsaPs s+ 233”4 P = Zs3A 4

2.4. Experimental Solution of an Algebraic KdV Problem

Consider an experimental solution for algebraic order M =4, which is a smallest order required to avoid de-
generation of the subsequent computational algorithm. Substitution of temporal derivative (7), product (11) of
the two-wave solution and the first spatial derivative, third spatial derivative (9), and collection of structural
coefficients reduce differential KdV Equation (1) to an experimental algebraic KdV equation
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(Buo+6Pg+Tyo)ta+(Byg+6Py + T, )ta’ +(Bg g + 6P, )ta® +(By, + 6Py, + Ty, +(By, +6P,, +T,, )ta’
+(Byy +6Py +T,, Jta’ +(Byy + 6P, )t JTo+((By, +6R, + Ty, Jta+ (By, +6Py, +To )t

+(Bs, +6P,, +T;, )ta® +(B, , + 6P, , )ta’ )sz +(Bo,3 +(B,5 +6P,; +T,5)ta’ +(B, 5 +6P, 5 +T,; )ta*

+(Bgy +6P, 5 + T, )ta® +(By, + 6P, )ta’ )Tb3 + ( B,,ta+(B,, +6P,, +T,, )ta’ +(B,, +6P,, +T,,, )ta’

+(Bry +6P,, +T,, )ta’ +(By, +6P, , )ta’ ) Tb" + (B, sta’ + (B, 5 +6P, s +T, 5 Jta* +(Byg + 6P 5 + Ty )ta’ (13)
+(Bys +6Py5 )ta’ +6taRy 5 ) Th® + (B, gta’ +(By  + 6P, s )ta’ + (B, 5 + 6P, ; )ta” + 6P, jta’ + 6P, sta™ | Tb°
+(Bysta’ +(Bs; + 6P, ; )ta® + 6P, ta’ + 6B, ;ta'” + 6P, ,ta” | T +(6P, gta’ + 6P, jta’ + 6P, jta'"

+6P,3ta™* ) Th® + (6P, gta’ + 6P,y 4ta™® + 6P, gta*” ) Th? =0.

To vanish structural coefficients of ta"Tb™, construct binomial systems by vanishing structural coefficients
of ta“™Tb™ of odd binomial orders k =1,3,---,2M -1 with m=0,1,---,k. The binomial systems have two
equations, four equations, and five equations for k =1,k =3, and k >5, respectively.

The degenerated binomial systems for k=1 and k =3 are, respectively,

T +6P,+B,=0, Ty, +6P,+By;, =0, (14)
T30 +6P, +B;0=0, T,,+6P,;+B,; =0, T,+6R,+B,=0,B,;=0. (15)

In agreement with one-wave solution (3), structural coefficients Z  of the two-wave solution are initia-
lized by

Zoo=1 Z,,=-p° (16)
For the experimental solution,
Zoo =1, Z,,=-8/9. (17)
Solving Equations (14) and (15) with respectto 2,,,7,,,72,,,Z,,,and Z,, yields
Z,=2272,,=-16/9,2,,=2,2,,=-8/3,Z,, =2. (18)
For k=5,7,---,2M =3, the binomial system has five equations
6P, +Bs, =0, T,,+6P,,+B,,=0, T,,+6P,,+B,,=0, T,;+6P,;+B,;=0, B,=0. (19)
Solving first and fifth equations of (19) with respectto Z,¢ (.12 @A 2,5 (c13)2 » FESPectively, gives
Z,,=-32/9, Z,,=2. (20)

Substitution of (20) in second, third, and fourth equations of system (19) reduces them to identities.
For k =2M -1, the binomial system also has five equations

6F, +Bs, =0, Ts, +6R,+B;,=0, T,;+6P;+B,3=0, T3, +6F,+B;, =0, B,5=0. (21)
Solving first equation of system (21) respectto Z, g5 1.,y), FetUMS
Z,, =—40/9. (22)

Substitution of computed structural coefficients (17), (18), (20), and (22) in (4) yields an experimental two-
wave solution in the ZHT structure of algebraic order M =4
p(x.t)= %—gtaz - (Zta —%ta3 )Tb - (2ta2 —%ta“ ijz - (2ta3 —%taSJW - (Zta“ —%taﬁ ij“ (23)

Substitution of the computed structural coefficients in the left-hand-side part of (13) returns an experimental
remainder of the ZHT structural approximation
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r(xt)= [—ita5 +ita7JTb2 +[—§ta4 (10556 910, 8ij3
72 27 8 72 81

J{ 225 2+ 1765 13405 a +14230 tangb“
36
N 5 a2+ 5805 ta 4307 ta® +19081 ta® 17536 ta® |Tb°
2 9 27
+(12 2 1611 310t 4 3416 3416 _ 61760 ta“)Tb" (24)
8 3 81
+ ﬂ ta® +189ta® —190ta® +904ta*® — 60160 —ta" |Tb’
4 81
+( _5ata’ +32ta° +02 gt @taﬁijs
9 3
+( 32900 ta’” +320ta’ — 72ta8JTb9.
Rate of convergence of the ZHT structural approximation is examined in Table 1, where a tolerance

&= max|re (x,t)| (25)

tE(—:x),oo) X(—oo,co)

and a CPU time ¢ are given versus algebraic order M for various reference levels h. Table 1 was com-
puted on a workstation in Maple 17.02 by using a six-core AMD-6300 processor with frequency 3.50 GHz and
RAM 12.0 GB. The CPU time depends mainly on order of approximation M . Tolerance significantly depends
upon M and h through interaction parameter q. For propagation celerities U =3 and
V =10=1/3+3/3, \/Eg/15 0.333,0.577,0.683 for h=1/8,0,-1/8=0.125,0,-0.125, respectively. Surface
plots of R (x t) show a uniform convergence of the two-wave solution in the ZHT structure.

The experimental solutions of Section 2 were computed by experimental programming with lists of equations
and expressions in the virtual environment of a global variable Ege with 4 procedures of 185 code lines in to-
tal.

3. Theory of Interaction of Two Pulsatory Waves in the ZHT Structure
3.1. Formulation of the Theoretical Problem in the ZHT Structure

Compute theoretically a structural solution of (1) for nonlinear interaction of two pulsatory waves. Construct the
structural solution in the ZHT structure of algebraic order M and differential order N

M+N N+1

s(xt)=h+S8 ) Tb”‘ZCm Nozmta™ (26)

m=0

where S is a scale, M —©,C_ ., IS a structural coefficient, M andN are symbolic limits of sum-

Table 1. Convergence of the experimental solutions in the ZHT structure.

M 10 20 40 80 160

h=0.125 € 1.8x10* 6.3x10° 3.7x10™" 6.2x10™ 8.3x10™
(s) 0.156 0.407 1.782 11.672 99.343

h=0.000 € 0.125 0.00112 4.0x10° 2.4x10™ 3.8x10°*
7(s) 0.312 0.609 2.250 13.312 111.718

h=-0.125 € 1.03 0.056 5.7x10° 2.8x10™ 3.4x107%
z(s) 0.250 0578 2.328 14.282 116.812
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mation. Other variables and parameters are the same as in (2), but instead of experimental instances of section 2
they receive symbolic values to compute theoretically a general term of the structural solution.

In agreement with (26) and (2), a two-wave solution is constructed with algebraic order M and differential
order N =0 using a generalized Einstein notation for summation, which is extended for exponents, as follows:

p(xt)=h+24°p* ("2, , +ta™?Z, , ) TH", 27)

where m=0,1---,M. When p=1 (q = O),Tb =(qtb=0, and initialization condition (16) is invoked, the
two- wave solution is reduced to one-wave solution (3).

m+2,m

3.2. Theoretical Differentiation of the Invariant ZHT Structure

Primarily, computation a first spatial derivative of a binomial term ta"Th™ yields

atanTbm N p M= n-: n+ m N M+
. y[danym_lta Tb™* +(da, , ,ta"" +da,, ,ta™*)Tb" + da, ,,,ta"Th 1}, (28)
da,,,=da, . (nm)=qg’m, da_, =da,_,(nm)=n, 29)
dan+l,m = dan+1,m (n’ m) =-n, dan,m+1 = dan,m+l (n' m) =-m,

where structural coefficients (29) of binomial derivative (28), called differential binomial coefficients, are ma-
trix functions da, ,, =da,, (i, j). Here, indices n and m, which are equal to powers of ta and Tb in the
binomial derivative, define names of the matrix functions. Indices i and j which are equal to powers of ta
and Th in the binomial term ta'Th!, determine definitions of the matrix functions.

Similarly, computation of a first temporal derivative of the binomial term ta"Th™ gives

ota"Th"
ot
dt, ., =dt, . (nm)=-2qg° (2yzq2 +3h)m, dt,_,, =dt,,,(nm)= —2(2;12 +3h)n,

= p[ dt, g 1" TD" 4 (d y pta" g 2" ) TO" 4, t2TD™ ), (30)

n+1,m n,m+1

(31)
dt =dt n,m)=2(24%+3h)n, dt =dt n,m)=2(24%g* +3h)m.
n+1,m n+1,m n,m+1 n,m+1

Thus, spatial and temporal derivatives (28) and (30) have the same structure but vary in differential binomial
coefficients (29) and (31), respectively.

Increase in order of differentiation produces a two-dimensional (2d) differentiation cascade, which is shown
in Figure 1. The one-dimensional (1d) differentiation cascade of invariant hyperbolic-secant structures is asym-
metrical as the cascade spreads only towards higher powers [18]. To the contrary of the 1d differentiation cas-
cade, the 2d differentiation cascade spreads in symmetrical square waves, which resemble circular waves on the
water surface generated by a point source. Similar to the 1d differentiation of the invariant trigonometric, hyper-
bolic, and elliptic structures [18], the 2d differentiation of an even order preserves structure of binomial deriva-
tives and the 2d differentiation of an odd order converts structure of binomial derivatives to complementary
ones.

Finally, computation a third spatial derivative of the binomial term ta"Th™ returns a binomial derivative of
the following structure:

—a = 4] db, " TO™ 2 4 (b, pta" db g pta™ ) TD 2 (b, 1272+ db gt
X

+db, 5 o 412" )TO™ +(db, , ta"* +db, ; ,ta"* +db,,, ta""* +db

n-1,m n+l,m n+3,m

ta"* )Tbm

n+2,m-1

+(db, 5 pqta"? +db, , 2" +db, , 2" ) TO™ (32)

n—2,m+1 n,m+1 n+2,m+1

+(db, ; pota" +dby , , ta"t ) TH™

n-1,m+2 n+1,m+2

+db ta“Tbm+3]

n,m+3

with differential binomial coefficients
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mt 4 I m+4
m+3 m+3
m+2 m+2
m+1 m+1
m m
m-1 m-1
m-2 m-2
m-3 m-3
m-4 m-4
n-4 n-3n-2n-1 n n+l p+2 n+3 n+4 n-4 n-3 n-2 n-1n n+l n¥2 n+3 n+d
(@) (b)
s
m+4 m+4
m+3 m+3
m+2 m+2
m+1 m+ 1
m m
m-1 m-1
m-2 m-2
m-3 m-3
m-4 m-4
n-4 n-3n-2n-1 n n+l n+2 n+3 n+d n-4 n-3n-2 n-1 n n+l n+2 n+3 n+d
(© (d)

Figure 1. Differentiation cascade of the binomial structure: (@) N=1; (b)) N=3; (c) N=2; (d) N =4.

db, s =db, . (n,m)=g°m(m-1)(m-2), db,,,,=db . ,(nm)=3g’m(m-1)n,
db (n'm):_3q4m(m_l)n' dbn—2,m—1:dbn 2,m 1( ) 3q mn(n 1)

n+1,m-2 = db

db, ., =db, ., (n,m)= —qzm[Zq2 +3q2m(m—1)+6n2], db,., s =db,,, 00 (n,m)=3g’mn(n+1),

n+1,m-2

db, ,,, =db,_ 3rn(n m)z n(n-1)(n-2), db,,, =db . (n ):—[2+6q2m2 +3n(n—1)}n, )
db,,, =db,,. 0 ( [2+6q +3n(n+1)}n, db, 3, =db, 5, (N,m)=-n(n+1)(n+2),
db, _, . =db,_, m+l( m)=-3mn(n-1), db, ., =db, .. (n,m)= m[Zq2 +3g°m(m +1)+6n2],

db
db

h+2,m+l — n+2 m+1( ) —3mn (n +1), dbn—l,m+2 =db n-1,m+2 ( ) = 3m(m +1) n,
= dbmm2 (n,m)==3m(m+1)n, db, ., =db, ..(n,m)=-m(m+1)(m+2).

n+1,m+2

Construct now a sequence of terms of the zigzag structure (Zm+k,m'[z:1m+k +Zm+k+2,mta””k*2)Tb””k with

k=-N,-N+1,---,N, derivatives of which make a contribution to the general term of a zigzag derivative

through binomial derivatives (28), (30), and (32). Substitute then the binomial derivatives of
ta™*Tb™* ta™™***Tb™* and collect like terms of a structural coefficient of the general term proportional to
Tb™ . In agreement with (5), a first spatial derivative of the two-wave solution is the invariant ZHT structure of

algebraic order M + N and differential order N =1

@ = 2,u3 p2 ('oﬁ'n—l,mtami1 + A’nJrl,mtamJrl + A’n+3,mtam+3 )Tbm’ (34)

OX
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where m=0,1,---,M +N and structural coefficients A  are following:
An—l,m = Dan,m+1zm—l,m—1 + Da'n—l,mzm,m’

ATHl,m = Dan,m+1zm+1,m—l + Dan+l,mzm,m + Dan—l,mzm+2,m + Dan,m—lzm+1,m+1'
An+3 m = Dan+1,mzm+2,m + Dan,m—lzm+3,m+1' (39
Da,,Z ; =da,,(i,])Z .
Equations (34)-(35) are complemented by truncation conditions of the two-wave solution
Z ,=0form<0,m>M, (36)

which are set by (27). Conditions (36) result in truncation conditions for the first spatial derivative:
An,=0forn<On<m-1Ln>m+3; A , =0form>M; A, =0A_, =0form>M+1. (37)

Similarly, a first temporal derivative of the two wave solution again yields the invariant ZHT structure of al-
gebraic order M + N and differential order N =1

6 m-. m+. m+. m
Eqﬁ 10 (T g ptd™ 4T a7 T 1™ ) Th", (38)
where structural coefficients T~ are
Tm—l,m = Dtn,m+lzm—l,m—1 + Dtn—l,mzm,m’ Tm+l,m = Dtn,m+lzm+l,m—l + Dtn+l,mzm,m + Dtn—l,mzm+2,m (39)
+Dtn,m—1zm+1,m+l’ Tm+3,m = Dtn+l,mzm+2,m + Dtn,m—lzm+3,m+l’ Dtn,mZi,j = dtn,m (I’ j)zi,j’

and truncation conditions are given by (36).Truncation conditions for the first temporal derivative become
=0form>M; T, =0,T,,,=0form>M +1. (40)

m+1,m

Tom=0forn<O,n<m-1n>m+3; T

m+3,m

Finally, computation of a third spatial derivative of the two-wave solution produces the invariant ZHT struc-
ture of algebraic order M + N and differential order N =3
83
—f ta"*+B_, ta""+B_, ta"*+B
X

p ( m-3, m am73 + Bm—l,m m+1,m m+3,m m+5,mtam+5)Tbm' (41)

where structural coefficients B, are
B =Db, .5Zn_5ms + Db
B =Db, 1.3Zn1m3 + Db
+Dbn 2m+1 m+1,m 1+Db
=Db, .1 mi2Zmm-z + DByomiaZimama + DB
+ Db +Db, m+1m+l+Db
=Db,,,mna + Db +Db, nZiiom
+ Dbn m- l m+3,m+1 + Dbn+lm 25 m+2,m+2 + Db
=Db,,;nZ +DDb,, 5 maZmisme + DD

B n+3,m=—m+2,m

Db, ,Z; =db, . (i,])Z;

nm<i, j

n—l,m+ZZm—2,m—2 + Db
Z. ,mo+Db
+ Db

n—2,m+lzm 1,m-1 + Db
Z, n.+Db
+Db

m-3,m n,m+3 -3m mm'

m-1,m n,m+3 n+1,m+2 n-1,m+2 n, m+1 m-1,m-1

n-2,m 1 m+1,m+1?

+ Dbn+1m m,m

n-2,m-1 m+3m+l+Db

+ Db

nlm m,m n-3,m m+2m

B

m+1,m n, m+1 m+1,m-1

(42)

n-1,m m+2m

z

n-1,m- 2 m+2,m+21

B

n+2,m 1 m+1,m+1

n-1,m-2 m+4 m+2 + Db

Zm+4 m+2 + Db

m+3,m m+1,m-1 n+3,m m m

n,m— 3 m+3,m+3?

m+5,m n+2,m n+1,m-2 n,m-3 m+5,m+3’

and truncation conditions are set by (36). Truncation conditions for the third spatial derivative are
n=0forn<0,n<m-3n>m+5; B . =0form>M;B ., =0form>M+1
=0form>M+2; B, ,,=0B =0form>M +3.

! =m-3,m

(43)

m+lm

Equations (34), (38), and (41) show that the ZHT structure is invariant with respect to differentiation of orders

N =1 and N =3, which only modify algebraic orders and structural coefficients. The zigzag structure of two-

wave solution (27) and its derivatives (34) and (38) together with product of (27) and (34) are shown in Figure
2 ina virtual space of computational indices n and m of structural coefficients A , T, B

n,m

n,m’
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Figure 2. The invariant ZHT structure in the virtual space (n, m): (a)—(27),
(b)—(34), (c)—(38), (d)—(53).

.+ Which coincides with a virtual space of computational powers n and m of ta"Th™. Differentia-
tion increases the width of the invariant ZHT structure and the effect of multiplication is similar to that of diffe-
rentiation.

and P

3.3. Theoretical Multiplication of the Invariant ZHT Structures

Continuation of spatial derivatives (34) and (38) in the invariant ZHT structure to any differential order N in
the generalized Einstein notation gives

oNg N+2 .2 M-N-+2kTpm
a N = 2)” p Rm—N+2k,mta Tb ' (44)
X
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where k=0,1,---,N+1 and m=0,1,---,M + N. The spatial derivative of order N —1 then becomes

aNfl¢
a = N+l ZQm N+2k+lmtam_N+2k+lTbm. (45)
X

Differentiation of (45) with respect to x and reduction of all terms to a general term by substitutions
m=m+1 and k=k-1 inaterm proportional to Tb™™, k =k -1 inaterm proportional to
ta™ N 2Th™ ‘m=m-1 inaterm proportional to Tb™" vyields

8N¢
oxN

=242 2[ m—=N +2k — jI_)Qm N+2k_1m (m_l)meNJFZk,mfl

+(m -N+ 2k _1)Qm—N+2k+1,m + (m +1)qum—N+2k,m+1:|tam_N+2kam ’
where structural coefficients of (44) are connected with structural coefficients of (46) by a recurrent relation
Rm—N+2k,m = _(m - N +2k _1)Qm—N+2k—1,m _(m _1)Qm-N+2k,m-1
+(m -N+2k +1)Qm—N+2k+1,m + (m +1) qum—N+2k,m+l'

Thus, the invariance of the ZHT structure with respect to spatial differentiation of any order is proved by in-
duction.

Set up two spatial derivatives of the two-wave solution in the invariant ZHT structures of algebraic order M
and differential orders N, and N, with structural coefficients Qm,,\,ﬁZk,m and RWNN,(_m as

a“2¢

(46)

(47)

Ny
aXN? — ZﬂNl+2 pZQm_N1+2k'mtamfN1+2kam'

wherek =0,1,---,N; +1 andm=0,1---,M + N, for the first structure, k=0,1,---,N, +1 and
m=0,1---,M + N, for the second structure. Product of (48) with a binomial substitution m=n,k =1 and (49)
with a binomial substitution m=m-n,k =k—1 returns
Mg oM g
ox™M oxMe
where 1=0,1,---,k, k=0,1---N;,+N,+2, n=0,4---,m and m=0,L---,2M + N; + N, .
Thus, the ZHT structure is also invariant with respect to multiplication since a general term of the product is
the ZHT structure of algebraic order 2M + N, + N, and differentiation order N, +N,

8N1¢ 6N2¢ 4 Np+Njp+4

2 Np+2 pZR am—N2+2kam, (48'49)

m—N,+2k, m

+Ny+ —N;—Njp+2k
:4/uN1 N 4p4Qn—N1+2I,nRm—n—NerZk—Zl,m—ntam e Tbm' (50)

oxM oxNe p m-N;— N2+2ktam7N17N2+2kaml (51)
where the structural coefficients are
Pm—Nl—N2+2k = Qn—N1+2I,nRm—n—N2+2k—2I,m—n' (52)

Summation of a general term of the product of two-wave solution (27) and first spatial derivative (34) by
(51)-(52) with N, =0,N, =1,k =0,1---,3 yields

op _

P ox oX

where structural coefficients P,_,., . are obtained for Q=2 and R=A by constructing a list of sums of
general terms for 1=0,1,---,k with truncation conditions Z =0,Z =0, which follows from (27),

n+4,n ' n+6,n

I:’m Annlm nZnn’ m+lm — Aﬂnﬂm nZnn+Annlmn n+2,n?

ta™ + P

m+5,m

ta™ + P

m+3,m

p ( mlmam71+P

m+1l,m

ta™*)Th", (53)

(54)
I:’m+3,m A\n n+3,m- nZnn+A11 n+l,m- nZn+2n’ m+5m An n+5,m— nZnn+A\n n+3,m-n n+2n
Structure of the two-wave solution is reduced to that of a spatial derivative by substitution
Zoo=2oo+ h/2y2 p?. (55)

Truncation conditions for product of the two-wave solution and the first spatial derivative become
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n=0forn<O,n<m-Ln>m+5; P, =0form>2M;

=0,P =0,P =0,P =0form>2M +1.

m+3m ' m+lm i m-1m 1T m-3m

(56)

3.4. Theoretical Solution of the Algebraic KdV Problem

Substitution of temporal derivative (38), product (53) of the two-wave solution and the first order spatial deriva-
tive, third order spatial derivative (41), and collection of structural coefficients reduce differential KdV Equation
(1) to a theoretical algebraic KdV equation

|:2,u5 pZBm—S,mtanF3 +(2;u3 psz—l,m +24,Ll p m-1,m + Zlus szm 1m) m '
+<21u3 psz+l,m +24:u p m+1,m + 2/15 pZBm+1m) m+1 (Z,Ll p m+3,m + 24:” p m+3,m + Zlus szm+3m) am+3 (57)
(24#5 p4 m+5,m + 2/15 szm+5,m )tam+5:|Tbm = 0;

which is complemented by truncation conditions (40), (56), and (43).
For this equation to be satisfied exactly for all parameters and variables, all structural coefficients of ta"Th™
should vanish. Therefore, five structural coefficients of (57), which are supposed to be vanished, are

=0,T 0,

+u°B .=
m+1,m /u m+1,m (58)

/uzBm—B,m :0 Tm 1,m +12ﬂ2 p2P -1,m +/uZB
T

m+3,m

+124°p°P
=0.

m-1,m m+1,m

+12/1 p m+3,m +/u Bm+3,m - 0 12/,12 p2 m+5,m +,L12 Bm+5,m

These equations constitute a polynomial system of equations with respect to leading structural coefficients
Z, . of increasing orders. To combine equations with respect to Z — of same binomial orders k, construct
binomial systems as structural coefficients of ta*"Tb™, where k = 1 3 -2M =1 for m=0,1,---k .

The binomial systems of orders k=1 and k =3 have two and four equations, respectively,

Tio +12u% p? Po+ u Bo =0 Ty, +12u% p? Poa + e By, =0, (59)
Too +124° p*Pyg + "By =0T,y +124° Py + 4°B,; =0T, +124° p*P,, + 4°By, = 0,4°By; = 0. (60)
Substituting structural coefficients T, ,PR, ..B,, through Z - by (39)-(40), (54)-(56), (42)-(43), using

nm? " nm? =nm

initialization (16), and solving (59)-(60) with respectto Z7,,,7,,,Z,,,Z,, and Z,, gives
2,,=22y,=-p"2,,=22,,=-2p*Z,,=2. (61)

For binomial orders k=5,7,---2M -3, where k=2I+5 for 1=0,1,---M —4, the binomial system has
five equations

124 p2P|+5,| +u B|+5,| =0T g1 +124° p? Rianat o Bisia =0,
Tiane 11247 0°R 510 + 4By 5., =0, (62)
T|+z,|+3 +12/12 p2P|+2,|+3 +/u2 B|+z,|+3 = O”uz B|+1,|+4 =0.
Solving first and fifth equations of (62) with respectto Z,.g) (.2 @A 2,55 (.. TESPeCtively, yields
Zoy=—4p°2,, =225, =-5P" Zgs=2,Zyys=-Mp*Zy vy =2, (63)

where last two terms are obtained by induction. In agreement with the experimental solution of section 2.4,
second, third, and fourth equations of system (62) are satisfied identically.

For binomial orders k =7,9,---2M -1, where k=2I+5 for | =M -3, the binomial system also has five
equations

12,U2 pZPM +2,M-3 +#ZBM+2,M-3 =0,Ty M2 +12/12 pZPM+1,M—2 +,UZBM HMM-2 = 0,

(64)
TM,M—l +12ﬂ2 pZPM,M—l +/uZBM,M—1 = O'TM—l,M +12,U2 pZPM—l,M +IUZBM—1,M = OHUZBM—Z,M a=0.

Solving first equation of (64) with respectto Z g, .p) Teturns
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Zo, =-5p",Z,5=-6p*, - Zy,om =—(M+1) p?, (65)

where a last term is also generated by induction, the proof of which will be completed in Section 4.
Finally, a general solution for the ZHT structural coefficients may be written as

Zom =2Zp0m =—(M+1) p?, (66)
and general term (27) of the two-wave solution in the ZHT structure becomes
#(x.t)= h+2yzp2[2tam -(m+1) pzta’“*z]Tbm (67)

for m=1,2,---M .Theoretical formula for the ZHT structural sum of the two-wave solution is
M
¢(x.t)=h+2u*p’ {1— p’ta® + Z[Ztam -(m+1) pztam*zJTbm}. (68)
m=1

Substitution of initialized (16) and computed (66) structural coefficients in the left-hand-side part of theoreti-
cal algebraic KdV Equation (57) yields a theoretical remainder of the invariant ZHT structure
I (X’ t) = 2/13 pz |:(CM +1L,M 72taM et Cu +3,M 72taM - )TbM B (CM M 71taM +Cy +2,M 71taNI *

+Cyy a1t )JTO" 4 (Cyy gt +Cyy gt +Cy gy ta P+ Cy 5 1277 ) O (69)

2M +1
+ Y (Crantd™*+Cp o ta™ +Cpy ta™ +C g 12" +C g ta™ ) TD }
m=M +1
where a structural coefficient
Com =Tom +124°p?P, + 4°B, (70)

and truncation conditions (40), (56), and (43) are invoked.

The theoretical solutions of Section 3 in the invariant ZHT structure were computed using theoretical pro-
gramming methods with symbolic general terms by the generalized Einstein notation in the virtual environment
of a global variable Eqt with 16 procedures of 923 code lines in total. The theoretical formulas for two-wave
solution (68), first spatial derivative (34)-(36), first temporal derivative (38)-(40), third spatial derivative
(41)-(43), product of the two-wave solution and the first spatial derivative (53)-(56), and structural remainder
(69)-(70) were justified by the correspondent experimental solutions for algebraic order M =40.

4. Discussion and Visualization

Through an expansion variable z=taTh=gqtatb , where |z|<1 as -1<ta<l-1<tb<1, and 0<qg<l,

summation of the ZHT structural approximation yields

24 p* (1- p’ta® ~ta’Th?)
(1-taTh)’

since a partial sum of the Taylor series expansion of (71) in z of order M returns the same expression as the
ZHT structural sum (68) with the same general term as general term (67) of the invariant ZHT structure.

A functional form of (71) expressed through two regular hyperbolic functions tanh(yX) and tanh(vY),
five parameters h,q, p, &, v, and two propagation variables X =x—-Ut—a and Y =x-Vt—b becomes

2 p*[1- p’tanh? (X ) - g’tanh? (uX ) tanh? (Y )]
[1-qtanh (X )tanh (vY )T '

g(x,t)=h+ (71)

g(x,t)=h+ (72)

Differentiation and substitution of Equation (72) into differential KdV Equation (1) completes the proof by
induction of (66)-(68) and returns another verification of (71) as Equation (1) is satisfied identically.

Conversion of (72) through two singular hyperbolic functions COth(uX) and CSCh(yX), two regular
hyperbolic functions tanh(vY) and sech(vY), three parameters h, v and two variables X and Y gives
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2(ut—v* )[yZCSChZ (uX)+v?sech? (vY)]

(x.t)=h+ [ﬂcoth(yx)—"tanh(w)]z

(73)

When h =0, the two-wave solution reduces to the conventional form [6] of the two-soliton solution in two
singular hyperbolic functions coth JUx/z) and csch(JUx/z) , two regular hyperbolic functions
tanh(J\7Y/2) and sech(\/\7Y/2) , two parameters U and V , and two propagation variables X and Y

B (U —V)[chch2 (\/UX/2)+Vsech2 (\/\7Y/2)J

¢(x,t) S (74)
2[«ﬂcoth (VOX/2)-Wtanh (Nv/z)}
A remainder of the Taylor series approximation of two-wave solution (71)
r(x,t)=2u’p’ i [2—(m +1) pztaz]tamern (75)

m=M+1

converges slower than the ZHT structural remainder (69) because of the infinite limit of summation and trunca-
tion conditions (40), (56), and (43). So, the method of decomposition in the invariant ZHT structure is more ro-
bust than the method of expansion in the Taylor series.

Interaction of two pulsatory waves is visualized by spatiotemporal plots in Figure 3 for positive and negative
reference levels h. Negative values of h considerably increase amplitudes and decrease dispersions of pul-
satory waves compared with those of solitons with h =0, because pulsatory waves propagate on a more shal-
low water in this case. The effect of positive values of h is opposite and results in decrease of amplitudes and
increase of dispersions. Similar to interaction of two solitons, interaction of two pulsatory waves is also con-
servative and preserves one-wave solutions before and after a nonlinear interaction at the moment of merging.
Animations of the two-wave solution show that the merging process may be considered as a flow of a faster flu-
id of the first pulsatory wave into the second pulsatory wave with a slower fluid.

5. Conclusions

The analytical methods of solving PDEs by undetermined coefficients and series expansions are generalized by
the computational method of solving nonlinear PDEs by decomposition in the invariant ZHT structure. The
computational algorithm is developed by experimental computing using lists of equations and expressions im-
plemented in four procedures of 185 code lines in total. Afterwards, the computational method is proved by
theoretical computing with symbolic general terms implemented in 16 procedures with 923 code lines in total.

Figure 3. Spatiotemporal plots of the two-wave solution for U = 1.8, V=1, a=8.4, b = 18, h = 1/8 (left) and h = -1/8

(right).



V. A. Miroshnikov

The invariance of the ZHT structure with respect to differentiation and multiplication is shown by using 2d
differentiation cascade of binomial structures and mathematical induction. Contrary to the asymmetric differen-
tiation cascade in one dimension [18], the 2d differentiation cascade spreads in symmetric square waves. Com-
pared with the 2d series expansion, the ZHT structure considerably saves computational resources and simplifies
results since it implies a low-order polynomial in one dimension and a series expansion in another dimension.
The invariance of the ZHT structure enables other computational applications in nonlinear PDEs with solutions
approaching a constantor vanishing at infinity.

The ZHT structural approximation and remainder are computed theoretically to any algebraic order. Summa-
tion of the two-wave solution in the invariant ZHT structures is implemented and presented both through regular
and singular hyperbolic functions. When a reference level vanishes, the two-wave solution is reduced to the two-
soliton solution. Negative reference levels considerably increase amplitudes and decrease dispersions of pulsa-
tory waves compared with those for solitons with a vanishing reference level. The effects of positive reference
levels are opposite, i.e. amplitudes of pulsatory waves are decreased and dispersions are increased.
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