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Abstract

We present a method for determining the motion of an electron in a hydrogen atom, which starts from a field
Lagrangean foundation for non-conservative systems that can exhibit chaotic behavior. As a consequence,
the problem of the formation of the atom becomes the problem of finding the possible stable orbital attractors
and the associated transition paths through which the electron mechanical energy varies continuously until a

stable energy state is reached.
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1. Introduction

In this paper we present a new method for dealing with
quantization problems which is based, on the one hand,
on the concept of a stable attractor associated with a
non-linear differential equation from the usual chaos
theory and, on the other hand, on the variational formu-
lation of Quantum Mechanics introduced by E.
Schrédinger in 1926 [1]. That is, our approach is not
based in the current and well-known method of phase
space representation in the semi-classical limit of quan-
tum mechanics, usually known as “quantum chaos”.

The theory of quantum chaos was pioneered by Ein-
stein through his 1917 [2] paper, in which he made a
connection between classical and (old) quantum me-
chanics. This theory was further improved by many au-
thors, among which the works of Gutzwiller [3-7] and
Ozorio de Almeida [8-11] have made major contribu-
tions. In particular, Gutzwiller obtained in 1967 [3] the
exact wave functions for the bound states of the hydro-
gen atom, by performing a very complicated calculation
using a phase integral approximation of a Green’s func-
tion in momentum space.

We follow an alternative approach in this work, in
which we show that it is possible to obtain the exact en-
ergy of the bound states of the hydrogen atom by search-
ing for stable orbital attractors in a non-conservative
Hamilton-Jacobi dynamics [12-14]. Thus, the quantiza-
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tion problem is solved by selecting, from all of the pos-
sible electron paths in which energy is dissipated, those
that tend to stable closed paths in which bound states of
motion are reached in the limit as time approaches infin-
ity, that is, to stable orbital attractors. This is done in
Section 2 where we are conducted from the well-known
linear Schrodinger equation to a non-linear momentum
equation. This equation will be shown to generate the
dissipative dynamics and allow the existence of a set of
stable attractors which prevent the collapse of the system.
In Section 3 we solve the equations for the hydrogen
atom obtaining the form of the dissipative energy func-
tion along the electron trajectory, in which the mechani-
cal energy varies continuously until a stable attractor is
reached, when it becomes finally constant.

2. The Equations of Motion

We start by considering the Hamiltonian function for an
electron which is considered as an ordinary charged par-
ticle, whose motion is caused by a scalar potential energy
function V =—e’ / r and also that no vector potential is
present, i.e., A=0. Thatis
2
H=2_.y, ()
2m
where p=mv is the electron linear momentum,
m=m,m, (me +m, )7 is the reduced mass and m, and
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m,, are the electron and proton masses, respectively.

Of course, since in general the system irradiates con-
tinuously, the Hamiltonian (1) cannot be a constant of
the motion. Therefore, at first sight, the motion is always
dissipative, the electron tending to fall into the proton,
whose position may be called a collapsing attractor of the
process. Hence, we shall search in this work for the pos-
sibility of non-collapsing stable attractor paths toward
which the electron motion can tend asymptotically as
time goes to infinity.

Since V(r) is a spherically symmetric potential, this
implies the conservation of the angular momentum vec-
tor L=rxp in the center of mass frame. Thus the mo-
tion should be plane, since r is always perpendicular to L,
from the initial moment until the stable motion is reached
in the limit as time goes to infinity. Because p and L are
mutually perpendicular vectors, and by using the linear
momentum radial and polar components p, =m7 and
p, =mr¢ , respectively, and the relationships L, =
|L| =rp, =constant and H = E =constant, (1) assumes
the form
2

° 4V, )

1
E=—mi* +—4

which defines a conservative or Hamiltonian system in
Classical Mechanics.

It can immediately be seen that in this case (2) is a
non-linear equation in both » and 7, so that Classical
Mechanics is in its deepest grounds a non-linear theory.
The closed paths that are solutions of Equation (2) are
elliptic orbits which may be obtained by integrating it

Ly

. . . d
directly, through the chain rule 7= il as a func-

do mr
tion of the polar angle ¢. Alternatively we may also
observe that the only way that Equation (2) may be satis-
fied for any value of the continuous variable ¢ is by a
composition of periodic sinusoidal functions of the form

2

1 1

—=—(l+&cosp), 3)

roa
which substituted into Equation (2), and with the help of
the definition of the angular momentum, results respec-
tively in the following inverse average radius and eccen-
tricity formulae

L 2aE

a:—Q,g: 1+ 3 (4)
me e

A third way to address the Hamiltonian problem,
which is followed in usual Lagrangian Classical Me-
chanics, is to make use of a variational procedure to
transform the non-linear quadratic form given in (2) into
an ordinary linear second-order differential equation in
1/r, whose solution is given exactly by the function in (3)
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(see chap.2 of Ref. [15]). We shall follow a similar ap-
proach in this work.

It is a well known fact in Classical Mechanics that the
motion in any path corresponding to (3) is unstable
against energy loss by radiation, so that the electron in
fact follows a decreasing spiral motion toward the proton
position. In order to look for a stable orbital attractor,
that is, an orbit in which the motion can be stable against
a loss or gain of energy by emission or absorption of
radiation, we allow the Hamiltonian function in (1) to
vary along a virtual path and try to get a special state of
motion in which a loss in energy in a region of space
may be compensated by the absorption of energy in an-
other region, producing a self-restoration effect in the
Hamiltonian, so that, no net loss of energy occurs overall
and, therefore, the system becomes dynamically stable.

Thus, we consider along the path given by the classi-
cal linear momentum p, which is the solution of (1) with
H =F , lincar momentum variation vectors p=x&p ,
which vary to the left or to the right of p by §p , which is
a solution of Equation (1) if H # E . This variation
momentum must satisfy the asymptotic limit §p — 0, as
t —> oo, that define the stable attractors which we are
looking for. At this limit, we get back to the p path at a
matching point r =r,, but with specific values for the
parameters £ and L, which determine the specific
ellipses that make the system stable or self-restoring.

In order to accomplish this, we shall observe that, due
to the emission of radiation, the finite difference

(Sp)z—pz:(6p+p)~(6p—p)=2m(H—E) ®)

must approach zero if H >FE as t— . Also, in the
absorption process, Equation (5) must approach zero if
H<E as t— . In any case, (5) must be expressed
as a quadratic form which is suitable for the variational
procedure. This is made by introducing a variation func-
tion w =y(r) through a transformation proposed
originally by Schrodinger [1]:

fi
p=—Vy, (©)
7

where 7 is the rationalized Planck’s constant.

The Lagrangian density function we need is then ob-
tained by considering > times the difference between
the Hamiltonian H and the energy attractor E. After sub-
stituting (6) into (5) and using (1) we obtain

O=(H-E)W*=0*(Vy) +2m(V —E)y*. ()

Here, 0=0(y.,Vy,r) is a quadratic form of the
function y and its space derivatives, so that the varia-
tion of the volume integral of O conducts to a partial
linear differential equation, as expected in a Lagrange’s
variational problem.
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We also need to impose the constraint that the function
v must be square integrable or normalizable, because

w’ stands for an averaging weight function

[ wiar =1, (8)
space
where, for simplicity, the unity value for the normaliza-
tion constant has been assumed.
Let us consider now the calculation of the volume in-
tegral [ = J OdV  over all space. If there is a finite
space
loss or gain of energy due to radiation, H —FE is a fi-
nite quantity too. In order to avoid collapse of the system
I must be a finite constant. In order to assure that, it is
enough that Q is limited at the origin and tend to zero as
the space volume tends to infinity. Therefore, in order to
allow the existence of stable attractors, we shall impose
that 7 must have an extreme value near zero' so that its
variation vanishes, namely

5 [ 0dv=0. ©9)
space
It will be seen in what follows that only trajectories
which tend to a closed path as time goes to infinity will
satisfy the variational problem, reaching a stable attractor
path. Equation (9) cannot be satisfied if we consider ei-
ther the free electron motion or the motion in a scattering
process, since such motions are remarkably unbound,
and therefore cannot satisfy (8).
Now, by introducing the Lagrangian density, (7), into
(9), we get

[ {%Aw+(E—V)w}6y/dV

space ( 1 0)

hZ
+— V- -dFsy =0
py [ Vy-dFsy

surface

In the calculation of the variations, usual integration
by parts has been made and dF is the surface element
vector. In order to satisfy (10), it is sufficient to require
that the integrand in the volume integral and the surface
integral vanish separately, namely

Ay +2m(E-V)y =0 (11)
and
[ Vy-dFsy =0. (12)
surface

Equation (11) is the variational form of the Schrodinger
equation and (12) is automatically satisfied by the re-
quirement that the variation Oy vanishes at infinity,
where the surface integral is calculated, although it

"It would be exactly zero for a Hamiltonian system, since in this case A =
E always.
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would also be asked to vanish on a finite surface’. This is
guaranteed by the constraint (8), which implies that
as well as 8y vanish at infinity.

Now, from (11), we can obtain an equation for the var-
ied linear momentum of the electron through (6) and the

identity
2
v.(V_WJZA_W{V_V/j , (13
% vy v

which substituted into Equation (11) results in
(sp)’ +hV -sp+2m(E-V)=0. (14)

From this non-linear momentum variation equation for
a non-conservative system, which is analogous to (2) for
a conservative system, the electron trajectories resulting
in the stable attractor mentioned above will be obtained.
Thus, Equation (11) is the linear differential equation
associated with the non-linear momentum equation, (14).

3. Determination of the Electron Path
Functions in the Formation of a
Hydrogen Atom

We can now perform the reduction of both the equations
of motion, (11) and (14). Starting with the former, we
consider a variation in path with a constant angular mo-
mentum’ L, = (%, so that 5L =0. This value assigned
to L is provisory because the actual value will come from
the specific orbits to be found. Thus, w(r) depends
only on the radius and hence (11) becomes

d’w 1dy |2m et
e - =0, (5
d&r*  rdr 7 U R 4 (15)

where the numeric factor ¢ will be determined later.
The radial variation may be obtained through (6) as

_ndy

5p, = .
v dr

, (16)
Now, we remember that the divergence of a vector u

in polar coordinates is
ou, 1

V'u:—’+—ur+i2 ,
or r r- 0@

ou v

(17)

through which we can reduce (14) to its radial form,
namely

232 2
(Sp,,)2 +h(m+%j—&+2m[@ +e—j:0,

dr r r’ r

(18)

*This will be considered in a future work concerning discrete transitions.
*We will consider a variable angular momentum in a future work in
connection with the transition between energy levels.
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where (¢ is the above-mentioned parameter.

Since (18) is non-linear, it is not a simple task to ob-
tain its solution directly. Instead of this, we shall employ
the radial solutions of the linear (15), and generate solu-
tions for the (18), through (16). In its simplest form the
solutions for (15) that are regular at the origin and at in-
finity can be written as [16]

R (r)=r'e", (19)
which, after substitution into (15) and equating coeffi-
cients in the same power, yields

= _E—B’ (20)

&

2 2
e h . N
where E, =—= >=13.6¢eV is the ionization or

2a; 2may

¢

Bohr energy of the hydrogen atom. We see immediately
that the only possible values for the parameter ¢ which
make the above expression for the energy levels to agree
with the experiment are the half-integers*:

135

_E)E)E’
Thus, the solution of (18) obtained through (19) be-
comes

5p, =fh(l—ij. 1)

r Ty
Therefore the simplest stable attractor condition is
given by &p,(r,,)=0 and the possible stable attractor
radii are given by

Ty, =€(€+%ja3, (22)

2

where a, = h_2 =0.53 A, is the Bohr radius. The plot
me

135

of Equation (21) for /= 227 is shown in Figure 1,

in which 7, assumes the values 0.5, 3.0 and 7.5 a.u.,
respectively. We note that for » >, , we have &p, <0
so that the three curves correspond to decreasing spirals
toward 7,. On the other hand, for r<r7,, we have
8p, > 0, so that the three curves correspond to increasing
spirals also toward 7, , therefore illustrating the work-
ings of the self-restoring effect. Thus 7, is really an
asymptotically stable orbital point, i.e. a stable attractor.
By considering now the solution (21) of the non-linear
equation (18) and again comparing coefficients in the
same power, we obtain the same energy levels specified
by (20). And from the radii given in (22) we can calcu

*These half-integers will be connected with periodic wave conditions in a
future work.
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Figure 1. The radial varied linear momenta 38p, (r), where

r is in a.u., for ¢ =% (solid line), ¢ =% (dashed line) and

= g (dotted line).

late the values of the derivative of the variation of the
radial component of the linear momentum

d(sp,) ’h
S P 23
dr 2 23)

ol

Tot

which, once inserted into Equation (18), yields the con-
servative form

hZ
V(Ij,/)+€(f+l)2mr2 =FE,. (24)
ol

We see that, for p, (r,,)=0 and with
Ly =+Jt(¢+1)h= ('R, (24) has the same classical con-
servation form as (2), which is consequently the actual
value of the angular momentum. Therefore, the resulting
conservative orbit is described in phase space by the
twofold function

D, =i\/2m[E/+iJ—m . (25)

r r
The plot of (25) together with the radial variation (21)
are shown in Figure 2 for / :%, from which we can

note that 7,, (= 0.5 a.u.) is the intersection point of the
paths because it is their only common root.

In addition, 7, is not the only root of (24) or for the
condition p, =0 in (25); the other root being

Ty, =(€+1)(€+%ja3, (26)

so that 7, and 7/, become respectively the semiminor
and semimajor axes of the ellipse
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Figure 2. The electron radial momenta: classical (dotted line)

and varied (solid line) for /= % .

lzl,(1+g'cosgo), 27)
r o a

which satisfy (25) and, thus, it is the orbital stable at-
tractor searched for, where

L

’

a

=ayl((+1) and

(28)

The corresponding average electron position for a cir-
cular motion is given by the average value of the ellipse
semi-axes, which agrees with the Bohr model:

r =l(r/+r' )=(€+ljza .
av 2 ol ol ) B

In order to obtain the actual electron trajectory we
must integrate the varied radial linear momentum to-
gether with the constant angular momentum,

L’
i, =m& =l 29)
de der
dr 1
4 4, 30
‘[r26pr e 30)

from which we readily obtain the equation for the elec-
tron trajectory

r,
=9 >0 31
r(w) 1icie*¢/\/m , @ ( )

whose corresponding integration constant is undeter-
mined, since the followed trajectory depends on the ini-
tial conditions. This means that if we consider for exam-
ple 7, <r(0)<oo, we would have 0<C_<1 and the
path, Equation (31), would become a decreasing spiral.
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On the other hand, for 0<r(0)<r, we would have
0<C, <o and the path, (31), would become an in-
creasing spiral. In both cases they converge toward the
stable attractor r =r,, . The plot of the ellipse, (27), and

the spirals, (31), is shown in Figure 3 for /= %

We can immediately write the electron energy func-
tion, (1), in polar coordinates as

(32

where H(¢) isin Ry and r(¢) is in a.u. The plot of

H(¢p) is shown in Figure 4 for ¢ :% (first attractor

or fundamental energy) and /¢ :% (second attractor or

first excited energy) of the hydrogen atom. For each
value of 7, the self-restoring process of the stable at-
tractor is quite clear: in the emission range, 7, <r <o,
H(p) converges monotonically to the energy attractors
if H>E as @ — . On the other hand, in the absorp-
tion range, 0<r<r,, H(p) first decreases from its
starting energy to a point of minimum, and then it in-
creases converging to the energy attractors if H < E as
(0] —> 0 .

4. Conclusions

In this paper we have introduced a different chaotic ap-
proach in which we show that it is possible to obtain the
exact energy of the bound states of the hydrogen atom by
looking for stable orbital attractors in a non-conservative
Hamilton-Jacobi dynamics. In it, a variable energy proc-
ess tends asymptotically toward an energy stable attractor

Figure 3. The electron trajectories in polar coordinates for
= %, C =% and C, =2: ellipse (solid line), decreasing
spiral (dashed line) and increasing spiral (dot-dashed line).
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Energy
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2 A~ el 2 A _A_ & ___6 7

Figure 4. The energy function, H (@), in Ry with ¢ in

radians, for the electron trajectories corresponding to the
ground state of the hydrogen atom (l = %) in the absorp-
tion range (solid line) and in the emission range (dashed
line); also for the first excited state (f = %) in the absorp-

tion range (dot-dashed line) and in the emission range (dot-
ted line).

as time approaches infinity. The stable orbital attractor is
found to be a self-restoring process in which energy is
absorbed or emitted as the electron is displaced away
from the equilibrium orbit, hence immediately returning
the electron to the equilibrium orbit. Therefore, the en-
ergy is constant. The variation in the mechanical energy
is due to the continuous irradiation of energy in the form
of electromagnetic waves which carry energy away from
or toward the mechanical system, while the electron
moves through space. The determination of the attractors
was made through a variational procedure, starting from
the work done by E. Schrodinger in 1926 [1], which
yielded a linear partial differential equation in an auxil-
iary action function. This equation allowed obtaining a
solution for the non-linear equations that govern the
variation of the electron linear and angular momenta
during the process of electron capture by a proton.
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Abstract

We present a method for determining the motion of an electron in a hydrogen atom, which starts from a field Lagrangean foundation for non-conservative systems that can exhibit chaotic behavior. As a consequence, the problem of the formation of the atom becomes the problem of finding the possible stable orbital attractors and the associated transition paths through which the electron mechanical energy varies continuously until a stable energy state is reached.
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1. Introduction

In this paper we present a new method for dealing with quantization problems which is based, on the one hand, on the concept of a stable attractor associated with a non-linear differential equation from the usual chaos theory and, on the other hand, on the variational formulation of Quantum Mechanics introduced by E. Schrödinger in 1926 [1]. That is, our approach is not based in the current and well-known method of phase space representation in the semi-classical limit of quantum mechanics, usually known as “quantum chaos”.


The theory of quantum chaos was pioneered by Einstein through his 1917 [2] paper, in which he made a connection between classical and (old) quantum mechanics. This theory was further improved by many authors, among which the works of Gutzwiller [3-7] and Ozorio de Almeida [8-11] have made major contributions. In particular, Gutzwiller obtained in 1967 [3] the exact wave functions for the bound states of the hydrogen atom, by performing a very complicated calculation using a phase integral approximation of a Green’s function in momentum space.


We follow an alternative approach in this work, in which we show that it is possible to obtain the exact energy of the bound states of the hydrogen atom by search- ing for stable orbital attractors in a non-conservative Hamilton-Jacobi dynamics [12-14]. Thus, the quantization problem is solved by selecting, from all of the possible electron paths in which energy is dissipated, those that tend to stable closed paths in which bound states of motion are reached in the limit as time approaches infinity, that is, to stable orbital attractors. This is done in Section 2 where we are conducted from the well-known linear Schrödinger equation to a non-linear momentum equation. This equation will be shown to generate the dissipative dynamics and allow the existence of a set of stable attractors which prevent the collapse of the system. In Section 3 we solve the equations for the hydrogen atom obtaining the form of the dissipative energy function along the electron trajectory, in which the mechanical energy varies continuously until a stable attractor is reached, when it becomes finally constant.

2. The Equations of Motion

We start by considering the Hamiltonian function for an electron which is considered as an ordinary charged particle, whose motion is caused by a scalar potential energy function 
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which defines a conservative or Hamiltonian system in Classical Mechanics.


It can immediately be seen that in this case (2) is a non-linear equation in both 
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, so that Classical Mechanics is in its deepest grounds a non-linear theory. The closed paths that are solutions of Equation (2) are elliptic orbits which may be obtained by integrating it 

directly, through the chain rule 
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tion of the polar angle 
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 is by a composition of periodic sinusoidal functions of the form
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which substituted into Equation (2), and with the help of the definition of the angular momentum, results respectively in the following inverse average radius and eccentricity formulae 
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A third way to address the Hamiltonian problem, which is followed in usual Lagrangian Classical Mechanics, is to make use of a variational procedure to transform the non-linear quadratic form given in (2) into an ordinary linear second-order differential equation in 
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, whose solution is given exactly by the function in (3) (see chap.2 of Ref. [15]). We shall follow a similar approach in this work.

It is a well known fact in Classical Mechanics that the motion in any path corresponding to (3) is unstable against energy loss by radiation, so that the electron in fact follows a decreasing spiral motion toward the proton position. In order to look for a stable orbital attractor, that is, an orbit in which the motion can be stable against a loss or gain of energy by emission or absorption of radiation, we allow the Hamiltonian function in (1) to vary along a virtual path and try to get a special state of motion in which a loss in energy in a region of space may be compensated by the absorption of energy in another region, producing a self-restoration effect in the Hamiltonian, so that, no net loss of energy occurs overall and, therefore, the system becomes dynamically stable. 

Thus, we consider along the path given by the classical linear momentum p, which is the solution of (1) with 
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. This variation momentum must satisfy the asymptotic limit 
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, that define the stable attractors which we are looking for. At this limit, we get back to the p path at a matching point 
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 which determine the specific ellipses that make the system stable or self-restoring.

In order to accomplish this, we shall observe that, due to the emission of radiation, the finite difference
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must approach zero if 
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. Also, in the absorption process, Equation (5) must approach zero if 
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. In any case, (5) must be expressed as a quadratic form which is suitable for the variational procedure. This is made by introducing a variation function 
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where 
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 is the rationalized Planck’s constant. 


The Lagrangian density function we need is then obtained by considering 
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 times the difference between the Hamiltonian H and the energy attractor E. After substituting (6) into (5) and using (1) we obtain
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Here, 
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 is a quadratic form of the function 
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 and its space derivatives, so that the variation of the volume integral of Q conducts to a partial linear differential equation, as expected in a Lagrange’s variational problem. 


We also need to impose the constraint that the function 
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 must be square integrable or normalizable, because 
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where, for simplicity, the unity value for the normalization constant has been assumed.


Let us consider now the calculation of the volume in- 


tegral 
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 over all space. If there is a finite 

1It would be exactly zero for a Hamiltonian system, since in this case H = E always.

loss or gain of energy due to radiation, 
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 is a finite quantity too. In order to avoid collapse of the system I must be a finite constant. In order to assure that, it is enough that Q is limited at the origin and tend to zero as the space volume tends to infinity. Therefore, in order to allow the existence of stable attractors, we shall impose that I must have an extreme value near zero1 so that its variation vanishes, namely
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It will be seen in what follows that only trajectories which tend to a closed path as time goes to infinity will satisfy the variational problem, reaching a stable attractor path. Equation (9) cannot be satisfied if we consider either the free electron motion or the motion in a scattering process, since such motions are remarkably unbound, and therefore cannot satisfy (8). 


Now, by introducing the Lagrangian density, (7), into (9), we get
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In the calculation of the variations, usual integration by parts has been made and 
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 is the surface element vector. In order to satisfy (10), it is sufficient to require that the integrand in the volume integral and the surface integral vanish separately, namely
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2This will be considered in a future work concerning discrete transitions.


3We will consider a variable angular momentum in a future work in connection with the transition between energy levels.

Equation (11) is the variational form of the Schrödinger equation and (12) is automatically satisfied by the requirement that the variation 
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 vanishes at infinity, where the surface integral is calculated, although it would also be asked to vanish on a finite surface2. This is guaranteed by the constraint (8), which implies that 

[image: image56.wmf]y


 as well as 

[image: image57.wmf]y


d


 vanish at infinity.


Now, from (11), we can obtain an equation for the varied linear momentum of the electron through (6) and the identity
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which substituted into Equation (11) results in 
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From this non-linear momentum variation equation for a non-conservative system, which is analogous to (2) for a conservative system, the electron trajectories resulting in the stable attractor mentioned above will be obtained. Thus, Equation (11) is the linear differential equation associated with the non-linear momentum equation, (14).

3. Determination of the Electron Path 
Functions in the Formation of a 
Hydrogen Atom

We can now perform the reduction of both the equations of motion, (11) and (14). Starting with the former, we consider a variation in path with a constant angular momentum3 
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where the numeric factor 
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 will be determined later. 


The radial variation may be obtained through (6) as 




[image: image65.wmf]d


d


r


p


r


y


y


d


=


h


.                (16)


Now, we remember that the divergence of a vector u in polar coordinates is 
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through which we can reduce (14) to its radial form, namely
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where 
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 is the above-mentioned parameter.


Since (18) is non-linear, it is not a simple task to obtain its solution directly. Instead of this, we shall employ the radial solutions of the linear (15), and generate solutions for the (18), through (16). In its simplest form the solutions for (15) that are regular at the origin and at infinity can be written as [16]
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which, after substitution into (15) and equating coefficients in the same power, yields
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where 
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 is the ionization or 

4These half-integers will be connected with periodic wave conditions in a future work.

Bohr energy of the hydrogen atom. We see immediately that the only possible values for the parameter 
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 which make the above expression for the energy levels to agree with the experiment are the half-integers4: 
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Thus, the solution of (18) obtained through (19) becomes
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Therefore the simplest stable attractor condition is given by 
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where 
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, is the Bohr radius. The plot 
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By considering now the solution (21) of the non-linear equation (18) and again comparing coefficients in the same power, we obtain the same energy levels specified by (20). And from the radii given in (22) we can calcu 
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Figure 1. The radial varied linear momenta 
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late the values of the derivative of the variation of the radial component of the linear momentum
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which, once inserted into Equation (18), yields the conservative form




[image: image94.wmf](


)


(


)


2


2


1


2


o


o


VrE


mr


++=


ll


l


h


ll


.         (24)


We see that, for 
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, (24) has the same classical conservation form as (2), which is consequently the actual value of the angular momentum. Therefore, the resulting conservative orbit is described in phase space by the twofold function
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The plot of (25) together with the radial variation (21) 

are shown in Figure 2 for 
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so that 
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 become respectively the semiminor and semimajor axes of the ellipse
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Figure 2. The electron radial momenta: classical (dotted line) and varied (solid line) for 
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which satisfy (25) and, thus, it is the orbital stable attractor searched for, where




[image: image108.wmf](


)


(


)


2


0


2


22


1 and


1


2


11


1


2


B


L


aa


me


aE


e


e


¢


¢


==+


+


¢


¢


=+=-


æö


+


ç÷


èø


l


ll


ll


l


       (28)


The corresponding average electron position for a circular motion is given by the average value of the ellipse semi-axes, which agrees with the Bohr model: 
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In order to obtain the actual electron trajectory we must integrate the varied radial linear momentum together with the constant angular momentum, 
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from which we readily obtain the equation for the electron trajectory 
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whose corresponding integration constant is undetermined, since the followed trajectory depends on the initial conditions. This means that if we consider for example 
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 and the path, (31), would become an increasing spiral. In both cases they converge toward the stable attractor 
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the spirals, (31), is shown in Figure 3 for 
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We can immediately write the electron energy function, (1), in polar coordinates as
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where 
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first excited energy) of the hydrogen atom. For each value of 
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4. Conclusions

In this paper we have introduced a different chaotic approach in which we show that it is possible to obtain the exact energy of the bound states of the hydrogen atom by looking for stable orbital attractors in a non-conservative Hamilton-Jacobi dynamics. In it, a variable energy process tends asymptotically toward an energy stable attractor 
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Figure 3. The electron trajectories in polar coordinates for 
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Figure 4. The energy function, 
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 in radians, for the electron trajectories corresponding to the ground state of the hydrogen atom 
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 in the absorption range (solid line) and in the emission range (dashed line); also for the first excited state 
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 in the absorption range (dot-dashed line) and in the emission range (dotted line).

as time approaches infinity. The stable orbital attractor is found to be a self-restoring process in which energy is absorbed or emitted as the electron is displaced away from the equilibrium orbit, hence immediately returning the electron to the equilibrium orbit. Therefore, the energy is constant. The variation in the mechanical energy is due to the continuous irradiation of energy in the form of electromagnetic waves which carry energy away from or toward the mechanical system, while the electron moves through space. The determination of the attractors was made through a variational procedure, starting from the work done by E. Schrödinger in 1926 [1], which yielded a linear partial differential equation in an auxiliary action function. This equation allowed obtaining a solution for the non-linear equations that govern the variation of the electron linear and angular momenta during the process of electron capture by a proton.
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