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ABSTRACT
There are two kinds of spin particles in nature, the Boson and the Fermion.

Those with integer value spin 0, 1, 2...are called Bosons, with half-integer value
spin /2, 3/2, 5/2...are called Fermions. It is well known that everything in the
universe is made of Bosons and Fermions.

The spin representations of Boson and the Fermion in conventional quantum
mechanics are expressed by Hermitian matrices, which are finite dimensional
matrices.

Are there so-called the Third Kind Of Particles (TKP), for an example, whose
spin maybe /3, /4, /5, /6..., which are neither Bosons nor Fermions?

This article concerns about the possible math figure of TKP. More detailed
material related to derivative process and ideas evolvement of TKP are given.
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Introduction
All physical observables of conventional quantum mechanics are Hermitian

operators. These Hermitian operators Z are defined in Euclidian Space. They satisfy
the so-called Hermiticity relation ZZ and have real eigenvalues.

But we know that some non-Hermitian operators could also have real
eigenvalues; some operators possessing real eigenvalues might be non-Hermitian
operators. The Hermiticity of an operator is only a sufficient condition, which
guarantees real eigenvalues, it is not a necessary condition.

In recent years, much intensive research efforts have been made in the field of
non-Hermitian Hamiltonians with real eigenvalues by PHHQP cite: [1], International
Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics

This paper focuses on the topic of the construction of non-Hermitian angular
momentum:

1) Non-Hermitian orbital angular momentum operator Lj are given, we find the
eigenvalues of non-Hermitian orbital angular operator L3 can be nonintegral and the
wavefunctions of L3 still remain to be single-values

2) Non-Hermitian spin angular momentum operator j,n
 (j1, 2, 3) are given, we

find the eigenvalue n of non-Hermitian spin operator j,n
 can be those of neither

Bosons nor Fermions, such kind of spin particles are called The Third Kind Of
Particles, TKP. TKP exist in three system, which are not Anyons.
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0 Why Does conventional spin angular momentum only......

Conventional Spin Angular Momentum Only
Possess Eigenvalues with Integer and Half-integer ?

a) Using commutation (1) that between angular momentum operator J2 and
operator J3

J2, J3−  0     (1)
and two eigen-equations (2),(3)

J2|,   |, ,  ≥ 0 

J3|,   |, , 2 ≥ 0 

    (2)
    (3)

obtain
J2 − J3

2|,    − 2|,      (4)

b) As J2  J3
2J1

2J2
2, another eigen-equation (5) is given as

J1
2  J2

2|,   J2 − J3
2|,    − 2|,      (5)

Due to J1
2  J2

2 is positive Hermitian operator, (5) implies

 − 2 ≧ 0
or 2 ≦ 

    (6)
    (7)

(7) means So 2, or  is restricted by !
or by following two recurrence conditions (12),(15)
or by following two formulas (14),(17)
or by being restricted under conditions (21),(22)

    (8)
    (9)
    (10)
    (11)

c) Further, there exist a top state |, max such that it can’t be raised, suppose
  max. that is

J |, max  0     (12)
then

J−J |, max  0
J2 − J3

2 − J3 |, max  0
 − max

2 − max |, max  0     (13)
(13) showing that

  max
2  max ★     (14)



d) Similar processing, there exist a bottom state |,min such that it can’t be
lowered, suppose   min. that is

J− |, min  0     (15)
then

JJ− |, min  0
J2 − J3

2  J3 |, min  0
 − min

2  min |, min  0     (16)
(16) showing that

  min
2 − min ♣     (17)

e) From ★ (14) and ♣, (17), get

  max
2  max  min

2 − min     (18)
obtain

min   −max     (19)

f) There are k states between |, min and |, max

k  max − min  max − −max  2max     (20)

hence the maximum value of angular momentun of particle is

max  k/2
where k  0, 1, 2, 3. . .

    (21)
    (22)

Two important expressions (23) and (24) are given, see below:

g) Substituting (21) into (14), obtain the eigenvalue (23) of J2

  max
2  max ★  maxmax  1  k/2 k/2  1     (23)

h) The dimensional formula D of angular momentum is given by (24) ,

D  2max  1  k  1     (24)

Formula (24) is suitable for both orbit and spin.

i) For orbital angular momentum, its eigenvalue state |,  (3) leads

take k  0, 2, 4, 6, . . .
eigenvalue of orbital max  k/2  0, 1, 2, 3, . . . integer

dimensionality of function D  2max  1  1, 3, 5, 7. . .

    (25.1)
    (25.2)
    (25.3)



j) For spin angular momentum, its eigenvalue state |,  (3), there are two
choices of k. leads two kinds of spin particle as below

The First Kind of Particles : Boson Particles:
take k  0, 2, 4, 6, . . .

eigenvalues of spin max  k/2  0, 1, 2, 3, . . . integer
dimensionality of matrix D  2max  1  1, 3, 5, 7. . .

    (26.1)
    (26.2)
    (26.3)

The Second Kind of Particles : Fermion Particles:
take k  1, 3, 5, 7, . . .

eigenvalues of spin max  k/2  1/2, 3/2, 5/2, 7/2, . . . half-integer
dimensionality of matrix D  2max  1  2, 4, 6, 8, . . .

    (27.1)
    (27.2)
    (27.3)

0 What Will Happen If Condition (6) Is Broken ?

If Condition (6) Is Broken ?

A) Obviously if: the restriction (6) or equivalent to (9) or (12), (15) on
operation J|,  and operation J−|,  are removed, then there will appear infinite
eigenvectors |, j of J3:

J3|, j  j|, j

or j  max  
j  min  −

    (28)
    (29.1)
    (29.2)

B) Specially further if: the restriction (6) or (7) is broken, and is changed
into the restriction (30) or (31)

 − 2  0
or 2  

    (30)
    (31)

(30) implies: eigenvalues (5) of J1
2  J2

2 should be less than zero, that is

J1
2  J2

2|,    − 2|,   ( negative eigenvalues) |,      (32)

(32) shows:
J1

2  J2
2 is no long a positive definite operator

Hence J1 is non-Hermitian operator !
J2 is non-Hermitian operator !

    (33)
    (34.1)
    (34.2)

C) Formula (34) is one of author’s motivation for being engrossed in
Non-Hermitian angular momentum and TKP.



0 The Flow of This Paper
Consists of Three Parts :

Part 1
0 Why does ......? ; What Will happen If .....

1 Non-Hermitian Spin Angular Momentum T

2 Non-Hermitian Orbital Angular Momentum L
3 Eigenvalues and Eigenvalues Functions of L3

4 The Recurrence Formulae of Normalized Wavefunctions m,n：CmEm,n

Part 2
5 Semi-Infinite Dimensional Matrices j,n

：Spin Hierarchy SH

6 Infinite Dimensional Representations j,n


：Chaos Spin Hierarchy CSH

7 Spin 0 CSH 0, 0, , j,0

8 Spin /2 CSH 3/4, 1/2, , j,1/2

9 Spin /3 CSH 4/9, 1/3, , Δj,1/3

Part 3

10 Non-Hermitian Momentum P，Phase Factor of Fractional Statistics
11 Conclusion
Appendix ： Infinitesimal Rotation of TKP

In chapter 0, After reviewing the math picture of angular momentum in
conventional quantum mechanics, author postlates the key to TKP is to define the
construction of non-Hermitian angular momentum operators and to extend the
dimensionality of matrix representations of those operators to semi-infinite
dimensional, infinite dimensional space.

The possible math figure of TKP

J1 and J2 should be infinite (semi-infinite) dimensional non-Hermitian matrices (35)
J2 and J3 are infinite (semi-infinite) dimensional Hermitian diagonal matrices (36)

Chapter 1 introduces non-Hermitian two dimensions spinor matrices T, which
contain one space variable . In space h, T are good spin operators.



In chapter 2, T are applied to construct non-Hermitian orbital angular
momentum operator Lj in space hg.

Chapter 3 shows that L3 can present nonintegral eigenvalues and the
wavefunctions of L3 still remain to be single-values.

In chapter 4, it is marvellously revealed that the recurrence formulae obtained
from rising operator L and lowering operator L−, are no bounded.

The substance from chapter 2 to chapter 4 are related to space coordinates.
And the mathematical underpinnings of the next five chapters, chapter 5 to

chapter 9, are tightly relevent to matrices whose math elements are pure complex
numbers.

Chapter 5 introduces notions, ket vector |m, n and bra vector 〈m, n|| ≡ 〈m, n|
with m  0, 1, 2, 3. . . , to construct the bases of linear space, in which
semi-infinite dimensional matrix representations j,n

 of orbital angular momentum
Lj of TKP are given. j,n

 are called Spin Hierarchy (SH)

Chapter 6 extends the range of quantum number m to be m  0, 1, 2, 3. . . ,
then infinite dimensional matrix representations, j,n

 are obtained. j,n
 are called

Chaos Spin Hierarchy (CSH)
The values of quantum number m quoted in chapter 5 and chapter 6 is ranging

between 0 and , as expected in chapter 0.

In order to illustrate the character of CSH, three typical spin particles are
analysed in Chapter 7, 8, 9.

Chapter 7 is Boson case j,0 of CSH, where quantum number n  n0  0.
j,0 named Island Operator, has three diagonal blocks in its matrix representations.

Chapter 8 is Fermion case j,1/2 of CSH, where quantum number
n  n1/2  1/2. j,1/2 named Island Operator, has three diagonal blocks in its
matrix representations.

In chapter 9, quantum number n is taken to be the greatest non-integer and
non-half-integer, n1/3  1/3. Use symbol Δj,1/3, named Ocean Operator, for
CSH matrix representations, that has two diagonal blocks.

Chapter 10 studies non-Hermitian momentum P, investigates a special practical
applications of gauge invariance in space frgh. It is argued that the
phenomenon of phase factor of fractional statistics could be explained by the
concept of TKP which are more physical realistic than Anyons are.



1 Non-Hermitian Spin Angular
Momentum T

We start from an example of /2 spin angular momentum, its spin representation
(1) is the well known 22 dimensional matrix. Its three components S1, S2, S3 are
all Hermitian matrices (2) and their eigenvalues are all /2.

S  1
2

0 1
1 0

, 1
2

0 −i
i 0

, 1
2

1 0
0 −1

    (1)

S1
  S1, S2

  S2, S3
  S3     (2)

S satisfies commutation relations

SjSk − SkSj  iSl     (3)

j, k, l  1, 2, 3 are circulative. For convenience, sometimes we choose 1.

1.1 Non-Hermitian Spin Angular Momentum T
Now introduce a set of new operators as following

T  1
2

0 e−i

ei 0
, 1

2
−i −ie−i

iei i
, 1

2
 e−i

−ei −
    (4)

where ,  are real numbers and

T1
2  T2

2  T3
2  1

4 , 2 − 2  1     (5)

T1, T2, T3 obey commutation relation

T  T  iT     (6)

Obviously T1 is a Hermitian matrix, but T2 and T3 are non-Hermitian matrices.

T1
  T1, T2

 ≠ T2, T3
 ≠ T3     (7)

but the eigenvalues of T1, T2, T3 are still real numbers 1/2.

Note when  approaches to zero, T (4) back to S (2)

In the following paragraphs, it is shown that the math defect (7) of T
could be corrected from researching the inner product space of spin operator.



1.2 Hermitian Self-Adjoint Representation of Operator Z：
Hermitian Operator Z  Z

Frist，we define the inner product space

f, g ≡  d f∗g  g, f∗     (8)

superscript sign ∗ is complex conjugatioin. (8) represents integral for continuous
variable, and represents matrix scalar multiplication for discontinuous variable. f
and g are the vector functions in inner product space.

Then，adjoint operation representation of an operator Z in inner product space
(8) can be defined as the operator Z such that

g, Zf ≡ f, Zg∗  Zg, f     (9)
Where

g, Zf ≡ f, Zg∗  Z ≡ Z∗~

f, Zg∗  Zg, f  f, g  g, f∗

    (9.1)

    (9.2)

~ denotes transpose of a matrix Z. If the right side of (9) satisfies

Zg, f  g, Zf     (10)
then (9) becomes

g, Zf ≡ f, Zg∗  Zg, f  g, Zf     (11)
we get operator relation

Z  Z     (12)

In case of (12), operator Z is said to be "Hermitian self-adjoint", or to be
"self-adjoint" or "Hermitian". As yet all the operators of conventional quantum
mechanics are postulated to be Hermitian operators. Sometimes, space (8) is called
Hermitian Space. Operator Z satisfying formula (9) is said to be "positive definite
operator" in inner product space (8).



1.3 Positive definite non-Hermitian Self-Adjoint Representation of Operator Z：
Non-Hermitian self-adjoint Operator Z⊕  Z

Extending the definition (8) of the inner product space to space (13)

f, g ≡  df∗g  g, f∗     (13)

Here  is a metric coefficient operator. ,  is introduced to be the sign
of the curve of space. when  → 1, (13) → (8), space is flat.

Hermitian Space (10) is flat space; when  ≠ 1, space becomes bent and
warped.

Positive Definite Non-Hermitian adjoint operation of an operator Z in inner
product space (13) is defined by operator Z⊕, "⊕" called circled dag, such that

g, Z⊕f  f, Zg∗     (14)

If Z⊕  Z     (15)

then the Z is said to be "Positive Definite Non-Hermitian self-adjoint Operator".
in case of (15), cite: [2]

Next we are going to seek for the explicit expressions of Z⊕, in the case of Z
that are derivative operator (A) and matrix operator (B).



A) Firstly, turn to the definition (14) of adjoint representation ∂x
⊕ of a derivative

operator ∂x ≡ ∂
∂x , we have

 dxg∗∂x
⊕f   dxf∗∂xg∗     (16)

We know what is ∂x, but not know what ∂x
⊕ means, we want to find out the

explicit expression of operator ∂x
⊕ in the left side of (16).

From the right side of (16), (F ≡ f), we have

 dxf∗∂xg∗   dxf∂xg∗   dxF∂xg∗  Fg∗|ab −  dx∂xFg∗

 0 −  dx∂xFg∗  −  dx∂xfg∗  −  dxg∗∂xf

 −  dxg∗∂xf  ∂xf  −  dxg∗∂x  ∂xf     (17)

From the left side of (16), we have

 dxg∗∂x
⊕f   dx∗g∗∂x

⊕f   dxg∗∗~∂x
⊕f

  dxg∗∂x
⊕f   dxg∗∂x

⊕f     (18)

Comparing formula (18) with formula (17), we deduce that

 dxg∗∂x
⊕f  −  dxg∗∂x  ∂xf     (19)

further
∂x
⊕  −∂x − ∂x
∂x
⊕  −∂x − −1∂x

    (20)
    (21)

and
−i∂x⊕  −i∂x − i−1∂x

−i∂x − i 1
2 

−1∂x⊕  −i∂x − i 1
2 

−1∂x
    (22)
    (23)

B) Secondly, turn to the definition (14) of adjoint representation Z⊕ of a matrix
operator Z in inner product space f, g. Postulating

 
1 2

3 4
,   , Det   1     (24)

then base on g, Z⊕f  f, Zg∗ (14), following we can find the explicit
expression of matrix operator Z⊕:



From the right side of (14), we have

f, Zg∗  f1, f2∗
1 2

3 4

z1 z2

z3 z4


g1

g2


∗

 (g1, g2) 1 2

3 4

z1 z2

z3 z4

~


f1

f2
∗

∗

 g1, g2∗
1 2

3 4

z1 z2

z3 z4

~∗


f1

f2


 g1, g2∗
1 2

3 4

z1 z2

z3 z4




f1

f2
     (25)

From the left side of (14), we have

g, Z⊕f   g1 g2 ∗
1 2

3 4

z1 z2

z3 z4

⊕


f1

f2
     (26)

Comparing formula (26) with formula (25), we deduce that

1 2

3 4

z1 z2

z3 z4

⊕


1 2

3 4

z1 z2

z3 z4




z1 z2

z3 z4


1 2

3 4




z1 z2

z3 z4


1 2

3 4
    (27)

Further obtain


z1 z2

z3 z4

⊕


1 2

3 4

−1
z1 z2

z3 z4


1 2

3 4
    (28)

or
Z⊕  −1Z     (29)

Note
Positive definite non-Hermitian Self-Adjoint Representation Z⊕ of Operator Z

when Z is derivative operator Z  ∂x, then ∂x
⊕  −∂x − −1∂x (21)

will be used in constructing non-Hermitian ortital angular momentum operator L

and non-Hermitian momentum operator P

when Z is matrix operator, then Z⊕  −1Z (29)

will be used in constructing non-Hermitian spin operator T, just see next......



1.4 Non-Hermitian Spin Angular Momentum Operator T Is a Good
Operator

Again pay more attention to the fact: T1
  T1, T2

 ≠ T2, T3
 ≠ T3 (7)

T1 is Hermitian operator, however, T2 and T3 are not, so math symbol
Hermitian adjoint "" is not a good adjoin operator operation for non-Hermitian
Spin Angular Momentum Operator T.

Now, instead of Hermitian adjoint operation, dag "", by a new math symbol
adjoint circled dag "⊕"

" " (9)  " ⊕" (14)
Hermitian Adjoin  Positive Definite Non-Hermitian Adjoint

    (30)
    (31)

Base on the definition formula (29), we try to find out a suitable metric
coefficient operator  (24), which can ensure the following math operations

T1
⊕  T1, T2

⊕  T2, T3
⊕  T3     (32)

In what follows we are going to show how to approach the goal.

Matrices T1, T2, T3 can be expressed by matrices S1, S2, S3 as following

T1  cos S1  sin S2

T2  cos S2 − sin S1 − iS3

T3  icos S2 − sin S1  S3

    (33.1)
    (33.2)
    (33.3)

Firstly, taking the adjoint operator [T]⊕ of T. we gain

T1⊕  cos S1⊕  sin S2⊕

  cos S1  sin S2  cos S1⊕ − S1  sin S2⊕ − S2

 T1  cos S1⊕ − S1  sin S2⊕ − S2     (34)

T2⊕  cos S2⊕ − sin S1⊕  iS3⊕

 cos S2 − sin S1 − iS3

  cos S2⊕ − S2 − sin S1⊕ − S1  iS3⊕  S3

 T2   cos S2⊕ − S2 − sin S1⊕ − S1  iS3⊕  S3     (35)

T3⊕  −icos S2⊕ − sin S1⊕  S3⊕

 icos S2 − sin S1  S3

− i cos S2⊕  S2 − sin S1⊕  S1  S3⊕ − S3

 T3 − i cos S2⊕  S2 − sin S1⊕  S1  S3⊕ − S3     (36)



From the above three formulas, it is obviously that if [T]⊕  T, the following
three formulas must be satisfied

cos S1⊕ − S1  sin S2⊕ − S2  0
  cos S2⊕ − S2 − sin S1⊕ − S1  iS3⊕  S3  0
− i cos S2⊕  S2 − sin S1⊕  S1  S3⊕ − S3  0

    (37)
    (38)
    (39)

Up to now, math expressions (37),(38),(39) are just formalities, we should design
a concrete Positive Definite Non-Hermitian Adjoint operation.

After careful exploration, at long last the suitable candidate (24) is found out ! ,
that could satisfies requirements of (37),(38),(39). we get

 
1 2

3 4
 h    2T1 

 e−i

ei 
    (40)

where
Det h  1. 2 − 2  1     (41)

Applying (1) and the definition (29) of adjoint operator of operator ZS in
inner product space f, g

Z⊕  –1Z  S⊕  –1S     (42)

after calculation (43)

S⊕  1
2 ⊕  1

2 h−1  h     (43)

then the adjoint operator Sj
⊕ can be expressed in terms of Sj and Tk, namely

1⊕  1  4i sin T3  S1⊕  S1  2i sin T3

2⊕  2 − 4i cos T3  S2⊕  S2 − 2i cos T3

3⊕  3  4iT2  S3⊕  S3  2iT2

    (44)
    (45)
    (46)

Put the above three expressions into (37),(38),(39), and use following formulae
(47.1),(47.2),(47.3)

T1   cos S1  sin S2

T2  iT3  − sin S1  cos S2

T3 − iT2  S3

    (47.1)
    (47.2)
    (47.3)



Then, we can obtain following expressions (48),(49),(50), further (37),(38),(39)
are verified. see below processing:

The left side of (37)
 cos S1⊕ − S1  sin S2⊕ − S2

 cos 2i sin T3  sin −2i cos T3

 0 The right side of (37)     (48)

The left side of (38)

  cos S2⊕ − S2 − sin S1⊕ − S1  iS3⊕  S3

  cos −2i cos T3 − sin 2i sin T3  i2S3  2iT2

 2i − T3  S3  iT2   0 The right side of (38)     (49)

The left side of (39)

 −i cos S2⊕  S2 − sin S1⊕  S1  S3⊕ − S3

 −i cos 2S2 − 2i cos T3 − sin 2S1  2i sin T3  2iT2

 −2i cos S2 − sin S1 − iT3 − T2  0 The right side of (39)     (50)

The above three formulae could ensure T1
⊕(34),T2

⊕(35),T3
⊕(36) to equal to

T1,T2,T3, [ T1
⊕T1, T2

⊕T2, T3
⊕T3 (32) ] or (51)

[T]⊕  T     (51)

Next, using (29), we can again directly prove (51).

T1⊕  h−1T1
h


 −e−i

−ei 
1
2

0 e−i

ei 0


 e−i

ei 

 1
2

 −e−i

−ei 
0 e−i

ei 0
 e−i

ei 

 1
2

 −e−i

−ei 

 e−i

ei 

 1
2

0 2-2e−i

2-2ei 0
 1

2
0 e−i

ei 0
 T1     (52)



T2⊕  h−1T2
h


 −e−i

−ei 
1
2

−i −ie−i

iei i


 e−i

ei 

1
2

 −e−i

−ei 

i −ie−i

iei −i
 e−i

ei 

 1
2

 −e−i

−ei 

0 −i2 − 2e−i

i2 − 2ei 0

 1
2

 −e−i

−ei 
0 −ie−i

iei 0

 1
2

−i −ie−i

iei i
 T2     (53)

T3⊕  h−1T3
h


 −e−i

−ei 
1
2

 e−i

−ei −


 e−i

ei 

 1
2

 −e−i

−ei 

 −e−i

ei −
 e−i

ei 

 1
2

 −e−i

−ei 

2 − 2 0
0 −2 − 2

 1
2

 −e−i

−ei 
1 0
0 −1

 1
2

 e−i

−ei −
 T3     (54)

Formulae (52), (53) and (54) show

[T]⊕  h−1T

h  T     (55)

In the new space h (40), S becomes a non-positive definite non-Hermitian
operator, but T is a positive definite non-Hermitian operator, which are good
angular momentum operators, which contain one variable .

Note Space Curvature 
  1   h    2T1

[S1]  S1  [S1]⊕ ≠ S1  [T1]⊕  T1 (56.1)
[S2]  S2  [S2]⊕ ≠ S2  [T2]⊕  T2 (56.2)
[S3]  S3  [S3]⊕ ≠ S3  [T3]⊕  T3 (56.3)



2 Non-Hermitian Orbital Angular
Momentum L

2.1 Hermitian orbital angular momentum are expressed by

l1  i sin ∂ − cot  cos l3

l2  −i cos ∂ − cot  sin l3

l2  −i cos ∂ − cot  sin l3

    (1)
    (2)
    (3)

they satisfy
l1
  l1, l2

  l2, l3
  l3     (4)

Now we extend the definition of metric curvature  from one coordinate
function h (1–40) to two coordinate functions hg (5). Choose  to be the
metric curvature of  and  space, given by

  hg; h    2T1, g  sin14m0     (5)

In space  (5), by means of ∂x
⊕  −∂x − −1∂x (1–21), we have

∂⊕  −∂ − ( h−1∂h )  −∂ − 2T2

∂⊕  −∂ − ( g−1∂g )  −∂ − 1  4m0 cot 
    (6)
    (7)

l1
⊕  l1  i4m0 sin  cot   2i cot  cos T2

l2
⊕  l2 − i4m0 cos  cot   2i cot  sin T2

l3
⊕  l3 − i2T2

    (8)
    (9)
    (10)

Note l1
⊕ ≠ l1, l2

⊕ ≠ l2, l3
⊕ ≠ l3 (11)

Now in space (5)   hg; h2T1, g sin14m0

define new operators L ≡ 1
2  l

⊕
 l  (12)

further obtain
L1  i sin ∂  2m0 cot  − cot  cos L3 (13)
L2  −i cos ∂  2m0 cot  − cot  sin L3 (14)
L3  l3 − iT2  −i∂ − iT2 (15)

Obviously
L1
⊕  L1, L2

⊕  L2, L3
⊕  L3 (16)

Further

L are Positive Definite Non-Hermitiana self-djoint Operators
each component of operators Lj includes Hermitian orbital angular momentum lj

and some non-Hermitian operators



It can be shown that non-Hermitian operator L obeys the angular
momentum commutation relation just as the conventional Hermitian orbital
angular momentum operator l does.

L  L  iL     (17)

Commutation rules (17) shows that non-Hermitian operators, L1(13), L2(14),
L3(15) are orbital angular momentum operators.

2.2 Properties of L2, L, L−, L3

Square operator

L
2
 L1

2  L2
2  L3

2

 − ∂2  1  4m0 cot ∂ − sin −2L3
2 − 4m0

2 − 4m0
2 − 2m0

    (18)
    (19)

Some results about rising operator L and lowering operator L−:

Using (13),(14) we have

L  L1  iL2  ei  ∂ − cot  L3 − 2m0  

L−  L1 − iL2  e−i − ∂ − cot  L3  2m0  

    (20)
    (21)

The following formulae ban be expressed by (15),(19) and (20),(21)

LL−  L2 − L3
2 − L3

L−L  L2 − L3
2  L3

    (22)
    (23)

LL− − L−L  2L3

LL−  L−L  2L2 − L3
2

    (24)
    (25)

L3, L−  L

L3, L−  L

    (26)
    (27)

L2  1
2 LL−  L−L  L3

2

L1
2  L2

2  1
2 LL−  L−L

LL−  L−L  2L2 − L3
2

    (28)

    (29)

    (30)

L1  1
2 L  L−

L2  1
2i L − L−

    (31)

    (32)

(28) and (22) (23) show
L2, L3−  0     (33)

(33) shows L2 and L3 have common eigenfunction.



3 Eigenvalues and
Eigenvalues Functions of L3

3.1 Now let us turn to discuss eigenvalues of non-Hermitian operator L3

L3  l3 − iT2  l3 − 1
2 i

−i −ie−i

iei i


l3 − 1

2 
2 − 1

2 e−im

 1
2 eim l3  1

2 
2

    (1)

Operator L3 (1) yields two groups of eigenvalue functions, m
2m0 and m

−2m0 .
Starting with m

2m0

L3m
2m0  m

2m0  0     (2)

m − 1 − 1
2 2 −  − 1

2 e−i

 1
2 ei m  1

2 2 − 
D1eim−1

D2eim
 0     (3)

Equivalently determinant Det
m − 1 − 1

2 2 −  − 1
2 

 1
2  m  1

2 2 − 
 0     (4)

Evaluating the determinant of (4)
Det  m −  − 1

2 2 − 1m −   1
2 2  1

4 22

 m −  − 1
2 2m −   1

2 2 − m −   1
2 2  1

4 22

 m − 2 − 1
4 4 − m −  − 1

2 2  1
4 22

 m − 2 − m −  − 1
2 2  1

4 22 − 2

 m − 2 − m −  − 1
4 2  0     (5)

The solution of quadratic equation of the determinant (5) is given as
m −   1

2 1  1  2   1
2 1       (6)

we get the eigenvalues of equation (2)
  1  m − 1

2   1  m − 2m0

  2  m  1
2  − 1  m  2m0

    (7)

    (8)
where

1
2  − 1 ≡ 2m0     (9)



Likewise for m
−2m0

L3m
−2m0  m

−2m0     (10)

we have

m − 1
2 

2 −  − 1
2 e−i

 1
2 ei m  1  1

2 
2 − 

C1eim

C2eim1
 0     (11)

Equivalently

m − 1
2 

2 −  − 1
2 

 1
2  m  1  1

2 
2 − 

C1

C2
 0     (12)

Evaluating the determinant of (12)

Det  m −  − 1
2 2m −   1

2 2  1  1
4 22

 m − 2  m −  − 1
4 2  0     (13)

The solution of quadratic equation of the determinant (13) is given as

m −   1
2 −1  1  2   1

2 −1       (14)

we get the eigenvalues of equation (10)

  3  m − 1
2  − 1

  4  m  1
2   1

    (15)

    (16)

Because when  approaches to zero (  1), L3 equals to l3, the eigenvalues
of L3 and the eigenvalues l3 should be the same. So the reasonable solutions are
2 and 3.

for m
2m0 (2):   2  m  1

2  − 1  m  2m0

for m
−2m0 (10): −  3  m − 1

2  − 1  m − 2m0

    (17)

    (18)

L3m
2m0  m

2m0  m  2m0m
2m0

L3m
−2m0  −m

−2m0  m − 2m0m
−2m0

    (19)
    (20)



normalized functions

m
2m0  1

4
−  − 1 eim−1

   1 eim

m
−2m0  1

4
   1 eim

−  − 1 eim1

    (21)

    (22)

Orthogonality-normalization integrals are given as follows


0

2

d m1
2m0∗hm2

2m0  m1,m2     (23)


0

2

d m1
2m0∗hm2

∓2m0∗  0     (24)

3.2 Let us look at two limiting cases of our special interest in (2) and (10)
1) As

2m0  0, L3  l3  −i∂/∂
m
0 ≈ m

−0  m  1
2

eim

    (25)
    (26)

Non-Hermitian operator L3 backs to Hermitian operator l3, and two spinor
solutions m

2m0 , m
−2m0 degenerate to a scalar solution m of l3

2) As
m  0, L30

2m0  0 0
2m0  2m0 0

2m0

0  2m0

    (27)
    (28)

2m0 is just the so-called intrinsic and inherent orbital angular momentum of the
quantum particle.

Note
It should point out that L3 is an non-Hermitian operator,
however its eigenvalues  (19),(20) can be real numbers.

When m  2m0 is nonintegrals, its eigenfunctions m
2m0 (21) and m

−2m0 (22)
still remain to be single-valuedfunctions!

In conventional quantum mechanics, eigenvalues of orbital angular momentum
should be integral numbers, however,

eigenvalues of non-Hermitian orbital angular momentum L3 could be nonintegral.



4 The Recurrence Formulae of
Normalized Wavefunctions m,nCmEm,n

Note
After discussion of eigenvalues and wavefunctions of L3,

it is natural to wonder about what will happen ?
if we use the other two non-Hermitian orbital angular momentums

L1(2-13), L2, (2-14) or their combination,
raising operator L(2-20), lowering operator L−(2-21) to act on

two spinor ground state wavefunctions of L3, (3-27), m0
2m0 , and m0

−2m0

The Recurrence Formulae of m,n, with infinite series, appear !
here m,n are the common normalized wavefunctions of L2 and L3 (2-33)

4.1 The Influence of L2 on Eigenfunctions m
2m0 of L3

Firistly, consider the eigenvalue equation of L2

L2m
2m0   m

2m0     (1)

Using (2-19), the left side of (1) becomes

L2m
2m0  −∂2  1  4m0 cot ∂ − sin−2L3

2 − 4m0
2 − 4m0

2 − 2m0m
2m0

 0  sin−2m  2m02 − 4m0
2  4m0

2  2m0m
2m0

 m2  4mm0 sin−2  4m0
2  2m0m

2m0     (2)

The eigenvalue  that in the right side of (1), should be a real constant, so the
coefficient m2  4mm0 of function sin−2 in the right side of (2) must be zero.

that is

m2  4mm0  0     (3)

Formula (3) shows: only in the case of quantun number m0, can 2m0 remain to
be an independent quantun number of quantum number m, that is

m  0  2m0 be independent     (4)



Hence (2) turns to (6)

L30
2m0  2m0 0

2m0 (3-27)
L20

2m0  2m02m0  10
2m0

    (5)
    (6)

As a matter of convenience, we introduce the following marks

n  2m0  t/2
n−  −2m0  s/2

    (7)
    (8)

Hence
L30

2m0  n 0
2m0

L20
2m0  nn  12 0

2m0

    (9)
    (10)

4.2 Two Families (Δm
2m0 , Δm

−2m0) of Spinor Ground states (0
2m0 , 0

−2m0) of
Orbital Angular Momentum L3

From L(2–20),L−(2–21) and (3–21),(3–22) of L3, we have

Lm
2m0  − cot m  2m0 − 2m0m1

2m0

L−m
2m0  − cot m  2m0  2m0m−1

2m0

    (11)
    (12)

Next, we analyse the details of (11),(12) carefully. Because of the restriction on
quantum number m (3), it is better to start from ground state 0

2m0 , m  0 to
research the regularity of the action of L and L− on m

2m0 , hence

For groundstate 0
2m0

L0
2m0  0

L−0
2m0  −4m0 cot −1

2m0

    (13)
    (14)

For groundstate 0
−2m0

L0
−2m0  4m0 cot 1

−2m0

L−0
−2m0  0

    (15)
    (16)

Comparison (13),(14) with (15),(16), it ia shown that the effect of L and L−
on 0

2m0 are quite contrary to the effect on 0
−2m0 .

4.3 Normalized Wavefunctions m of The Family Members Em of Spinor
Ground State Family Δm

−2m0

Focus on researching the effect of L and L− on 0
−2m0 n−n  s/2. After a

lengthy detailed calculations, we obtain the recurrence formulas below



E0  0
−2m0     (17)

LE0  −2n E1

L−E0  0
    (17.1)
    (17.2)

E1  cot  1
−2m0     (18)

LE1  E2

L−E1  E0

    (18.1)
    (18.2)

E2   − 2n  2 sin−2  2n  1  2
−2m0     (19)

LE2   2n  2 E3

L−E2  −22n  1 E1

    (19.1)
    (19.2)

E3   2n  4 sin−2 − 2n  1  cot  3
−2m0     (20)

LE3   E4

L−E3  −3 E2

    (20.1)
    (20.2)

E4  –2n62n4 sin−4  22n42n3 sin−2 − 2n32n1  4
−2m0     (21)

LE4   2n  4 E5

L−E4  − 42n  3 E3

    (21.1)
    (21.2)

E5 2n82n6 sin−4 − 22n62n3 sin−2  2n32n1 cot 5
−2m0     (22)

LE5     E6

L−E5  −5 E4

    (22.1)
    (22.2)

Called Em { E0, E1, E2, ..., } the family members of ground state Δm
−2m0

Note

Unluckily, it seems no hint about the regularity of the recurrence formulas of
family members  E0, E1, E2, . . . .  in the above results from (17).till (22)

There must be something ommitted by us.



4.4 Normalized Wavefunctions m

Normalized wavefunctions m of the family members Em of Δm
−2m0 are defined

as

m  CmEm  Cmmm
−2m0

Em  Ems  Emn ≡ n−  −2m0  mm
−2m0

    (23)

    (24)

Δm
−2m0  E0, E1, E2, . . . Em. . . . . . 

 00
−2m0, 11

−2m0, 22
−2m0, . . . mm

−2m0. . . . . .      (25)

Cm are the constants, normalized constant, could be found from the
normalization condition (26)

J ≡ 
0



d g,  
0

2

d m
 h,  m  1     (26)

Where g,   sin2 ≡ sin, h,     2T1 (2–5) and some
marks (27) below

2  1  4m0    1  2  1 − 2n  1 − s     (27)

1) Put m(23) into J (26), recall (3–23), (26) is simplified as

J  |Cm|2 
0



d g 
0

2

d mm
−2m0 h mm

−2m0

 |Cm|2 
0



d g m2 
0

2

d m
−2m0 h m

−2m0

 |Cm|2 
0



d sin2 m2  1     (28)

Where
Cm  C0m / Im

Im  
0



d sin2m2

    (29)

    (30)



The integrand polynomials m come from the families (17), (18), (19), (20),
(21), (22)

0  1

1  cot 

2  −2n2 sin−2  2n1

3  2n4 sin−2 − 2n1 cot 

4  −2n62n4 sin−4  22n42n3 sin−2 − 2n32n1

5  2n82n6 sin−4 − 22n62n3 sin−2  2n32n1 cot 

    (31)

    (32)

    (33)

    (34)

    (35)

    (36)

C0m  1, i     (37)

C0m is phase factor, has the effect of adjusting m to the best form that could
ensure the recurrence formulas of m to be the most symmetrical construction.

2) Recall

I ≡ 
0



d sin2  
22

Γ2  1
Γ2  1     (38)

further we obtain the following results:

1 
0



sin2  cot2d  − 1
2n I

2 
0



sin2  sin−2 cot2d  − 1
2n

2n − 1
2n  2 I

3 
0



sin2  sin−4 cot2d  − 1
2n

2n − 1
2n  2

2n  1
2n  4 I

    (39)

    (40)

    (41)

With the help of the above math preparation, substitute (31), (32), (33), (34),
(35), (36) into integral (30), we find

I0  I

I1  − 1
2n I

I2   2n  1
n I

I3  − 32n  1
n2n  2 I

I4   242n  32n  1
2n2n  2 I

    (42)

    (43)

    (44)

    (45)

    (46)



Further, we get normalized constants Cm (29) of integral (30) with subscript
index m  0, 1, 2, 3, 4

C0  C00 / I0  C00/ I

C1  C01 / I1  C01 −2n / I  iC01 2n / I

C2  C02 / I2  C02 n/2n  1 / I

C3  C03 / I3  C03 −n2n  2/32n  1 / I

 iC03 n2n  2/32n  1 / I

C4  C04 / I4  C40 2n2n  2/242n  12n  3 / I

    (47)

    (48)

    (49)

    (50)

    (51)

Choosing phase foctors C0j above as below

C00  1, C01  1, C02  1, C03  −1, C04  −1     (52)

Finally, we arrive at the normalized wavefunctions m of the family members
Em of Δm

−2m0

 0, 1, 2, . . m, . .    C0E0, C1E1, C2E2, . . . CmEm, . .      (53)

0  I−1/2  E0

1  i 2n I−1/2  E1

2   2n/2!2n  1 I−1/2  E2

3  −i 2n2n  2/3!2n  1 I−1/2  E3

4  − 2n2n  2/4!2n  12n  3 I−1/2  E4

    (54)

    (55)

    (56)

    (57)

    (58)

They satisfy normalization condition (26).

:



4.5 The Recurrence Formulas of m, resulted from L, L−
Base on normalized wavefunctions m(54),(55),(56),(57),(58), we spell out the

more meaning of the following operators calculation processing

L0  I−1/2  LE0  I−1/2  − 2nE1

 i 2n  i 2n I−1/2E1

  i 2n 1

L−0  I−1/2  L−E0  I−1/2  0
 0

    (59)

    (60)

L1  i 2n I−1/2  LE1  i 2n I−1/2  E2

 i 22n  1   2n/2!2n  1 I−1/2E2

 i 22n  1 2

L−1  i 2n I−1/2  L−E1  i 2n I−1/2  E0

 i 2n  I−1/2E0

 i 2n 0

    (61)

    (62)

L2   2n/2!2n  1 I−1/2  LE2

  2n/2!2n1 I−1/2  2n  2E3

 i 32n  2  −i 2n2n  2/3!2n  1 I−1/2E3

 i 32n  2 3

L−2   2n/2!2n  1 I−1/2  L−E2

  2n/2!2n1 I−1/2  −22n  1E1

  i 22n  1  i 2n I−1/2E1  i 22n  1 1

    (63)

    (64)



L3  −i 2n2n  2/3!2n  1 I−1/2  LE3

 −i 2n2n  2/3!2n  1 I−1/2  E4

 i 42n  3  − 2n2n  2/4!2n  12n  3 I−1/2E4

 i 42n  3 4

L−3  −i 2n2n  2/3!2n  1 I−1/2  L−E3

 −i 2n2n  2/3!2n  1 I−1/2  −3E2

  i 32n  2   2n/2!2n  1 I−1/2E2

  i 32n  2 2

    (65)

    (66)

L4  − 2n2n  2/4!2n  12n  3 I−1/2  LE4

 − 2n2n  2/4!2n  12n  2 I−1/2  2n  4E5

 i 52n  4  i 2n2n  22n  4/5!2n  12n  2 I−1/2E5

 i 52n  4 5

L−4  − 2n2n  2/4!2n  12n  3 I−1/2  L−E4

 − 2n2n  2/4!2n  12n  3 I−1/2  −42n  3E3

 i 42n  3  −i 2n2n  2/3!2n  1 I−1/2E3

 i 42n  3 3

    (67)

    (68)



Briefly
L0  i 12n  0 1, L−0  0

L1  i 22n  1 2, L−1  i 12n  0 0

L2  i 32n  2 3, L−2  i 22n  1 1

L3  i 42n  3 4, L−3  i 32n  2 2

L4  i 52n  4 5, L−4  i 42n  3 3

    (69)

    (70)

    (71)

    (72)

    (73)

Obviously! the above results show the regulation of the recurrence formulas of
quantum wavefunctions m, the regulation can be extend to the case of m  .

By orthogonality-normalization integral (3–23), the normalization condition (26)
can further be written into orthogonal-normalization condition (74)


0



d g,  
0

2

d k
hj  kj     (74)

(54),(55)(56),(57),(58) show: m is also the function of parameter n, introduce
vector state |m, n to represent function m  mn, then

m  m,n ≡ |m, n     (75)

Further, the recurrence formulas (69),(70),(71),(72),(73) can be written as the
following universal expressions (76) and (77)

L|m, n  i m  12n  m |m  1, n

L−|m, n  i m2n  m − 1 |m − 1, n

    (76)

    (77)
where

m  0, 1, 2, 3, . . . . . .
2n  s  −4m0

    (78)
    (79)

The values of m in (78), can be extend to less than zero (80), although (76)
and (77) are derived from condition m  0, 1, 2, 3, 4, . . . . . .

Later, we will see in case of (80)

m  0, 1, 2, 3, . . . . . .     (80)

L and L still remain all the properties of angular momentum, and recurrence
formulas (76),(77) are still valid.



Utilize (76),(77), we obtain

L−  L|m, n  i m  12n  m  L−|m  1, n

 i m  12n  m  i m  12n  m |m, n

 −m  12n  m|m, n     (81)

L  L−|m, n  i m2n  m − 1  L|m − 1, n

 i m2n  m − 1  i m2n  m − 1 |m, n

 −m2n  m − 1|m, n     (82)

Then obtain
LL− − L−L|m, n  −m2n  m  m  m2n  m  2n  m|m, n

 2m  n|m, n  2L3|m, n     (83)

LL−  L−L|m, n  −m2n  m  m − m2n  m − 2n − m|m, n
 −2nm − m2  m − 2nm − m2 − 2n − m|m, n
 2−2nm − m2 − n2  n2 − n|m, n
 2nn − 1 − m  n2|m, n
 2nn − 1 − L3

2|m, n     (84)

Recall
LL− − L−L  2L3(2–24) and LL−  L−L  2L2 − L3

2(2–25)

So from (84), we obtain
L2|m, n  nn − 1|m, n     (85)

from (3), (3–20), we get
L3|m, n  m  n|m, n     (86)

(4–10), is a special case of (85), when for n−  n and 0
2m0  |0, n

L2|0, n  nn − 1|0, n     (87)

Note
Formulas (69),(70),(71),(72),(73) {(76),(77)}

are elegance
such kind of recurrence formulas, never have been seen before

in the frame of angular momentum theory
they should have to bring something unexcepted to physical picture !



5 Semi-Infinite Dimensional Matricesj
:

Spin Hierarchy (SH)

Representation of Orbital Angular Momentum Lj in linear space 〈m, n||,
|m, n, (m  0)

Semi-Infinite Dimensional Matrices j
 are called Spin Hierarchy (SH)

5.1 It will be convenient to use Dirac bra-ket notation to represent the bases
of  linear space, when we deal with matrix representations of orbital angular
momentum Lj.

The bases of  space are marked with the symbols 〈m, n|| and |m, n:

ket vector (rightvector) |m, n ≡ m,n

bra vector (leftvector) 〈m, n|| ≡ 〈m, n|  〈m, n|hg  m,nhg
    (1)
    (2)

Then orthogonal-normalization condition (4–74) turns into

〈, n||m, n  ,m ≡ 
0



d g,  
0

2

d 
hm  m     (3)

From (4–76) and (4–77), we have

〈, n||L|m, n  〈, n||i m  12n  m |m  1, n

 i m  12n  m ,m1     (4)

〈, n||L−|m, n  〈, n||i m2n  m − 1 |m − 1, n

 i m2n  m − 1 ,m−1     (5)

After substituting explicit sequence numbers of  and m into (4),(5), two series,
(4.j) and (5.j) are given

For (4.j)
〈1, n||L|0, n  〈1, n||i 12n  0 |1, n  i 12n  0

〈2, n||L|1, n  〈2, n||i 22n  1 |2, n  i 22n  1

〈3, n||L|2, n  〈3, n||i 32n  2 |3, n  i 32n  2

〈4, n||L|3, n  〈4, n||i 42n  3 |4, n  i 42n  3

〈5, n||L|4, n  〈5, n||i 52n  4 |5, n  i 52n  4

    (4.1)

    (4.2)

    (4.3)

    (4.4)

    (4.5)



For 5.j)
〈, n||L−|0, n  0

〈0, n||L−|1, n  〈0||i 12n  0 |0  i 12n  0

〈1, n||L−|2, n  〈1||i 22n  1 |1  i 22n  1

〈2, n||L−|3, n  〈2||i 32n  2 |2  i 32n  2

〈3, n||L−|4, n  〈3||i 42n  3 |3  i 42n  3

    (5.1)

    (5.2)

    (5.3)

    (5.4)

    (5.5)

By means of (4), (5), obtain

〈, n||L1|m, n  1
2 〈, n||L  L−|m, n

 1
2 i m  12n  m ,m1  i m2n  m − 1 ,m−1

〈, n||L2|m, n  1
2i 〈, n||L − L−|m, n

 1
2  m  12n  m ,m1 − m2n  m − 1 ,m−1

    (6)

    (7)

From (4–86), obtain
〈m, n||L3|m, n  m  n|m, n     (8)

From (4–85), obtain
〈m, n||L2|m, n  nn − 1|m, n     (9)

From (4–81),(4–82), obtain

〈m, n||LL−|m, n  −m2n  m − 1
〈m, n||L−L|m, n  −m  12n  m

    (10)
    (11)

then we have

〈m, n||LL− − L−L|m, n  2m  n  2〈m, n||L3|m, n
〈m, n||L−L  L−L|m, n  nn − 1 − m  n2

 2〈m, n||L2|m, n − 〈m, n||L3
2|m, n

 2〈m, n||L1
2  L2

2|m, n

    (12)
    (13)
    (14)
    (15)

5.2 Semi-Infinite Dimensional Matrix Element Representations 
−,−−,3

−,
−2 of L, L−, L3, L2, which arising from Spinor Ground State Family Δm

−2m0

We will set up some tables which based on the matrix elements obtained in the
previous work, then use these tables to make out semi-infinite dimension matrix j

−.



Using the series of matrix elements (4.j) (5.j), obtain the table1,table2

table1 〈, n||L|m, n  matrix 
−

〈, n||L|m, n |0, n |1, n |2, n |3, n |4, n 
〈0, n|| 0 0 0 0 0 

〈1, n|| i 2n 0 0 0 0 

〈2, n|| 0 i 22n  1 0 0 0 

〈3, n|| 0 0 i 32n  2 0 0 

〈4, n|| 0 0 0 i 42n  3 0 

                  

table2 〈, n||L−|m, n  matrix −−

〈, n||L−|m, n |0, n |1, n |2, n |3, n |4, n 

〈0, n|| 0 i 2n 0 0 0 

〈1, n|| 0 0 i 22n  1 0 0 

〈2, n|| 0 0 0 i 32n  2 0 

〈3, n|| 0 0 0 0 i 42n  3 

〈4, n|| 0 0 0 0 0 

                  

Using matrix elements (8), obtain
table3 〈, n||L3|m, n  matrix 3

−

〈, n||L3|m, n |0, n |1, n |2, n |3, n |4, n 

〈0, n|| n 0 0 0 0 

〈1, n|| 0 n  1 0 0 0 

〈2, n|| 0 0 n  2 0 0 

〈3, n|| 0 0 0 n  3 0 

〈4, n|| 0 0 0 0 n  4 

                  

Using matrix elements (9), obtain
table4 〈, n||L2|m, n  matrix (−)2

〈, n||L2|m, n |0, n |1, n |2, n |3, n |4, n 

〈0, n|| nn − 1 0 0 0 0 

〈1, n|| 0 nn − 1 0 0 0 

〈2, n|| 0 0 nn − 1 0 0 

〈3, n|| 0 0 0 nn − 1 0 

〈4, n|| 0 0 0 0 nn − 1 
                  



5.3 Semi-Infinite Dimensional Matrix Element Representations 
,−,3

,
2 of L, L−, L3, L

2 which arising from Spinor Ground State Family Δm
2m0

On the analogy of the above table1,2,3,4 related to j
−, which arising from

Δm
−2m0 , table5,6,7,8 related to matrix j

, which from Δm
2m0 , could be obtained:

table5 〈−, n||L|−m, n  matrix 


〈−, n||L|−m, n |0, n |−1, n |−2, n |−3, n |−4, n 

〈0, n|| 0 2n 0 0 0 

〈−1, n|| 0 0 22n − 1 0 0 

〈−2, n|| 0 0 0 32n − 2 0 

〈−3, n|| 0 0 0 0 42n − 3 

〈−4, n|| 0 0 0 0 0 

                  

table6 〈−, n||L−|−m, n  matrix −

〈−, n||L−|−m, n |0, n |−1, n |−2, n |−3, n |−4, n 
〈0, n|| 0 0 0 0 0 

〈−1, n|| 2n 0 0 0 0 

〈−2, n|| 0 22n − 1 0 0 0 

〈−3, n|| 0 0 32n − 2 0 0 

〈−4, n|| 0 0 0 42n − 3 0 

                  

table7 〈−, n||L3|−m, n  matrix 3


〈−, n|L3|−m, n |0, n |−1, n |−2, n |−3, n |−4, n 
〈0, n|| n 0 0 0 0 

〈−1, n|| 0 n − 1 0 0 0 

〈−2, n|| 0 0 n − 2 0 0 

〈−3, n|| 0 0 0 n − 3 0 

〈−4, n|| 0 0 0 0 n − 4 

                  

table8 〈−, n||L2|−m, n  matrix ()2

〈−, n||L2|−m, n |0, n |−1, n |−2, n |−3, n |−4, n 

〈0, n|| nn  1 0 0 0 0 

〈−1, n|| 0 nn  1 0 0 0 

〈−2, n|| 0 0 nn  1 0 0 

〈−3, n|| 0 0 0 nn  1 0 

〈−4, n|| 0 0 0 0 nn  1 
                  



5.4 Matrices j


, j
−

Right-circumrotatory spin matrix j


comes from the same way of j
−

L|−m, n  m2n − m  1 |−m  1, n

L−|−m, n  m  12n − m |−m − 1, n

    (16)

    (17)

Where
2n  2n  −t  4m0

m  0, 1, 2, 3, . . . . . .
    (18)
    (19)

Left-circumrotatory spin matrix j
−

results in (4–76), (4–77)

L|m, n  i m  12n  m |m  1, n

L−|m, n  i m2n  m − 1 |m  1, n

    (20)

    (21)

Where
2n  2n−  −s  −4m0

m  0, 1, 2, 3, . . . . . .
    (22)
    (23)

j


and j
−

are angular momentum operators, which satisfy angular momentum
commutation relations.

j


 j


 ij


j  1, 2, 3     (24)



6 Infinite Dimensional Representations:
j,n

 Chaos Spin Hierarchy (CSH)

Infinite Dimensional Representations j,n
 are called Chaos Spin Hierarchy

(CSH)

6.1 Recalling spin hierarchy (SH),  and − (in previous chapter), that arise
from the matrix elements table5, 6, 7, 8 and table1, 2, 3, 4 of orbital angular
momentum operators L,L−,L3,L2.

These matrix elements marked by indexes  and m, which appear in the th
row and the mth column, are shown in table9. Where quantum numbers , m  0,
 and m vary from zero to positive infinite. The minimum of m is zero, which

lies at the most top left corner ∘ ∘ of all matrix elements.

Table9 Spin Hierarchy down-semi-infinite dimensional matrix elements

j,n
 m  0 m  1 m  2 

〈∓, n||L, L−, L3, L2|∓m, n |0, n |∓1, n |∓2, n 

  0 〈0, n|| ∘ ∘ ∘ ∘ ∘ ∘ 

  1 〈∓1, n|| ∘ ∘ ∘ ∘ ∘ ∘ 

  2 〈∓2, n|| ∘ ∘ ∘ ∘ ∘ ∘ 



















If remove the restrictions on the values of  and m in table9, and postulate that
 m could be greater or less than zero, then down-semi-infinite dimensional
matrices j,n

 will turn to infinite dimensioal matrices j,n
 ≡ j,n . then table9 turns

to table10 and table11

table10 Spin Hierarchy from SH to CSH

Spin Hierarchy (SH) j,n
  Chaos Spin Hierarchy (CSH) j,n



down-semi-infinite dimensional matrix  infinite dimensioal matrix
, m  0, 1, 2, 3, ......   0  , m  0, 1, 2, 3, ......  



Table11 Hierarchy infinite dimensional matrix elements of Chaos Spin

j,n
   m  −2 m  −1 m  0 m  1 m  2 

〈∓, n||L, L−, L3, L2|∓m, n   |2, n |1, n |0, n |∓1, n |∓2, n 




























  −2 〈2, n||            

  −1 〈1, n||            

  0 〈0, n||      ∘ ∘ ∘ ∘ ∘ ∘ 

  1 〈∓1, n||      ∘ ∘ ∘ ∘ ∘ ∘ 

  2 〈∓2, n||      ∘ ∘ ∘ ∘ ∘ ∘ 




























Call attentation to the following pair of correpondences:

Spin Hierarchy
matrices j,n



, m
 0, . . 
in table 9



eigenequation J3|, jj|, j

j  max  
j  min  0

formula (6) is broken
in chapter 0

Chaos Spin Hierarchy

matrices j,n


, m
 −, . . . , 0, . . . 

in table 11



eigenequation J3|, jj|, j

j  max  
j  min  −

formula (6) is broken
in chapter 0

6.2 Extent of Spin Hierarchy matrices j


to Chaos Spin Hierarchy matrices j,n


Using formulas L1 1
2 LL− and L2 1

2i L–L−:

1) From matrix elements of table5, table6, table7, table8 of SH j
,

we have Chaos Spin Hierarchy matrices j,n


2) From matrix elements of table1, table2, table3, table4 of SH j
−,

we have matrix representations of CSH j,n
−



1) For Chaos Spin Hierarchy (CSH) j,n
  simplified jnn 

1nn  1
2 

        

 0 -22n3 0 0 0 0 0 

 -22n3 0 -12n2 0 0 0 0 

 0 -12n2 0 02n1 0 0 0 

 0 0 02n1 0 12n0 0 0 

 0 0 0 12n0 0 22n-1 0 

 0 0 0 0 22n-1 0 32n-2 

 0 0 0 0 0 32n-2 0 

        
(1)

2nn  1
2 

        

 0 -i -22n3 0 0 0 0 0 

 i -22n3 0 -i -12n2 0 0 0 0 

 0 i -12n2 0 -i 02n1 0 0 0 

 0 0 i 02n1 0 -i 2n0 0 0 

 0 0 0 i 2n0 0 -i 22n-1 0 

 0 0 0 0 i 22n-1 0 -i 32n-2 

 0 0 0 0 0 i 32n-2 0 

        
(2)

3nn 

        
 n  3 0 0 0 0 0 0 
 0 n  2 0 0 0 0 0 
 0 0 n  1 0 0 0 0 
 0 0 0 n 0 0 0 

 0 0 0 0 n − 1 0 0 
 0 0 0 0 0 n − 2 0 
 0 0 0 0 0 0 n − 3 
         

(3)



2nn 

        
 nn1 0 0 0 0 0 0 

 0 nn1 0 0 0 0 0 

 0 0 nn1 0 0 0 0 

 0 0 0 nn1 0 0 0 

 0 0 0 0 nn1 0 0 

 0 0 0 0 0 nn1 0 

 0 0 0 0 0 0 nn1 
         

(4)



2) For Chaos Spin Hierarchy (CSH) j,n
−  simplified jn−n 

1n−n  1
2 

        

 0 i -22n-3 0 0 0 0 0 

 i -22n-3 0 i -12n-2 0 0 0 0 

 0 i -12n-2 0 i 02n-1 0 0 0 

 0 0 i 02n-1 0 i 12n0 0 0 

 0 0 0 i 12n0 0 i 22n1 0 

 0 0 0 0 i 22n1 0 i 32n2 

 0 0 0 0 0 i 32n2 0 

        
(5)

2n−n  1
2 

        

 0 - -22n-3 0 0 0 0 0 

 -22n-3 0 - -12n-2 0 0 0 0 

 0 -12n-2 0 - 02n-1 0 0 0 

 0 0 02n-1 0 - 12n0 0 0 

 0 0 0 12n0 0 - 22n1 0 

 0 0 0 0 22n1 0 - 32n2 

 0 0 0 0 0 32n2 0 

        
(6)

3n−n 

        
 n − 3 0 0 0 0 0 0 
 0 n − 2 0 0 0 0 0 
 0 0 n − 1 0 0 0 0 
 0 0 0 n 0 0 0 

 0 0 0 0 n  1 0 0 
 0 0 0 0 0 n  2 0 
 0 0 0 0 0 0 n  3 
         

(7)



2n−n 

        
 nn-1 0 0 0 0 0 0 

 0 nn-1 0 0 0 0 0 

 0 0 nn-1 0 0 0 0 

 0 0 0 nn-1) 0 0 0 

 0 0 0 0 nn-1 0 0 

 0 0 0 0 0 nn-1 0 

 0 0 0 0 0 0 nn-1 
         

(8)

There are two branches of Chaos Spin Hierarchy:

1) matrices 1n(1), 2n(2), 3n(3), 2n(4) of j,n


2) matrices 1n−(5), 2n−(6), 3n−(7), 2n−(8) of j,n
−

jn are the fundamental roles in describing TKP’s behavious we seek

the objective of this paper is attained

Next paragraphs, we will give some explicit matrix representations of Chaos
Spin Hierarchy, through three examples of jnn with n0, 1/2, 1/3.



7 Spin 0 CSH {0, 0, }, j,0
Symbol {0, 0, } ≡ { 2  0, n  0,  nn }

Here j,0 ≡ j,nn0
n ≡ j,0



    (1)

    (2)

7.1 Spin 0 particle is the simpliest rotational particle. In conventional quantum
mechanics frame, the spin angular momentum operator of spin 0 particle is a
zero-value 11 dimensional matrix. Its three components are as following

S1,0  S2,0  S3,0  0     (3)

The commutation rule is given below

Sj,0Sk,0 − Sk,0Sj,0  i Sl,0     (4)
Or:

0j,0  0k,0 − 0k,0  0j,0  i  0l,0     (5)

0  0, 0, 0 is an indefinite orientational vector, but zero-value. Sj,0 is a point
model, lacks of stereo!

We will see that Sj,0 actually just is the intrinsic angular momemtun of spin 0
particle, is merely the part of Island Ooperator j,0  j,0 (15).

7.2 The following are the concrete expressions of j,0 base on (6–1),(6–2),(6–3)

Island operator 1,0 

1
2

            

 0 i 10 0 0 0 0 

 i 10 0 i 6 0 0 

 0 i 6 0 i 3 0 

 0 0 i 3 0 i 1 

 0 0 0 i 1 0 0 

 0 0 0 

 0 0 i 1 0 0 0 

 i 1 0 i 3 0 0 

 0 i 3 0 i 6 0 

 0 0 i 6 0 i 10 

 0 0 0 0 i 10 0 

            

(6)



Island operator 2,0 

1
2

            

 0 10 0 0 0 0 

 – 10 0 6 0 0 

 0 – 6 0 3 0 

 0 0 – 3 0 1 

 0 0 0 – 1 0 0 

 – 0 0 0 

 – 0 0 1 0 0 0 

 – 1 0 3 0 0 

 0 – 3 0 6 0 

 0 0 – 6 0 10 

 0 0 0 0 – 10 0 

            

(7)

Island operator 3,0 

            

 5 0 0 0 0 0 

 0 4 0 0 0 

 0 0 3 0 0 

 0 0 0 2 0 

 0 0 0 0 1 

 0 

 −1 0 0 0 0 

 0 −2 0 0 0 

 0 0 −3 0 0 

 0 0 0 -4 0 

 0 0 0 0 0 −5 

            

(8)

(6),(7),(8) obey angular momentum commutation relation

j,0k,0 − k,0j,0  il,0, j, k. l  1, 2, 3     (9)



7.3 Evaluation of 1,0
2 , 2,0

2 , 30
2 and 0

2

get: 1,0
2 

1
2

            

 -25 0 - 60 0 0 0 

 0 -16 0 - 18 0 

 - 60 0 -9 0 - 3 

 0 - 18 0 -4 0 

 0 0 - 3 0 -1 0 

 0 0 0 

 0 -1 0 - 3 0 0 

 0 -4 0 - 18 0 

 - 3 0 -9 0 - 60 

 0 - 18 0 -16 0 

 0 0 0 - 60 0 -25 

            

(10)

and 2,0
2 

1
2

            

 -25 0  60 0 0 0 

 0 -16 0  18 0 

  60 0 -9 0  3 

 0  18 0 -4 0 

 0 0  3 0 -1 0 

 0 0 0 

 0 -1 0  3 0 0 

 0 -4 0  18 0 

  3 0 -9 0  60 

 0  18 0 -16 0 

 0 0 0  60 0 -25 

            

(11)



From (10) and (11), hence

1,0
2  2,0

2 

            

 -25 0 0 0 0 0 

 0 -16 0 0 0 

 0 0 -9 0 0 

 0 0 0 -4 0 

 0 0 0 0 -1 0 

 0 0 0 

 0 -1 0 0 0 0 

 0 -4 0 0 0 

 0 0 -9 0 0 

 0 0 0 -16 0 

 0 0 0 0 0 -25 

            

(12)

From (8), get

3,0
2 

            

 25 0 0 0 0 0 

 0 16 0 0 0 

 0 0 9 0 0 

 0 0 0 4 0 

 0 0 0 0 1 0 

 0 0 0 

 0 1 0 0 0 0 

 0 4 0 0 0 

 0 0 9 0 0 

 0 0 0 16 0 

 0 0 0 0 0 25 

            

(13)



Although the eigenvalues of 1,0
2  2,0

2 (12) are equal and less than zero, but
the eigenvalues of 3

2 (13) are equal and greater than zero. Further the total square
operator 0

2 (14) remains to be a zero matrix

0
2  1,0

2  1,0
2  1,0

2  00  1I0  02I0     (14)

where I0 ia an infinie dimensional uint matrix.

7.4 Island operators (6), (7), (8) can be written as j,0 as below. (j  1, 2, 3)

j,0  j,0 

Γj,0
U ≠ 0 0 0

0 Sj,0  Sj,0  0 0
0 0 Γj,0

D ≠ 0
    (15)

Γj,0
U : Up Background Spin Angular Momentum

Sj,0: Intrinsic Spin Angular Momentum
Γj,0

D : Down Background Spin Angular Momentum

note

Island operators j,0 possess the highest symmetry in the frame of CSH, which
can be seem through (6), (7), (8).

The principal diagonal matrix elements of 1,0
2 (10) and 2,0

2 (11) are the same,
whereas the off-diagonal matrix elements take the contrary sign.

The values of the third component 3,0
2 (13) are always to be larger than or

equal to those of total square matrix 0
2 (14) !

If postulating 0
2 (14) to be the conservation vacuum angular momentum, what

does the transitions among the different eigenvalues of 3,0 (8) mean?



8 Spin /2 CSH {3/4, 1/2, }, j,1/2
Symbol {3/4, 1/2, } ≡ { 2  3/4, n  1/2,  nn }

Here j,1/2 ≡ j,nn1/2
n ≡ j,1/2



    (1)

    (2)

The following are the concrete expressions of j,1/2 base on (6–1),(6–2),(6–3)

Island operator 1,1/2 

1
2

           

 0 i 15 0 0 0 

 i 15 0 i 8 0 

 0 i 8 0 i 3 

 0 0 i 3 0 i 0 

 i 0 0 1 

 1 0 i 0 

 i 0 0 i 3 0 0 

 i 3 0 i 8 0 

 0 i 8 0 i 15 

 0 0 0 i 15 0 

           

(3)

Island operator 2,1/2 

1
2

           

 0 15 0 0 0 

 – 15 0 8 0 

 0 – 8 0 3 

 0 0 – 3 0 0 

 – 0 0 -i 1 

 i 1 0 0 

 – 0 0 3 

 – 3 0 8 0 

 0 – 8 0 15 

 0 0 0 – 15 0 

           

(4)



Island operator 3,1/2  1
2

           

 9 0 0 0 0 

 0 7 0 0 

 0 0 5 0 

 0 0 0 3 

 1 0 

 0 1 

 –3 0 0 0 

 0 –5 0 0 

 0 0 –7 0 

 0 0 0 0 –9 

           

(5)

The eigenvalues, from top left to down right, of Island operators 3,1/2 (5) are
arranged from positive infinite to negative infinite.

(3),(4),(5) obey angular momentum commutation relation

j,1/2k,1/2 − k,1/2j,1/2  il,1/2, j, k. l  1, 2, 3     (6)

Evaluation of 1,1/2
2 , 2,1/2

2 and 1,1/2
2  2,1/2

2

1,1/2
2 

1
4

           

 –39 0 - 120 0 0 

 0 –23 0 - 24 

 – 120 0 –11 0 

 0 – 24 0 –3 

 1 0 

 0 1 

 −3 0 - 24 0 

 0 −11 0 - 120 

 – 24 0 −23 0 

 0 0 – 120 0 −39 

           

(7)



2,1/2
2 

1
4

           

 –39 0  120 0 0 

 0 –23 0  24 

  120 0 –11 0 

 0  24 0 –3 

 1 0 

 0 1 

 −3 0  24 0 

 0 −11 0  120 

  24 0 −23 0 

 0 0  120 0 −39 

           
(8)

then obtain

1,1/2
2  2,1/2

2  1
4

           

 −78 0 0 0 0 

 0 −46 0 0 

 0 0 −22 0 

 0 0 0 −6 

 2 0 

 0 2 

 −6 0 0 0 

 0 −22 0 0 

 0 0 −46 0 

 0 0 0 0 −78 

           

(9)



3,1/2
2  1

4

           

 81 0 0 0 0 

 0 49 0 0 

 0 0 25 0 

 0 0 0 9 

 1 0 

 0 1 

 9 0 0 0 

 0 25 0 0 

 0 0 49 0 

 0 0 0 0 81 

           

(10)

note

Although the eigenvalues of 1,1/2
2  2,1/2

2 (9) approach to negative infinite
(from the matrix center where the eigenvalues are 1/2) in the direction of top left
and down right, the eigenvalues of 3

2 (10) are greater than 1/4. Further the
eigenvalues of total square operator 1/2

2 (11) remains to be a finite number 3
4 

2.

1/2
2  1,1/2

2  2,1/2
2  3,1/2

2  3
4 2  1

2  1
2  12I0     (11)



9 Spin 1/3 CSH {4/9, 1/3, }, Δj,1/3
Symbol {4/9, 1/3, } ≡ { 2  4/9, n  1/3,  nn }

Here Δj,1/3 ≡ Δj,nn1/3
n ≡ j,1/3



    (1)

    (2)

Ocean Operator: Δ1,1/3 
1,4/3

U 0
0 1,1/3

D
 1

6


             

 0 i 50 0 0 0 0 0 

 i 50 0 i 34 0 0 0 

 0 i 34 0 i 21 0 0 

 0 0 i 21 0 i 11 0 

 0 0 0 i 11 0 i 4 

 0 0 0 0 i 4 0 0 

 0 0 1 0 0 0 0 

 1 0 i 1 0 0 0 

 0 i 1 0 i 6 0 0 

 0 0 i 6 0 i 14 0 

 0 0 0 i 14 0 i 25 

 0 0 0 0 0 i 25 0 

             

(3)



Ocean Operator: Δ2,1/3 
2,4/3

U 0
0 2,1/3

D
 1

6


             

 0 50 0 0 0 0 0 

 - 50 0 34 0 0 0 

 0 - 34 0 21 0 0 

 0 0 - 21 0 11 0 

 0 0 0 - 11 0 4 

 0 0 0 0 - 4 0 0 

 0 0 −i 0 0 0 0 

 i 0 1 0 0 0 

 0 - 1 0 6 0 0 

 0 0 - 6 0 14 0 

 0 0 0 - 14 0 25 

 0 0 0 0 0 - 25 0 

                            
(4)

Ocean Operator: Δ3,1/3 
3,4/3

U 0
0 3,1/3

D



             
 19/3 0 0 0 0 0 0 

 0 16/3 0 0 0 0 

 0 0 13/3 0 0 0 

 0 0 0 10/3 0 0 

 0 0 0 0 7/3 0 

 0 0 0 0 0 4/3 0 

 0 1/3 0 0 0 0 0 

 0 –2/3 0 0 0 0 

 0 0 –5/3 0 0 0 

 0 0 0 –8/3 0 0 

 0 0 0 0 –11/3 0 

 0 0 0 0 0 0 –14/3 

             
(5)



Obtain Δ3,1/3
2



           

 256/9 0 0 0 0 0 

 0 169/9 0 0 0 

 0 0 100/9 0 0 

 0 0 0 49/9 0 

 0 0 0 0 16/9 

 1/9 0 0 0 0 

 0 4/9 0 0 0 

 0 0 25/9 0 0 

 0 0 0 64/9 0 

 0 0 0 0 0 121/9 

           

(6)

(3),(4),(5) obey angular momentum commutation relation

Δj,1/3
2 Δk,1/3

2 − Δk,1/3
2 Δj,1/3

2  iΔl,1/3
2 , j, k. l  1, 2, 3     (7)

We have

Δ1,1/3
2  1

6 

           

 −84 0 - 714 0 0 0 

 0 −55 0 - 231 0 

 - 714 0 −32 0 - 44 

 0 - 231 0 −15 0 0 

 0 0 - 44 0 −4 0 0 

 0 0 1 0 i 1 0 0 

 0 0 0 0 - 6 0 

 i 1 0 −7 0 - 84 

 0 - 6 0 −20 0 

 0 0 0 - 84 0 −39 

           

(8)



Δ2,1/3
2  1

6 

           

 −84 0  714 0 0 0 

 0 −55 0  231 0 

  714 0 −32 0  44 

 0  231 0 −15 0 0 

 0 0  44 0 −4 0 0 

 0 0 1 0 -i 1 0 0 

 0 0 0 0  6 0 

 -i 1 0 −7 0  84 

 0  6 0 −20 0 

 0 0 0  84 0 −39 

           

(9)

Obtain Δ1,1/3
2  Δ2,1/3

2 

           

 −252/9 0 0 0 0 0 

 0 −165/9 0 0 0 

 0 0 −96/9 0 0 

 0 0 0 −45/9 0 

 0 0 0 0 −12/9 

 3/9 0 0 0 0 

 0 0 0 0 0 

 0 0 −21/9 0 0 

 0 0 0 −60/9 0 

 0 0 0 0 0 −117/9 

           

(10)

Hence
Δ1/3

2  Δ1,1/3
2  Δ2,1/3

2  Δ3,1/3
2  4

9 I0  1
3  1

3  1 I0     (11)



note

Let us go back to Δ3,1/3(5). first note that Δ3,1/3 is an infinite dimensional
diagonal matrix, from top left to down right, its eigenvalues are arranged from
positive infinite to negative infinite. And its diagonal elements construct an
arithmetic series, the difference between every two neighbour matrix elements of
Δ3,1/3 are always integral number 1.

Each matrix element on the principal diagonal of Δ3,1/3
2 (6) is the positive real

number. The least value is 1/9, that lies at the center of Δ3,1/3
2 . Upward to top

left side and downward to down right side of Δ3,1/3
2 , the eigenvalues of Δ3,1/3

2

vary toward positive infinite.

Δ1,1/3
2 (8) and Δ2,1/3

2 (9) are non-Hermitian matrices , but the sum Δ1,1/3
2 Δ2,1/3

2

(10) of them is a Hermitian diagonal matrix, except 3/9 and 0, the rest of
principal diagonal elements of (10) are all negative. Obviously, this result comes
from the non-Hermiticity of matrices Δ1,1/3 and Δ2,1/3.

Fortunately, the increasing speed of diagonal values of matrix elements of Δ3,1/3
2

(6), toward positive infinite, is slightly faster than that of Δ1,1/3
2 Δ2,1/3

2 (10) toward
negative, that assures the total square spin angular momentum Δ1/3

2 (11) to be a
positive infinite dimensional diagonal matrix.

There are only two diagonal matrix blocks for Ocean Operator.

The difference between every two adjacent elements of main diagonal of 3,1/3
(5) are always integral number 1, to a certainty, is same as those of 3,0(7–8)
and, 3,1/2(8–5) mentioned before. it is an essential regularity associated with
CSH 3nn.



10 Non-Hermitian Momentum P
Phase Factor of Fractional Statistics

10.1 Non-Hermitian Momentum P
Momentum and angular momentum are the most fundamental concepts in

quantum mechanics, which describe the linear motion and rotational motion of the
particles in physics.

After the disscussion of positive definite non-Hermitian self-adjoint angular
momentum L, in this paragraph we turn to positive definite non-Hermitian
self-adjoint momentum P.

Hermitian Momentum P is defined as

P1  −i sin  cos  ∂r − i 1
r cos  cos  ∂  i sin 

r sin  ∂

P2  −i sin  sin  ∂r − i 1
r cos  sin  ∂ − i cos 

r sin  ∂

P3  −i cos  ∂r  i 1
r sin  ∂

    (1.1)

    (1.2)

    (1.3)

In spherical coordinates, we have the radial metric coefficient fr  r2, then
the total metric coefficient  of space is extended to three coordindate functions as
follows (2)

  frgh; fr  r2, g  sin14m0, h    2T1     (2)

Then take the Positive Definite Non-Hermitian Adjoint Operation of momentum
(1.1),(1.2),(1.3)

P1⊕  i sin  cos  ∂r
⊕  i 1

r cos  ∂⊕ cos  − i 1
r sin  ∂

⊕ sin 

P2⊕  i sin  sin  ∂r
⊕  i 1

r sin  ∂⊕ cos   1
r sin  ∂

⊕ cos 

P3⊕  i cos  ∂r
⊕ − i 1

r ∂
⊕ sin 

    (3.1)

    (3.2)

    (3.3)

Substitution of (2) into the adjoint representation of derivative operator (1–21)
separately, yields the adjoint representins of derivative operator ∂r, ∂, ∂ as follows

∂r
⊕  −∂r − 2

r
∂⊕  −∂ − 1  4m0 cot 
∂⊕  −∂ − 2T2

    (4)

    (5)
    (6)



On using the (4),(5),(6), therefore

P1⊕  –i sin  cos  ∂r − i 1
r cos  cos  ∂4m0 cot  − sin 

r sin  l3–i2T2

P2⊕  –i sin  sin  ∂r − i 1
r cos  sin  ∂4m0 cot   cos 

r sin  l3–i2T2

P3⊕  –i cos  ∂r  i 1
r sin  ∂  4m0 cot 

    (7.1)

    (7.2)

    (7.3)

Because of
P1⊕ ≠ P1

P2⊕ ≠ P2

P3⊕ ≠ P3

    (8.1)
    (8.2)
    (8.3)

Consequently, the so-called well-definited momentum operator in space (2), the
positive definite non-Hermitian self-adjoint operator P is introduced by following
definition

P  1
2 { P⊕  P }     (9)

Then we have

P1 –i sin  cos  ∂r − i 1
r cos  cos ∂2m0 cot  − 1

r
sin 
sin  L3

P2 –i sin  sin  ∂r − i 1
r cos  sin ∂2m0 cot   1

r
cos 
sin  L3

P3 –i cos  ∂r  i 1
r sin ∂  2m0 cot 

    (10.1)

    (10.2)

    (10.3)

After carefully evaluation, momentum square operator is written by

P2  P1
2  P2

2  P3
2  Pr

2  1
r2 L

2     (11)

Note where

Pr  −i∂r − i 1
r

L2  −∂2  1  4m0 cot ∂ − sin −2L3
2 − 4m0

2 − 4m0
2 − 2m0

    (12)

    (13)

Here L2 is what we have obtained in (2–19) namely, non-Heemitian orbital
angular momentum square operator.

10.2 By means of the orthonormal bases e r, e , e  in spherical coordinates

e r 
sin  cos 
sin  sin 

cos 
, e  

cos  cos 
cos  sin 
− sin 

, e  
− sin 
 cos 

0
    (14)



Using (14) to rewrite (10.1),(10.2),(10.3), we have (15)

So
P  −i e r ∂r − i 1

r e  ∂  2m0 cot   1
r sin  e  L3     (15)

Position operator r
r  re     (16)

On account of basis rules

e r  e   e , e   e   e r, e   e r  e 

e r2  e 2  e r2  1
    (17.1)
    (17.2)

We conclude cross product r  P of position operator r (16) with momentum
operator P (15), obtain

r  P
 re r  −i e r ∂r − i 1

r e  ∂  2m0 cot   1
r sin  e  L3

 0 − i 1
r e  ∂  2m0 cot  − 1

sin  e  L3

    (18)

    (19)

and three components of (18) are

 r  P1  i sin ∂  2m0 cot  − cot  cos L3

 r  P2  −i cos ∂  2m0 cot  − cot  sin L3

 r  P3  −i∂ − iT2

    (20.1)

    (20.2)

    (20.3)

Comparing (20.1), (20.2), (20.3) with (2–13), (2–14), (2–15), we see that the
definition r  P (18) is namely positive definite non-Hermitian self-adjoint orbital
angular momentum previously obtained.

r  P ≡ L

L  −i
− sin 
 cos 

0
∂  2m0 cot  − 1

sin 

cos  cos 
cos  sin 
− sin 

L3

    (21)

    (22)

Next we will use non-Hermitian momentum operator P to give some interesting
and heuristic ideas which related to gauge invariance in  space (2) and the phase
factor of fractional statistics of particle wavefunctions.



10.3 The Gauge Invariance in Space frgh
a) Non-Hermitian momentum P (15) can be expressed by derivative f.

P  −if     (23)

Where

f  e r ∂r  1
r e  ∂  2m0 cot   i 1

r sin  e  L3

 ∂  1
r e  2m0 cot   1

r sin  e  T2

f  ∂  

    (24)

    (25)
Where

∂  −i e r ∂r − i 1
r e  ∂  1

r sin  e  l3

  1
r e  2m0 cot   1

r sin  e  T2

    (26)

    (27)

If no confusion, we use symbol ∇  ∂ . The components of  as follows

r  0,   2m0
1
r cot ,    1

r sin  T2

sin   1
r T2

r  1
sin  T2

r  2m0 cot 

    (28)

    (28.1)

    (28.2)

    (28.3)

Using the above results to evaluate ∇  , obtaim

∇    1
r sin  ∂sin  − ∂ e r

 1
r  1

sin  ∂r − ∂rr e 

 1
r ∂rr − ∂r e 

 1
r sin  ∂ 1

r T2 − ∂2m0
1
r cot  e r

 1
r  1

sin  ∂0 − ∂r 1
sin  T2 e 

 1
r ∂r2m0 cot  − ∂0 e 

 0

    (29)

    (30)

further
∇    0

f    ∇      0

    (31)

    (32)

(31) and (32) show that  is irrotational field respect to ∇ and derivative f.



b) In space (2), Schrödinger equation and minimal coupling theorem are defined
as

P − e
c A2  e  i∂t     (33)

Using (25), have

− 2

2m f − i e
c A

2  e  i∂t

− 2

2m D2  e  i∂t

    (34)

    (35)

where

D ≡ f − i e
c A     (36)

D is called the covariant derivative of wave function  respect to the gauge
vector potential A in space (2).

By means of gauge transformation (37),(38)

x  ′x  exp [ i e
c x ] x

Ajx  Aj
′
x  Ajx  ∂jx

    (37)

    (38)

here i e
c x is phase factor of wave function x as follow

x  
x0C

x

A  Dl     (39)

where Dl is differential length [cf.(60)]

We make following gauge transformations of covariant derivative Dj and
wavefunction .

Djx  { f
j
− i e

c Aj} x  { ∂j  j − i e
c Aj } x



Dj
′
′x   { f

j
− i e

c  Ajx  ∂jx  }  expi e
c x x

 { ∂j  j − i e
c  Ajx  ∂jx  }  expi e

c x x

 exp i e
c x { ∂j  i e

c ∂jx

 j − i e
c Ajx  ∂jx } x

 exp i e
c x{ ∂   − i e

c Ajx} x

 exp i e
c x{ f

j
− i e

c Ajx} x

Dj
′
′x  exp i e

c x{ f
j
− i e

c Aj} x

Dj
′
′x  exp i e

c x Djx

    (40)

    (40.1)

    (40.2)

    (41)

    (42)



Using (41),(42), Further

Dj
2x  { f

j
− i e

c Aj }2
x  { ∂j  j − i e

c Aj }2
x



Dj
′2′x  { f

j
− i e

c  Ajx  ∂jx  }2
 exp i e

c x x

 { ∂j  j − i e
c  Ajx  ∂jx  }2

 exp i e
c x x

 { ∂j  j − i e
c  Ajx  ∂jx  } 

{ ∂j  j − i e
c  Ajx  ∂jx  }  exp i e

c x x

 { ∂j  j − i e
c  Ajx  ∂jx  } 

expi e
c x{ f

j
− i e

c Aj }x [using (40.1), (40.2)]

 expi e
c x {f

j
− i e

c Aj}  {f
j
− i e

c Aj} x

Dj
′
′x  exp i e

c x Dj
2 x

    (43)

    (44)

Then using (44) and (35), we have

{ − 2

2m D ′2  e }′  exp i e
c x  { − 2

2m D2  e } (44)

 exp i e
c x  i∂t (35)

i∂t 
′  i∂t { exp i e

c x }  i∂t 
′

    (45)

    (46)

    (47)

So the gauge invariance of Schrödinger equation in space (2) is demonstrated by
the above expatiation.

10.4 Phase Factor of Fractional Statistics
Then focus our attentation on the phase factor of fractional statistics by using

line integral on (42) for any closed counterclockwise loop C, encircling the
origin, which is the most fascinating phenomenon of line path integral (67).

c) As a matter of convenience, in the next paragraph use ec1. Now we
will consider with a special gauge vector potential A of wave function x in
space (2) as

A  1
2r sin  e      (48)

we see A is an irrotational field

∇  A  1
r sin  ∂sin   1

2r sin   − ∂0 e r

 1
r  1

sin  ∂0 − ∂rr  1
2r sin   e 

 1
r ∂rr  0 − ∂0 e 46

∇  A  0

    (49)

    (50)



In space (2), differential length is defined as

Dl  e r dr  e  r sin4m0 d  e  r sin  h d     (51)

Using (39), evaluating factor x integral

x  
x0C

x

A  Dl (39)

 
C

1
2r sin  e   e  r sin  h d

 1
2 C

h d  1
2 C

d   2T1

x  I0  1  4m0I0  1  2nI0

    (52)

    (53)

(52) shows the contour integral of gauge vector A is directly connected with the
spin quantum numbers n of particles of CSH! without any phenomenological
postulation.

d) For clearer, resume physical units, gauge potential (48) turns to (54)

A  e 
1

2r sin  

  c
e  0/2

    (54)

    (55)

where 0 is fundamental magnetic flux.

According to (37), the period of phase factor of wavefunction are written as

exp i e
c x  exp i e

c 
C

x

A  Dl

 exp i e
c  

C

x

e 
1

2r sin   Dl

    (56)

    (57)

take  to be fundamental magnetic flux 0, and use (37),(39),(53),(57), we
have

x  x exp [ i 
C

1
2r sin  e   e  r sin  h d ]

 x exp [ i1  2nI0 ]

    (58)

    (59)



e) Using (59), make classfication of spin particles by quantun number n.

1) For Bosons:
n  n, are integers, such 0, 1, 2, 3, . . . ,

then phase are , 3, 5, 7. . . .;
n  n−, are integers, such 0, −1, −2, −3, . . . ,

then phase are , −, −3, −5. . . .

2) For Fermions:
n  n, are half-integers, such 1/2, 3/2, 5/2, 7/2. . . ,

then phase are 2, 4, 6, 8. . . .;
n  n−, are half-integers, such −1/2, −3/2, −5/2, −7/2, . . . ,

then phase are 0, −2, −4, −6. . . .

We see all Bosons lie at the negative real coordinate axis and all Fermions lie
at the positive real coordinate axis

3) For TKP: n and n− are neither integers nor half-integers.
n  n, are 1/3, 2/3, . . . , then phase are 5/3, 7/3/3, . . . .;
n  n−, are −1/3, −2/3, . . . , then phase are /3, −/3, . . . .

n  n  1/4, then phase is 3/2;
n  n−  −1/4, then phase is /2.

We can choose different vector potential A, for different physical pictures in
space (2), then we will have different represents of (59) or (37).

10.5 The Third Kind of Particles, TKP are not Anyons cite: [5]

1) The generators of Anyons do not satisfy the commutation rules of angular
momentum, so Anyons are not real spin particles; The generators of TKP obey
angular momentum commutation relations, they are true spin particles.

2) Anyons are classified according to braind group BN; TKP are the extension
of groups SO3 and SU2.

3) Anyons exist only in two dimensional system; TKP are exist in three
dimensional system.

4) Anyons do not depend on space metric, that be formulated from topological
quantum field theory; The physical concepts of TKP arise from angular momentum,
which are tightly connected with the three-dimensional space construction.



11 Conclusion
Now back to chapter 0， in conventional quantum mechanics, the eigenvalues 

of total square operator J2 of spin angular momentum are expressed by (0-23) and
the representations of matrix dimensionality D of spin angular momentum are
related to the values of the spin particles as shown with formula (0-24).

Note
It is seen, that due to the eigenvalues  of the third component matrix J3

could extend to   ,
formulae (0-23) and (0-24) are untenable !

as follow

1) For an example, in conventional quantum mechanics, max is integer and
half-integer in the dimensionality formula D (0-24). We see, the less the value of
max, the small the matrix dimensionality of spin angular momentum. From
spin 1, to spin /2, to spin 0, the dimensionality is 3, to, 2, to 1.

What will happen ? if max continues to decrease in interval (/2, 0).
If max  spin /3, spin /4, spin /5, spin /6, . . .
Then D  2max  1  2/3  1, 2/4  1, 2/5  1, 2/6  1, . . .

 5/3, 6/4, 7/5, 8/6, . . . dimensionality D is fractional !
This means that if formula (0-24) were still valid, you should construct so-called

fractional-matrix ! which is imcompatible with the skeleton frame of the present
math, at least. So there are only two kinds of spin particles in conventional
quantum mechanics.

Whereas, after the exposition of chapter 5 and chapter 6, and later three
examples of typical spin particles of CSP ( chapters 7, 8, 9 ), it is shown that in
the system of Chaos Spin Hierarchy, the dimensionalities D of spin 0 /2, /3
extend to infinite!

Actually, in Chaos Spin Hierarchy (in chapter 6), all the members of spin
angular momentum, 1,n

 (6-1),(6-5), 2,n
 (6-2),(6-6), 3,n

 (6-3),(6-7) and (n
2

(6-4),(6-8) are expressed by infinite matrices, which are indenpendent of the spin
values  of the particles.

Further the axiom (0-24) should be abandoned. If we want to still hold down
the (0-24), after all, D  2max  1  , in this sense, that seems to
somewhat "reasonable".



2) When  extends to   max  , further formula (0-23) that concerns
about the eigenvalue  of total square operator J2 of spin angular momentum, is
invalid too.

Actually, in Chaos Spin Hierarchy, ther are two dimensionality formula (6-4)
and (6-8) which highly resemble (0-23)

  maxmax  1  k/2 k/2  1  nn  1  nn  1  n
2

(0-23)  (6-4), (6-8)

But their derivations are quite different:
a) In (0-23), the eigenvalue  of total square operator J2 is symboled by

k/2 k/2  1 that be derived from maxmax  1. Here max is the maximum of
J3 in conventional mechanics, corresponds to quantum number m.

b) (6-4), (6-8) represented by quantum number n 2m0 (4-7), n− −2m0 (4-8).
Here 2m0 is a parameter that depicts the curvature of space hg (2-5),
which initially appears in the eigenvalue expressions m  2m0 of non-Hermitian
angular momentum L3.

This paper shows how Non-Hermitian angular momentum. comes to what
TKP is today



Author places some hope on the adoption above, to give a good deal of
enlightenment for both students and researchers, and wish the formulations of TKP
is compatible with the axiomatic of quantum mechanics known as yet, further an
idea in the uses of future physics.

In this paper, some fundamental research, which results in non-Hermitian
angular momentum (both orbit and spin) of author’s work for past years, are
given cite: [3],[4].

TKP methodology is applied to Energy Harmonic Oscillator Hierarchy (EHOH)
and infinite dimensional matrices of Lorentz Group, much of which have never
been published in public journals before cite: [3].

This article mainly comes from author’s English-Lectures that designed to serve
the needs of workshop and seminar in China.
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Appendix: Infinitesimal Rotation of TKP

A1) Infinitesimal Rotation of Particle of Spin 0 CSH

Infinitesimal rotation operator W1,0  1/ 2 

            

 0 i 10 0 0 0 i 10 0 

 i 10 0 i 6 0 0 i 6 0 –i 10 

 i 6 0 i 3 0 i 3 0 –i 6 

 i 3 0 i 1 i 1 0 –i 3 

 i 1 0 0 0 –i 1 

 0 0 0 

 i 1 0 0 0 i 1 

 i 3 0 –i 1 i 1 0 i 3 

 i 6 0 –i 3 i 3 0 i 6 

 i 10 0 –i 6 i 6 0 i 10 

 0 –i 10 i 10 0 

            

(1)

Infinitesimal rotation operator W2,0  1/ 2 

            

 0 i 10 –i 10 0 

 i 10 0 i 6 –i 6 0 i 10 

 i 6 0 i 3 –i 3 0 i 6 

 i 3 0 i 1 –i 1 0 i 3 

 i 1 0 0 0 i 1 

 0 0 0 

 –i 1 0 0 0 i 1 

 –i 3 0 i 1 i 1 0 i 3 

 –i 6 0 i 3 i 3 0 i 6 

 –i 10 0 i 6 i 6 0 i 10 

 0 i 10 i 10 0 

            

(2)



A2) Infinitesimal Rotation of Particle of Spin 1 CSH cite: [3]

Infinitesimal rotation operator W1,1  1/ 2 

            

 0 i 9 i 9 0 

 i 9 0 i 5 i 5 0 –i 9 

 i 5 0 i 2 i 2 0 –i 5 

 i 2 0 i 0 i 0 0 –i 2 

 i 0 0 i 1 0 –i 0 

 –i 1 0 i 1 

 i 0 0 –i 1 0 i 0 

 i 2 0 –i 0 i 0 0 i 2 

 i 5 0 –i 2 i 2 0 i 5 

 i 9 0 –i 5 i 5 0 i 9 

 0 –i 9 i 9 0 

            

(3)

Infinitesimal rotation operator W2,1  1/ 2 

            

 0 i 9 –i 9 0 

 i 9 0 i 5 –i 5 0 i 9 

 i 5 0 i 2 –i 2 0 i 5 

 i 2 0 i 0 –i 0 0 i 2 

 i 0 0 i 1 0 i 0 

 –i 1 0 –i 1 

 –i 0 0 i 1 0 i 0 

 –i 2 0 i 0 i 0 0 i 2 

 –i 5 0 i 2 i 2 0 i 5 

 –i 9 0 i 5 i 5 0 i 9 

 0 i 9 i 9 0 

            

(4)



A3) Particle of Spin 0 CSH and Particle of Spin 1 CSH have the same
math figure in their third Infinitesimal Rotation operators, that is

W3,0 

            

 0 −5i 

 0 −4i 

 0 −3i 

 0 −2i 

 0 −i 

 0 

 i 0 

 2i 0 

 3i 0 

 4i 0 

 5i 0 

            

 W3,1

(5)

Operators Wj,n obey angular momentum commutation rules

Wj,nWk,n − Wk,nWj,n  i Wl,n     (6)

Here space indexes j, k, l  1, 2, 3 are circulative;
particle spin quantum numbers n  0, 1

A4) Operators Sj, Fj, Wj are 33 matrices.

S1 
0 0 0
0 0 –i
0 i 0

, S2 
0 0 i
0 0 0
–i 0 0

, S3 
0 −i 0
i 0 0
0 0 0

F1 
0 i 0
–i 0 0
0 0 0

, F2 
0 0 0
0 0 –i
0 i 0

, F3 
0 0 –i
0 0 0
i 0 0

    (7)

    (8)

SjSk − SkSj  i  Sl

FjFk − FkFj  i  Fl

    (9)
    (10)

W1 1
2

0 i 0
–i 0 i
0 –i 0

, W2 1
2

0 i 0
–i 0 –i
0 i 0

, W3
0 0 –i
0 0 0
i 0 0

    (11)

WjWk − WkWj  i  Wl     (12)



In case of Spin 1 CSH, we select Wj as the matrix center parts of Wj,1, due
to the most symmetrical design of the math harmony of Infinitesimal rotation of
TKP. Operators Fj, Wj will be chosen as the center of Wj,n in other physical
pictures.
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