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Abstract 
Full-rate is very important in any data transmission coding. For transmitting data at low bit rate 
than full-rate code, higher modulation scheme is required. But it is impossible to design full rate 
orthogonal designs with complex constellation for more than two transmit antennas. Only Ala-
mouti code provides full-rate for two transmit antennas. In this paper, Bit Error Rate (BER) is cal-
culated for Quasi-Orthogonal Space-time Block Coding (QOSTBC). Here we work with Rayleigh 
fading channel. We consider the codes which decodes pairs of symbols instead of simple separate 
decoding like Orthogonal Space-Time Block Coding. In Quasi-Orthogonal Space-time Block Code 
full-rate is achieved but full-diversity is sacrificed. Diversity is the most important techniques for 
providing reliable communication over fading channels. One of the diversity techniques that uses 
multiple transmit and/or receive antennas is space diversity. Multiple antenna technique pro-
vides a space diversity to struggle with the fading without necessarily sacrificing bandwidth re-
sources, so the excellent solutions of removing the fading of the channel for broadband wireless 
communications is using space diversity. Then, with the constellation rotation of the symbol, ro-
tated version of Quasi-Orthogonal Space-Time Block Code is generated. It provides full diversity. 
We simulate BER for QOSTBC, rotated QOSTBC, orthogonal STBC and for uncoded system. The si-
mulation result shows that QOSTBC and rotated QOSTBC perform better than other systems. It 
shows that QOSTBC provides a full transmission rate but that rotated QOSTBC provides the full 
rate with the full diversity. 
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1. Introduction 
The transmission path in the wireless communication is air or free space for transmitting the electromagnetic 
signal to the destination. The transmitted signal may reach the receiver directly (Line-of-Sight) or through mul-
tiple reflections on local objects. When waves coming from these different paths are interacting with one another 
and for this received signal’s amplitude and power fluctuates with time and if this fluctuation is rapid over a 
short period of time, then it is known as small-scale fading. The Rayleigh distribution [1] is commonly used to 
describe the statistical time varying nature of the received fading signal. The fading can be removed by using 
diversity and space diversity [2] is one of the diversity techniques that use multiple transmit and/or receive an-
tennas. The possibility of deep fading over all paths’ signals is greatly reduced by space diversity creating many 
independent propagation paths from transmitter to receiver. Information data are transmitted in a block-by-block 
fashion. Data transmission in an ST system is carried out in two dimensions, the space dimension and the time 
dimension, as the acronym ST suggests. The space dimension is spanned by multiple transmit-antennas while 
the time dimension is spanned by multiple time intervals over which multiple blocks are transmitted. By using 
STBC, QOSTBC [3] decreases the fading problem and provides partial diversity. But rotated QOSTBC [3] offers 
full-diversity. We simulate the BER and make a comparison for QOSTBC and rotated QOSTBC with OSTBC. 

2. Space-Time Block Codes 
We review the space-time block codes which provide maximum possible diversity for multiple transmit antennas 
in wireless communications. One example of space time block code is Alamouti code [3]. The generator matrix of 
this code to emphasize the indeterminate variables x1 and x2 in the design: 

( ) 1 2
1 2

2 1

,
x x

x x
x x∗ ∗

 
=  − 

                                       (1) 

The Alamouti code is the only example of a full-rate full-diversity complex space-time block code using or-
thogonal design. 

In general, a complex orthogonal space-time code is given by T N×  generator matrix  . Here T and N 
represents the number of time slots for transmitting one block of symbols and the number of transmit antennas 
respectively. The generator matrix   is chosen so that the rows and columns of each matrix are orthogonal to 
each other (i.e. the dot product of each row with another row is zero) and Orthogonal Design Theory provides 
this. Orthogonal Design Theory is two types, one for real numbers and other for complex numbers. Radon and 
Hurwitz [4] [5] provided the Real Orthogonal Designs and Complex Orthogonal Design is created from Real 
Orthogonal Design. The elements of the matrix are linear combinations of determinates 1 2, , , kx x x  and their 
conjugates. 

It is required that 

( )2 2 2
1 2

H
K Np x x x= + + + I                             (2) 

where, H  is the Hermitian of  , NI  is the N N×  identity matrix and pis a constant.The code rate of   
is defined to be R K T= . This is due to the fact that the code transmits K  constellation symbols in T  time 
slots. The rate is defined as the transmission rate relative to the maximum possible rate of a full-diversity code. 
It has been shown in [3] that the rate of a full-diversity code is less than or equal to one 1R ≤ . 

3. Quasi-Orthogonal Space-Time Block Code 
3.1. Encoding 
The encoding of QOSTBCs is very similar to the encoding of orthogonal STBCs. To transmit b  bits per 
time slot, we use constellations containing 2b points. Using 4b bits, constellation symbols 1 2 3 4, , ,s s s s  are 
selected. Setting k kx s=  for 1, 2,3, 4k =  in generator matrix  , we arrive at a codeword matrix 

( )1 2 3 4, , , .s s s s=C   Then, at time t, the four elements in the tth row of C  are transmitted from the four 
transmit antennas. Since four symbols 1 2 3 4, , ,s s s s  are transmitted in four time slots presents a rate one 
code. 
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3.2. Transmission Model 
A wireless communication system is considered with N transmit antennas and M receive antennas [3]. The 
channel is assumed to be quasi-static slow flat fading and the path gain from transmit antenna n to receive 
antenna m is denoted by ,n mα . The path gains are modeled as samples of independent complex Gaussian 
random variables. The variance is 0.5 for both imaginary part and real part of path gain. The channel is qua-
si-static so that the path gains are constant over a time frame of length T and vary independently from one 
frame to another. Channel estimation is done with training/pilot sequences in regular intervals during the 
transmission. The received signal ,t mr  at time t and antenna m is given by, 

, , , ,1
N

t m n m t n t mnr Cα η
=

= +∑                                   (3) 

where, the noise samples ,t mη  are independent samples of a zero-mean complex Gaussian random variable and 
the code symbol ,t nC  is transmitted from n transmit antenna at time t. The real part and imaginary part of noise 
symbols have equal variance N/(2SNR). The average energy of the transmitted symbols from each antenna is 
normalized to be 1, so that the average power of the received signal at each receive antenna is N and the sig-
nal-to-noise ratio is SNR. 

3.3. Decoding Algorithm 
Assuming perfect channel state information is available. So the receiver computes the decision metric [6], 

2

, , ,1 1 1
T M N

t j i j t it j iD r Cα
= = =

= −∑ ∑ ∑                              (4) 

Overall possible k kx s C= ∈  and decides in favor of the constellation symbols 1 2, , , ks s s  that minimized 
the sum. We get from Alamouti code [3], 

1 2

2 1

x x
x x∗ ∗

 
=  − 

                                             (5) 

Now let us consider N = T = K = 4. So the generator matrix, 

( ) ( )
( ) ( )

1 2 3 4
444 * *

3 4 1 2

, ,
, ,

x x x x
x x x x

 
=   − 

 


 
                              (6) 

3 41 2

4 32 1

3 4 1 2

4 3 2 1

x xx x
x xx x

x x x x
x x x x

∗ ∗∗ ∗

∗ ∗ ∗ ∗

 
 −− =  − −
  − − 

                                 (7) 

It is easy to see that the minimum rank of matrix ( )444 1 1 2 2 3 3 4 4, , ,s s s s s s s s− − − −     is two [2]. The matrix 
constructed from   by replacing xi with 1is s−   is 2. Therefore diversity of 2M is achieved and code rate = 1. 
Now, if we define iv , i =1, 2, 3, 4 as the ith column of  , it is easy to see that, 

1 2 1 3 2 4 3 4, , , , 0v v v v v v v v= = = =  

where, ( ) ( )*4
1,i j i jl l l

v v v v
=

= ∑  is the inner product of vector iv  and jv . The subspace created by 1v  and  

4v  is orthogonal to the subspace created by 2v  and 3v . Using this orthogonality, the maximum-likelihood de-
cision metric (4) is equivalent to minimizing these two terms independently. The ML decision metric can be 
calculated as the sum of two terms ( ) ( )14 1 4 23 2 3, , ,f x x f x x+  where, 14f  is independent of 4x  and 3x  and 

23f  is independent of 1x  and 4x . Thus the minimization of these two terms independently. Other words, first 
the decoder finds the pair ( )1 4,s s  that minimizes ( )14 1 4,f x x  among all possible values of ( )1 4,x x  pair. 
Then, or in parallel, the decoder selects pair ( )2 3,s s  similarly. Simple manipulation of Equation (4) becomes, 
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( ) ( )
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                        (8) 
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    (9) 

where, the real part of a is denoted by { }aℜ . It is clear that decoding pairs of symbols for the QOSTBCs is 
more complex than decoding single symbols for the space time block codes. 

4. Rotated Quasi-Orthogonal Space-Time Block Code 
The minimum rank of the difference matrix ( ),i jC CD  is two for QOSTBCs in (7) for regular symmetric con-
stellations same as PSK and QAM. For M receive antennas, a diversity of 2M is achieved while the code rate is 
one. The minimum diversity of 4M for a rate one complex orthogonal code is impossible in this case if all sym-
bols are chosen from the same constellation [3]. For different transmitted symbols if we use different constella-
tions we get full diversity. This means that we may rotate half of the symbols before transmission. This is called 
Rotated Quasi-Orthogonal Space Time Block Codes (Rotated QOSTBCs). This code is very powerful because it 
provides the full diversity, rate one, and simple pair wise decoding with satisfactory performance. The encoding 
algorithm and the transmission model are same as the QOSTBCs. 

Decoding 
The generator matrix of QOSTBC from (7) is recall here, 

3 41 2
* ** *
4 32 1

444 * * * *
3 4 1 2

4 3 2 1

x xx x
x xx x

x x x x
x x x x

 
 −− =  − −
  − − 

                                     (10) 

For rotated QOSTBC 3x  and 4x  are get from the rotated version of 3x  and 4x . They are rotated before 
transmission and is denoted by 3x  and 4x . Here, 3 3e jx x∅=  and 4 4e jx x∅=  and ∅  is the constellation 
rotation angle. 

Now for rotated QOSTBC the generator matrix (10) becomes: 

( ) ( )
( ) ( )

3 41 2
* ** *

2 1 4 3
444 * * * *

1 23 4

2 14 3

e e

e e

e e

e e

j j

j j

j j

j j

x xx x
x x x x

x xx x
x xx x

∅ ∅

∅ ∅

∅ ∅

∅ ∅

 
 

− −
 =
 − − 
 −− 

                   (11) 

We can see that the decoding decision for symbols 1x  and 4x  are obtained by minimizing the metric 14f , 
similarly the decoding decision for symbol 2x  and 3x  are obtained by minimizing the metric 23f . Clearly 
decoding of 1x  and 4x  can be performed separately from the decoding of 2x  and 3x . Since 1x  and 4x  
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( 2x  and 3x ) are each a complex symbol their decoding requires the joint detection of two complex symbols (i.e. 
four real symbols) in total. 

So, the simple manipulation of decision metric becomes: 

( ) ( )
( ){

( )

( ) ( ) }

4 2 2 2
14 1 4 , 1 4

1 1

* * * *
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            (12) 

( ) ( )
( ){

( )

( ) ( ) }

4 2 22
23 2 3 , 2 3

1 1

* * * *
2, 1, 1, 2, 4, 3, 3, 4, 2

* * * *
3, 1, 4, 2, 1, 3, 2, 4, 3

** * * *
2, 3, 1 3, 4, 1, 4, 2, 3, 2

,

2

e

e

M

n m
m n

m m m m m m m m

j
m m m m m m m m

j
m m m m m m m m

f x x x x

r r r r x

r r r r x

x x

α

α α α α

α α α α

α α α α α α α α

= =

∅

∅

 
= + 

 

ℜ − − − −

+ − + + −

+ − −


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+


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            (13) 

The decoding algorithm in (12) and (13) are more complex than the QOSTBC in (8) and (9). Where in (12) 
and (13) 1x  and 2x  are non-rotated complex constellation symbols. The rotated QOSTBC decoding algorithm 
in (13) and (13) can be decoded with joint detection of only two real symbols, while still achieving full transmit 
diversity and full code rate. 

5. Simulation Results 
In this section, we provide simulation results for the QOSTBC in (7) and the Rotated QOSTBC in (11) and com-
pare it with the other codes. These codes have a definite code rate and use different modulation scheme depends 
on the transmission bit rate. So, we have used the suitable modulation scheme due to the transmission bit rate for 
different STBCs. In all simulation result we consider different types of transmit antenna and one receive antenna 
and a given transmission bit rate on the Rayleigh fading channel. Then using this result the performance of each 
QOSTBC is provided. For, a fair comparison the modulation type and code size are varied with a view to main-
taining a constant bit rate. As a result proper combination of QOSTBC and constellations are very essential. There 
is a constellation diagram which contains 2b  point for uncoded system with one transmission antenna or a 
full-rate OSTBCs transmission bit rate is b bits/(sHz). For a QOSTBCs with rate R, the transmission bit rate is Rb 
bits/(sHz). Since only for real signal constellation a full-rate full-diversity code exists. For complex signal con-
stellations full-rate OSTBCs exist only for two transmit antenna and this code is provided by Alamouti. This code 
has a great advantage that, one can transmit the desire transmission bit rate while only depends on the modulation 
techniques. If one wants to be transmit 1 bits/(sHz) he may use BPSK, for 2 bits/(s Hz) use QPSK and continues 
for higher modulation technique. But code rate less than one need higher modulation technique for same trans-
mission bit rate that obtained by Alamouti code. For half rate code needs QPSK where Alamouti codes need 
BPSK. 

In case of full-rate code one can transmit more bits than lower code rate by using same modulation scheme. 
This is why full-rate code is more efficient code than lower rate code. For complex constellation and more than 
two transmit antennas full-rate is possible only by QOSTBC. So it is clear that it is more efficient than regular 
OSTBC. But there is no advantage in using QOSTBC of (7) and BPSK that results in the transmission bit rate of 
1 bits/(sHz) because a full-rate full-diversity code exist for real signal constellation. So, here we consider the si-
mulation result of transmission bit rate of 2 bit/(sHz). Figure 1 shows the comparison among QOSTBC, rotated 
QOSTBC and OSTBC. Figure 2 shows the simulation results of varying transmit antennas using QOSTBCs. 

Figure 1 shows the simulation result for OSTBC, QOSTBC and rotated QOSTBC of the transmission bit rate 
of 2 bit/(sHz). These graphs are plotted against Bit Error Probability versus Signal-to-Noise Ratio (SNR) in dB. 
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Figure 1. Bit error probability versus signal-to-noise ratio at 2 bits/(sHz).       

 

 
Figure 2. Bit error probability versus signal-to-noise ratio at 2 bits/(sHz) with 
varying transmit antennas.                                             

 
For transmission of the QOSTBC in (7) use QPSK modulation scheme, contains four message points. For 

OSTBC, it uses 16-QAM modulation scheme, contains sixteen message points and transmission bit rate is 2 
bits/(sHz). Rotated QOSTBC uses 4-QAM modulation scheme, contains four message points. 

At the reference point 10−4 QOSTBC provides about 0.7 dB less SNR than OSTBC. Rotated QOSTBC is 
about 1.4 dB less SNR than QOSTBC. 

Therefore, full-rate QOSTBCs SNR is lower and rotated QOSTBCs SNR is the lowest. So, QOSTBC per-
forms better than OSTBC and rotated QOSTBC performs best from OSTBC and QOSTBC for 2 bits/(sHz). 

Figure 2 shows the comparison among the different number of transmit antennas for rate one code, any num-
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ber of antennas it uses QPSK modulation scheme for transmission bit rate 2 bit/(sHz) and four message points. 
For two transmit antenna, QOSTBC 444  code in (7) becomes 244  by removing of two columns. 

1 2
* *
2 1

244 * *
3 4

4 3

x x
x x

x x
x x

 
 − ∴ =  − −
  − 

                                        (14) 

The Alamouti code in (5) and the QOSTBC 244  code in (14) provide same curve in the graph so the per-
formance of both codes are same for two transmit antennas. 

The 444  code in (7) becomes a three transmit antenna QOSTBC 344  code by removing one column. 

1 2 3
* * *
2 1 4

344 * * *
3 4 1

4 3 2

x x x
x x x

x x x
x x x

 
 − − ∴ =  − −
  − − 

                                   (15) 

The SNR of the four transmit antenna 444  code in (7) is about 0.7 dB less than 344  code in (15) and 
344  code is about 2.25 dB less than the 244  code in (14). The uncoded curve is shown in the graph only for 

a fair comparison. 
Therefore, if the number of transmit antenna increases, the SNR decreases. So, it performs better with in-

creasing the number of transmit antenna. 

6. Conclusions 
Simulation results show that the QOSTBC performs better than OSTBC and rotated QOSTBC performs better 
than the QOSTBC. If the number of transmit antenna increases rate one code performs better. In fact, since the 
slope of the BER-SNR curve depends on the diversity, the QOSTBC curve also starts from a better point in the 
BER-SNR curve. It decodes the pair of symbol so decoding complexity is higher than the OSTBC but both codes 
have very low decoding complexity. The encoding complexity is very small and same. For two transmit antenna 
Alamouti scheme and QOSTBC provide same SNR and same BER. 

So, the performance of QOSTBC and rotated QOSTBC is better than OSTBC. We work only with Rayleigh 
flat fading channel. So, there may also few options to works with fast or, slow fading channel or another fading 
channel like Rician or, Nakagami fading channel. Yet everybody works with four transmit antenna for QOSTBC. 
One can study for the maximum possible rate for a given number of transmit antenna that will provide full-rate 
and full-diversity. 
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