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Abstract 
 
Longitudinal trends of observations can be estimated using the generalized multivariate analysis of variance 
(GMANOVA) model proposed by [10]. In the present paper, we consider estimating the trends nonparamet-
rically using known basis functions. Then, as in nonparametric regression, an overfitting problem occurs. 
[13] showed that the GMANOVA model is equivalent to the varying coefficient model with non-longitudinal 
covariates. Hence, as in the case of the ordinary linear regression model, when the number of covariates be-
comes large, the estimator of the varying coefficient becomes unstable. In the present paper, we avoid the 
overfitting problem and the instability problem by applying the concept behind penalized smoothing spline 
regression and multivariate generalized ridge regression. In addition, we propose two criteria to optimize 
hyper parameters, namely, a smoothing parameter and ridge parameters. Finally, we compare the ordinary 
least square estimator and the new estimator. 
 
Keywords: Generalized ridge regression, GMANOVA model, Mallows' pC statistic, Non-iterative estimator,  

Shrinkage estimator, Varying coefficient model 

1. Introduction 
 
We consider the generalized multivariate analysis of vari-
ance (GMANOVA) model with n observations of 
p -dimensional vectors of response variables. This model 

was proposed by [10]. Let  1, , 'nY y y , A , X  and 

 1, , 'nΕ ε ε  be an n p  matrix of response vari- 

ables, an n k  matrix of non-stochastic centerized be-
tween-individual explanatory variables (i.e., n k A 1 0 )  
of  rank kA ( )n , a p q  matrix of non-stochastic 
within-individual explanatory variables of  rank qX  
 q p , and an n p  matrix of error variables, respec-
tively, where n is the sample size, n1 is an n -dimensional 
vector of ones and k0  is a k -dimensional vector of zeros. 
Then, the GMANOVA model is expressed as 

n   Y X + A X + E1 Ξ  

where  1, , 'k Ξ ξ ξ  is a k q  unknown regression 

coefficient matrix an μ  is q -dimensional unknown vec-

tor. We assume that  1 i.i.d., , ,n p pNε ε  0 Σ  where Σ  

is a p p  unknown covariance matrix of  rank pΣ . 

Then we can express the GMANOVA model as 

 ,n p n n    Y N X A X I 1 Ξ Σ  

Let S  be an unbiased estimator of the unknown co-
variance matrix Σ  that is given by 

    1 1n n nn n k      S = Y I A A A A Y1 1  

Then, the maximum likelihood (ML) estimators of μ  

and Ξ are given by   11 1 1
nn

    X S X X S Y 1 and 

    11 1 1     A A A YS X X S X , respectively. The ML es-

timators are the unbiased and asymptotically efficiency 
estimators of μ  and Ξ . 

In the GMANOVA model,    11, , , 'qt t t x  , 

 1, , pt t t   is often used as the j th row vector of X . 

Then, we estimate the longitudinal trends of Y  using 

 1q  -polynomial curves. However, occasionally, the 
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polynomial curve cannot thoroughly express flexible lon-
gitudinal trends. Hence, we consider estimating the longi-
tudinal trends nonparametrically in the same manner as 
[11] and [5], i.e., we use the known basis function as  tx  

and assume that p  is large. In the present paper, we refer 

to the GMANOVA model with X  obtained from the 
basis function as the nonparametric GMANOVA model. In 
the nonparametric GMANOVA model, it is well known 

that the ML estimators become unstable because 1S  
becomes unstable when p  is large. Thus, we deal with 

the least square (LS) estimators of μ  and Ξ , which are 

ob ta ined  by min imiz ing   tr n    Y 1 μ X AΞX  

  'n    Y 1 μ X AΞX . Then, the LS estimators of μ  

and Ξ  are obtained by 1 1ˆ ( ) nn   μ X X X Y 1  and 

   1 1ˆ     A A A YX X XΞ respectively. Note that μ̂  

does not depend on A . The LS estimators are simple and 
unbiased estimators of μ  and Ξ . However, as well as 

ordinary nonparametric regression model, the LS estima-
tors cause an overfitting problem when we use basis func-
tions to estimate the longitudinal trends nonparametrically. 
In order to avoid the overfitting problem, we use 

 X X K  instead of X X  as the penalized smoothing 

spline regression (see, e.g., [2]), where   0  is a 

smoothing parameter and K  is a q q  known penalty 

matrix. 

Let     1 ,i i i py t y t
y  , and let 

    1 , ,i i i pt t
ε ε ε . Then, the GMANOVA model 

can be expressed as 

       

 
1

1

' ' ,

1, , ; , , ,

k

i ij j i
j

p

y t t a t t

i n t t t




  

 

x μ x

 

ξ
 

where ija  is the  ,i j th element of A . This expression  

indicates that the GMANOVA model is equivalent to the 
varying coefficient model with non-longitudinal covariates 
[13], i.e., 

       

 
0

1
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,
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y t t a t t

i n t t t

  


  

 


 

      (4) 

where    0 't t  x μ  and     'j jt t  x ξ , 

 1, ,j k  . Hence, estimating the longitudinal trends in 

the GMANOVA model nonparametrically is equivalent to 
estimating the varying coefficients  j t ,  0, ,j k   

nonparametrically. However, when multicollinearity occurs 

in A , the estimate of  j t ,  1, ,j k   becomes 

unstable, as does the ordinary LS estimator of regression 
coefficient, because the variance of an estimator of  j t  

becomes large. Hence, we avoid the multicollinearity 
problem in A  by the ridge regression. 

When pX Ι  and 1p   in the model (1), [4] pro-

posed a ridge regression. This estimator is generally de-
fined by adding k I  to A A  in (3), where 0   is 

referred to as a ridge parameter. Since the ridge estimator 
changes with  , optimization of   is very important. 
One method for optimizing   is minimizing the pC  

criterion proposed by [7,8] in the univariate linear regres-
sion model (for multivariate case, see e.g., [15]). For the 
case in which pX Ι  and 1p  , [17] proposed the pC  

and its bias-corrected pC  (modified pC ; pMC ) criteria 

for optimizing the ridge parameter. However, an optimal 
  cannot be obtained without an iterative computational 
algorithm because an optimal   cannot be obtained in 
closed form. 

On the other hand, [4] also proposed a generalized ridge 
(GR) regression in the univariate linear regression model, 
i.e., the model (1) with pX Ι  and 1p  , simultane-

ously with the ridge regression. The GR estimator is de-
fined not by a single ridge parameter, but rather by multiple 
ridge parameters  1, , 'k θ  ,  0, 1, ,i i k    . 

Then, several authors proposed a non-iterative GR estima-
tor (see, e.g., [6]). [18] proposed a GR regression in the 
multivariate linear regression model, i.e., the model (1) 
with pX Ι  and 1p  . We call this generalized ridge 

regression the multivariate GR (MGR) regression. They 
also proposed the pC  and pMC  criteria for optimizing 

ridge parameters θ  in the MGR regression. They showed 
that the optimized θ  by minimizing two criteria are ob-
tained in closed form. [9] proposed non-iterative MGR 
estimators by extending non-iterative GR estimators. Sev-
eral computational tasks are required in estimating  j t  

nonparametrically because we determine the optimal   
and the number of basis functions simultaneously. Fortu-
nately, [18] reported that the performance of the MGR re-
gression is the almost same as that of the multivariate ridge 
regression. Hence, we use the MGR regression in order to 
avoid the multicollinearity problem that occurs in A  in 
order to reduce the number of computational tasks. 

The remainder of the present paper is organized as fol-
lows: In Section 2, we propose new estimators using the 
concept of the penalized smoothing spline regression and 
the MGR regression. In Section 3, we show the target mean 
squared error (MSE) of a predicted value of Y . We then 
propose the pC  and pMC  criteria to optimize ridge pa-
rameters and smoothing parameter in the new estimator. 
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Using these criteria, we show that the optimized ridge pa-
rameters are obtained in closed form under the fixed  . 
We also show the magnitude relationship between the op-
timized ridge parameters. In Section 4, we compare the LS 
estimator in (3) with the proposed estimator through nu-
merical studies. In Section 5, we present our conclusions. 
 
2. The New Estimators 
 
In the model (1), we consider estimating the longitudinal 
trends nonparametrically by using basis functions X . 
Then, we consider the following estimators in order to 
avoid the overfitting problem in the nonparametric 

GMANOVA model,   11ˆ nn      μ X X K X Y 1  and 

 
   

,1 ,

1 1

ˆ ˆˆ , , 'k  

 



   A A A YX X X K

Ξ ξ ξ
     (5) 

where  0   is a smoothing parameter and K is a 

q q  known penalty matrix. In this estimator, we must 

determine K  before using this estimator. Since K  is 
usually set as some nonnegative definite matrix, we as-
sume that K is a nonnegative definite matrix. If 

,q q K O , where ,q qO is a q q  matrix of zeros, then 

this estimator corresponds to the LS estimators μ̂  and 

Ξ̂  in (1). Note that this estimator controls the smooth-

ness of each estimated curve    0
ˆ ˆ't t   x μ  and 

    ,
ˆˆ 'j jt t   x ξ ,  1, ,j k   through only one pa-

rameter  . When we use this estimator, we need to op-
timize the parameter   because this estimator changes 
with  . 

If multicollinearity occurs in A , then the LS estima-

tor Ξ̂  in (1) and the proposed estimator ˆ
Ξ  in (5) are 

not good estimators in the sense of having large variance. 
Note that neither the LS estimator μ̂  nor the proposed 

estimator ˆ μ  depend on A . Hence, we avoid the mul-

ticollinearity problem for estimating Ξ . Multicollinear-
ity often occurs when k  becomes large. Using the fol-
lowing estimator, the multicollinearity problem in A  
can be avoided, 

 
 

,1 ,

1 1

ˆ ˆˆ , , '

( )

k

k

 

  



    A A I A YX X X K

Ξ ξ ξ
     (6) 

where 0   is a ridge parameter. This estimator with 

qK I  corresponds to the estimator of [16]. If 0  , 
then this estimator corresponds to the estimator in (5). 
Note that   1

k  A A I A Y  in this estimator corre-
sponds to the ridge estimator for a multivariate linear 
model [17]. In this estimator, we need to optimize   
and   because this estimator changes with these pa-

rameters. However, we cannot obtain the optimized   
and   in closed form. Thus, we need to use an iterative 
computational algorithm to optimize two parameters. 
From another point of view, this estimator controls the  

smoothness of each estimated curve   ,
ˆˆ 'j jt   x ξ , 

 1, ,j k   through only one parameter  . Hence, 

this estimator is not a well fitting curve when the 
smoothnesses of the true curves differ. 

Hence, we apply the concept of the MGR estimator 

[18] to   1

k  A A I A Y  in order to obtain the opti-

mized ridge parameter in closed form. Here, we derive 
the MGR estimator for the nonparametric GMANOVA 
model as follows: 

   1 1
,

ˆ
       A A Q Q A YX X X KθΞ Θ   (7) 

where  1, , 'k θ  , ( 0, 1,..., )i i k    is also a ridge 

parameter,  diag θΘ , and Q  is the k k  or-

thogonal matrix that diagonalizes A A , i.e., 
  Q A AQ D  where  1diag , , kd dD   and 

1, , kd d  are eigenvalues of A A . It is clearly that 

0id  ,  1, ,i k  . In this estimator, since θ  shrinks 

the estimators of  j t ,  1, ,j k   to 0, we can re-

gard θ  as controlling the smoothness of 

   1 , , kt t  . Therefore, in this estimator, rough 

smoothness of the estimated curves is controlled by  , 

and each smoothness of  j t ,  1, ,j k   is con-

trolled by θ . 

Clearly, ,0
ˆ ˆ

k
0Ξ Ξ  and ,

ˆ ˆ
k  0Ξ Ξ . The ,

ˆ
θΞ  with 

kθ 1  for some   0  corresponds to ,
ˆ
 Ξ  in (6). 

Thus, the estimator ,
ˆ

θΞ  includes these estimators. The 

estimator ,
ˆ

θΞ is more flexible than these estimators 

ˆ
Ξ and ,

ˆ
 Ξ because ,

ˆ
θΞ has 1k   parameters and 

ˆ
Ξ or ,

ˆ
 Ξ  has only one or two parameters. Hence, we 

consider ˆμ and ,
ˆ

θΞ in estimating the longitudinal 

trends or the varying coefficient curve, while avoiding 
the overfitting and multicollinearity problems in the 
nonparametric GMANOVA model. When pX Ι  and 

,q q K O , ,
ˆ

θΞ  corresponds to the MGR estimator in 

[18]. 

3. Main Results 

3.1. Target MSE 

In order to define the MSE of the predicted value of 
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Y , we prepare the following discrepancy function for 
measuring the distance between n p  matrices 1F  

and  

      1
1 2 1 2 1 2, tr 'r   F F F F F FΣ : 

Since Σ  is an unknown covariance matrix, we use 
the unbiased estimator S  in (2) instead of Σ  to 

estimate  1 2,r F F . Hence, we estimate  1 2,r F F  

using the following sample discrepancy function: 

      1
1 2 1 2 1 2ˆ , tr 'r   F F F F S F F      (8) 

These two functions,  1 2,r F F and  1 2ˆ ,r F F , cor-

respond to the summation of the Mahalanobis distance 
and the sample Mahalanobis distance between the rows 
of 1F  and 2F , respectively. Clearly,  1 2,r F F  

 2 1,r F F  and    1 2 2 1ˆ ˆ, ,r rF F F F . Through simple 

calculation, we obtain the following properties: 

     
  

1 2 3 1 3 2 ,
1

1 3 2

, , ,

2tr ,
n pr r r


  

 
F F F F F F

F F F
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1 2 3 1 3 2 ,
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1 3 2
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n pr r r


  

 
F F F F F F

F F S F

O
 

for any n p  matrices 1F , 2F  and 3F ， Using 

the discrepancy function r , the MSE of the predicted 
value of Y  is defined as  

  , ,
ˆ ˆMSE , ,E r E 

        θY θY Y        (9) 

where , ,
ˆ ˆˆn     θY μ X A Xθ1 Ξ , which is the predicted 

value of Y  when we use ˆμ  and ,
ˆ

θΞ  in (7). In the 

present paper, we regard θ  and   making the MSE 
the smallest as the principle optimum. However, we 
cannot use the MSE in (9) in actual application because 
this MSE includes unknown parameters. Hence, we 
must estimate (9) in order to estimate the optimum θ  
and  . 
 

3.2. The pC  and pMC  Criteria 

 

Let   1   θH A A A Q Q AΘ and   1

    G X X X K X . 

Note that  E Y Y E . Hence, we obtain 

 , ,
ˆ ˆMSE , .E r 

        θ θY Y E Y  

From the properties of the function r and using 

   1 1tr trE E        Y E E EΣ Σ , since  E Y  is a 

nonstochastic variable and   ,n pE  OE , and 

    4 4tr trE E   F F  for any square matrix 4F , we 

obtain 
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1
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1
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1
,

1
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1
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ˆ, tr
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E
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Note that     1
,

ˆ
n nn E 

   θ θY H1 1 Y E G .Thus, 
we can calculate  1

,
ˆtrE 

   θY Σ E  as follows: 

 
     

  

1
,

1 1

1 1

ˆtr

tr

tr ,

n n

n n

E

E n E

n E









 

 

   
      

     

θ

θ

θ
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H EG E
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1 1 Σ
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because  E Y , G  and 1Σ are non-stochastic  

variables. For calculating the expectations in the MSE, 
we prove the following lemma. 

Lemma 3.1. For any p p  non-stochastic matrix 

J , we obtain  1 tr nE    EJΣ E J I . 

proof. Since  1, , 'nE ε ε , we obtain the  ,i j th 

element of 1E   EJ EΣ  as 1
i jE   ε J εΣ ,  1, , ;i n   

1, ,j n  . We obtain ,i j i jE    ε ε Σ  because iε  jε  

for any i j  and  Cov i ε Σ  for any i , where ,i j  

is defined as , 1i j   if i j  and , 0i j   if i j . 

Hence we obtain 1
i jE    ε εJΣ  1

,tr i j  JΣ Σ  

 , tri j J . This result means that  1 tri jE    ε ε JJΣ  

if i j  and 1 0i jE    ε J εΣ  if i j . Thus, the 

lemma is proven. 
Using this lemma, we obtain  1trE np   EΣ E  

and    1tr tr nE  
   EG E IΣ G . Hence, we obtain 
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1
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1

,
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θ

θ

θ θ

Y Y Y

H G I
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By replacing  ,
ˆ,E r 

 
  θY Y  with  ,

ˆˆ ,r θY Y , we can 

propose the instinctive estimator of MSE, referred to as 
the pC  criterion, as follows: 

        ,
ˆˆ, , 2tr tr 1 .pC r np     θ θθ Y Y G H (10) 

When we use this criterion, we optimize the ridge pa-
rameter θ  and the smoothing parameter   by the 
following algorithm: 

1) We obtain    (C)ˆ arg min ,pC  θθ θ , where 

      (C) (C) (C)
1

ˆ ˆ ˆ, , 'k    θ   

  (C)ˆ 0, 1, ,i i k      if   is given. 

2) We obtain   (C) (C)
0

ˆ ˆarg min ,pC   θ . 

3) We obtain    (C) (C) (C)ˆ ˆ ˆarg min ,pC θ θθ , 

where        C(C) (C) (C) (C) (C)
1

ˆ ˆ ˆ ˆ ˆ ˆ, , 'k    θ  ,

  (C) (C)ˆ ˆ 0, 1, ,i i k      under fixed (C)̂ . 

4) We optimize the ridge parameter and the smoothing 

parameter as     C Cˆ ̂θ  and  Ĉ , respectively. 

Note that this pC  criterion corresponds to that in [18] 

when pX I  and ,q q K O . 

There is some bias between the MSE in (9) and the 

pC  criterion in (10) because the pC  criterion is ob-

tained by replacing  ,
ˆ,E r 

 
  θY Y in the MSE 

with  ,
ˆˆ ,r θY Y . Generally, when the sample size n  is 

small or the number of explanatory variables k  is large, 
this bias becomes large. Then, we cannot obtain the high-
er-accuracy estimation of the optimum parameters be-
cause we cannot obtain the higher-accuracy estimation of 

MSE of ,
ˆ

θY in (9). Hence, we correct the bias between 

,
ˆMSE 

 
 θY  and the pC criterion. To correct the bias, 

we assume 2 0n k p    .  

Let  1n k  W S and    , , ,
ˆ ˆ'    θ θ θW Y Y Y Y .  

      1
, ,

ˆ, 1 [tr .pE r n k E 
        θ θY Y W W W I  

Note that  1,pW n k W  Σ and , θW W  1W  

because n k A 1 0  and  1
,( )n k p

   A I A A A A O . 

Then, we obtain 

Since  1 1 / 2E n k p       W Σ ,  E W

 1n k  Σ  (see, e.g., [14]) and  1
,tr E 

   θW Σ  

 ,
ˆ,E r 

 
  θY Y , we obtain 

 
  

    

,

1
,

,

ˆˆ ,

1
tr 2

2
1 ˆ, 1

2

p

E r

n k
E n k p

n k p
n k

E r p p
n k p









 
  
           
         

θ

θ

Y Y

W W I

θ

Σ

Y Y

 

Therefore, we obtain the unbiased estimator for 

 ,
ˆ,E r 

 
  θY Y as    M ,

ˆˆ , 1c r p p  θY Y , where 

   M 1 1 / 1c p n k     . This implies that the bias 

corrected pC criterion, denoted as pMC (modified pC ) 

criterion, is obtained by 
     

    
M ,

ˆˆ, , 1

2tr tr 1 .

pMC c r p p n



    

 

θ

θ

θ Y Y

G H
   (11) 

As in the case of using the pC , we optimize θ  and 

  using this criterion as follows: 

1) We obtain    (M)ˆ arg min ,pMC  θθ θ , where 

      (M) (M) (M)
1

ˆ ˆ ˆ, , 'k    θ  ,  

  (M)ˆ 0, 1, ,i i k      if   is given. 

2) We obtain   (M) (M)
0

ˆ ˆarg min ,pMC   θ . 

3) We obtain    (M) (M) (M)ˆ ˆ ˆarg min ,pMC  θθ θ , 

where       (M) (M) (M) (M) (M) (M)
1

ˆ ˆ ˆ ˆ ˆ ˆ, , 'k    θ  , 

  (M) (M)ˆ ˆ 0, 1, ,i i k      under fixed (M)̂ . 

4) We optimize the ridge parameter and the smoothing 

parameter as  (M) (M)ˆ ̂θ  and (M)̂  , respectively. 

Note that the pMC criterion corresponds to that in 

[18] when pX I  and ,q q K O . The pMC criterion 

completely omits the bias between the MSE of ,
ˆ

θY  in 

(9) and the pC  criterion in (10) by using a number of 

constant terms Mc and  1p p  . If  (C)ˆ θ  and 

 (M)ˆ θ  can be expressed in closed form for any fixed 

0  , we do not need the above iterative computational 
algorithm. 
 
3.3. Optimizations using the pC and pMC Criteria 

 

Using the generalized pC  pGC  criterion, which is 
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given in (14), we can express the pC  and pMC  crite-

ria as follows: 

     
       M

, , |1 2tr ,

, , | 2tr 1

p p

p p

C GC np

MC GC c p p n





 

 

  

    

θ θ G

θ θ G
 

Note that the terms with respect to θ  in the pC  and 

pMC criteria correspond to  , |1pGC θ and 

 M, |pGC cθ , respectively. Hence, we consider ob-

taining the optimum θ  by minimizing the pGC  crite-

rion. From Theorem A, the optimum θ  is obtained in 
closed form as (15). Using the closed form in (15), we 

obtain  (C)ˆ
i   and  (M)ˆ

i   for each 1, ,i k   

and 
any fixed 0   as follows: 

       
    

   
   

       

 

C G

C

C
C C

C

ˆ ˆ |1

0 0

( 0 ) ,
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i i
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i i
i i ii

i ii
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d t
t t u

t u
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M M
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0 (0 )
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otherwise

i i
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i i
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t

d t
t t c u

t c u

   



 




 

    




 

(13) 
where iiu and iiv are the  ,i i th elements of 

1
 

  Q A YG S G Y AQ  and 1


  Q A YS G Y AQ , respec-

tively,      (C) |1 - tri i ii ii it t v u d     G and 

       (M)
M M| - tri i ii ii it t c c v u d     G . Note that 

iiu  and iiv  vary with  . Since  (C)ˆ θ  and 

 (M)ˆ θ  are regarded as a function of  , we can re-

gard the pC  and pMC  criteria for optimizing θ  and 

  in (10) and (11) as a function of  . This means that 
we can use these criteria to optimize  . 

Then, we can rewrite the optimization algorithms to 
optimize the ridge parameter θ  and the smoothing 
parameter   by minimizing the pC  and pMC  crite-

ria in (10) and (11) as follows: 

1) We obtain   (C) (C)
0

ˆ ˆarg min ,pC   θ  and 

  (M) (M)
0

ˆ ˆarg min ,pMC   θ . 

2) We optimize the ridge parameter and the smoothing 

parameter as  (C) (C)ˆ ̂θ  and  (M) (M)ˆ ̂θ , respectively, 

by using (C)̂ , (M)̂  and the closed forms in (12) and 
(13). 

This means that we can reduce the processing time to 
optimize the parameters, and we need to use the optimi-
zation algorithm for only one parameter,  , for any k . 
 
3.4. Magnitude Relationships between  

Optimized Ridge Parameters 
 
In this subsection, we prove the magnitude relationships 

between  (C) (C)ˆ ˆ
i   and  (M) (M)ˆ ˆ

i  ,  1, ,i k  . 

Lemma 3.2. For any 0  , we obtain  tr 0 G . 

proof. Since we assume K  as a nonnegative definite 
matrix, there exists L  that satisfies K L L  (see, e.g., 
[3]). Then, since 0  , we have   X X K  

  1/2 1/2, , '    X L X L . Hence,  X X K  is a non-

negative definite matrix. This means that all of the ei-
genvalues of  X X K  are nonnegative. Hence, all of 

the eigenvalues of   1  X X K  are nonnegative. Thus, 

  1  X X K  is also a nonnegative definite matrix for 

any 0  . Since   1

    G X X X K X , we obtain 

G as a nonnegative definite matrix for any 0  . Thus, 

the lemma is proven. 
Using the same idea, we have  tr 0θH  for any θ , 

( 0, 1,..., )i i k   . Therefore, the final terms of the pC  

and pMC  criteria in (10) and (11) are always greater 

than  tr 0 G . In order to prove the magnitude rela-

tionship between  (C) (C)ˆ ˆ
i   and  (M) (M)ˆ ˆ

i  , we 

consider two situations in which (C) (M)ˆ ˆ   is satisfied 

and (C) (M)ˆ ˆ   is satisfied. 

First, we consider (C) (M)ˆ ˆ   to be satisfied. Let 
(C) (M)ˆ ˆ ˆ     ˆ 0  . Using ̂ , we obtain the fol-

lowing corollary: 

Corollary 3.1. For any ˆ 0  , we obtain  (C)
M

ˆ
ic t    

 (M) ˆ
it  . 

proof. Through simple calculation, we obtain 

      (C) (M)
ˆM M

ˆ ˆ tr 1 .i i ic t t d c   G  

Since 0id  , M0 1c   and  ˆtr 0


G  from 
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lemma 3.1, the corollary is proven. 

This corollary indicates that  (C) ˆ 0it    is satisfied 

when  (M) ˆ 0it    is satisfied because M 0c  , and 

 (C) ˆ 0i iit u    is satisfied when  (M)
M

ˆ 0i iit c u    

is satisfied because     (C) (M)
M M

ˆ ˆ
i ii i iic t u t c u     

and M 0c  . Using these relationships, we obtain the 

following theorem. 

Theorem 3.1. For any ˆ 0  , we obtain  (M)ˆ ˆ
i    

 (C)ˆ ˆ
i  . 

proof. We consider the following situations: 

1)  (M) ˆ 0it    is satisfied, 

2)    (M) (M)
M

ˆ ˆ0i i iit t c u     is satisfied, 

3)  (M)
M

ˆ 0i iit c u    is satisfied. 

In (1),    (M) (C)ˆ ˆ ˆ ˆ 0i i     , because  (C) ˆ 0it   . 

In (3),    (M) (C)ˆ ˆ ˆ ˆ
i i    , because  (M)ˆ ˆ

i   becomes 

 . Hence, we only consider situation (2). Note that 

 (C) ˆ 0i iit u   , because   (C)
M

ˆ 0i iic t u   and 

M 0c  . This means that  (C)ˆ ˆ
i   does not become  . 

This theorem holds when  (C) ˆ 0it   , because, in this 

case,  (C)ˆ ˆ 0i    and  (M)ˆ ˆ 0i   . We also consider 

   (C) (C)ˆ ˆ0i i iit t u    to be satisfied. Then, we ob-

tain 

            
     

(C) (M)
MM C

(M) (C)
M M

ˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ

i ii i i

i i

i ii i ii

d u c t t

t c u t c u

 
   

 


 

 
 

Since 1S is a positive definite matrix, 0iiu  for any 

ˆ 0  . From corollary 3.1, we have    (C) (M)
M

ˆ ˆ
i ic t t   

for any ˆ 0  . Hence we obtain    (M) (C)ˆ ˆ ˆ ˆ
i i     

for any ˆ 0  since 0id  ,  (M)
M

ˆ 0i iit c u    and 

 (C) ˆ 0i iit u   . Thus, this theorem is proven. 

This theorem corresponds to that in [9] when pX I  

and ,q q K O . 

From Theorem 3.1, we obtained the relationships be-

tween  (C) (C)ˆ ˆ
i   and  (M) (M)ˆ ˆ

i   for the case in 

which the optimized smoothing parameters (C)̂  and 
(M)̂  are the same. However, (C)̂  and (M)̂  are op-

timized by minimizing the pC  and pMC  criteria in 

(10) and (11). Hence, (C)̂  and (M)̂  are generally 
different. Thus, we consider the relationship be-

tween  (C) (C)ˆ ˆ
i   and  (M) (M)ˆ ˆ

i   when (C) (M)ˆ ˆ  . 

Since iiu  is regarded as a function of  , we write iiu  

as  (C)ˆ
iiu   and  (M)ˆ

iiu   for each optimized 

smoothing parameter.  
Theorem 3.2. We consider the following situations: 

1)    (C) (C) (C)ˆ ˆ 0i iit u    or  (M) (M)ˆ 0it    is 

satisfied, 

2)      (C) (C) (C) (C) (C)ˆ ˆ ˆ0i i iit t u     and

     (M) (M) (M) (M) (M)
M

ˆ ˆ ˆ0i i iit t c u      are satisfied, 

3)        (C) (C) (M) (M) (M) (C)
M

ˆ ˆ ˆ ˆ
i ii i iic t u t u    is sat-

isfied, 

4)        (M) (M) (C) (C) (C) (M)
M

ˆ ˆ ˆ ˆ
i ii i iit u c t u    is sat-

isfied, 

5)  (C) (C)ˆ 0it    or    (M) (M) (M)
M

ˆ ˆ 0i iit c u   is 

satisfied. 

For any (C)ˆ 0   and (M)ˆ 0  , we obtain the fol-
lowing relationships based on the above situations: 

1) If (1), then    (M) (M) (C) (C)ˆ ˆ ˆ ˆ
i i    , 

2) If (2) and (3), then    (M) (M) (C) (C)ˆ ˆ ˆ ˆ
i i    , 

3) If (2) and (4), then    (C) (C) (M) (M)ˆ ˆ ˆ ˆ
i i    , 

4) If (5), then    (C) (C) (M) (M)ˆ ˆ ˆ ˆ
i i    . 

proof. In (1) and (5), the relationships (i) and (iv) are 
true. Hence we need only prove relationships (ii) and (iii). 

Then we obtain  (C) (C)ˆ ˆ
i   and  (M) (M)ˆ ˆ

i   using the 

closed forms of (12) and (13). Through simple calcula-
tion, we obtain 

Since 0id  and the denominator is positive, the 

sign of    (M) (M) (C) (C)ˆ ˆ ˆ ˆ
i i    is the same as the sign 

of        (C) (C) (C) (M) (M) (M)
M

ˆ ˆ ˆ ˆ
i ii i iic t u t u    . Hence 

we obtain relationships (ii) and (iii). Thus, the theorem is 
proven. 
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4. Numerical Studies 
 

In this section, we compare the LS estimator μ̂  and Ξ̂  

in (3) with the proposed estimator ˆμ  and ,
ˆ

θΞ  in (7) 

through a numerical study. Let  diag 1, ,rR r  , and 

let  r Δ  be an r r  matrix as follows: 

 

2 1

2

2 3

1 2 3

1

1

.1

1

r

r

r
r

r r r

  

  
   

  







  

 
 
 
   
 
 
 
 

    

Δ

…

…

…

　 　 　 　

…

 

The explanatory matrix A  is given by 1/2A NΨ  

where  1/2 1/2
k k a k R RΨ Δ , N  is an n k  matrix 

and each row vector of N  is generated from the inde-
pendent k -dimensional normal distribution with mean 

k0  and covariance matrix kI . Let im ,  1, ,12i    

be a p -dimensional vector. We set each im  as fol-

lows: 

   
   
   
   
   
 

2 1.5 1 2 1.5 2
1 2

2 2.0 1 2 2.0 2
3 4

2 2.5 1 2 2.5 2
5 6

3 1.5 1 3 1.5 2
7 8

3 2.0 1 3 2.0 2
9 10

3 2.5 1
11

; , , , ; , , ,

; , , , ; , , ,

; , , , ; , , ,

; , , , ; , , ,

; , , , ; , , ,

; , , ,

e e e e e e

e e e e e e

e e e e e e

e e e e e e

e e e e e e

e e e

 

 

 

 

 



 

 

 

 

 



m h t m h t

m h t m h t

m h t m h t

m h t m h t

m h t m h t

m h t  3 2.5 2
12 ; , , ,e e em h t

 

where  1, , 'pt  and the i th element of 

 1 2 3; , ,z z zh t  is    3

1 21 exp
z

iz z t  . Each element of 

 1 2 3; , ,z z zh t  is Richard's growth curve model [12]. 

We set the longitudinal trends using these im  as 

 1( ) , , 'k kM t m m . Note that 6i ie m m ,  1, ,6i   , 

which indicates that the last six rows of  12M t  are ob-

tained by changing the scale of  6M t . The response 

matrix Y  is generated by   ,n p k nN  AM t IΣ  

where  1/2 1/2
p p y p R RΣ Δ . Then, we standardized 

A . Let  1 2,1, 2,1, 'i i q i    k 0 0 ,  1, , 2i q   and 

  1 2 1 2, , , , 'q q K k k k k  . We set each element of 

X  as a cubic B -spline basis function. Since X  is set 
using the cubic B -spline, we note that 3 q p  . Ad-

ditional details concerning K  and X  are reported in 

[2]. We simulate 10,000  repetitions for each n , p , 

k , a  and y . In each repetition, we fixed A , but 

Y  varies. We search  Ĉ and  M̂ using fminsearch, 
which is a program in the software Matlab used to search 

for a minimum value, because  Ĉ  and  M̂  cannot 

be obtained in closed form. In searching  Ĉ and  M̂ , 

we transform  ' exp  and search optimized ' by 

each criterion because (C)ˆ 0  and (M)ˆ 0  . In the 
search algorithm, the starting point for the search is set as 

0  . Then, we obtain the optimized ridge parameters 
(C) (C)ˆ ˆ( )i  and (M) (M)ˆ ˆ( )i  using the closed forms of (12) 

and (13) in each repetition. In each repetition, we need to 
optimize q because X and K vary with q . We calcu-

late  (C) (C) (C)ˆ ˆ ˆ( ),pC  θ and  (M) (M) (M)ˆ ˆ ˆ( ),pMC  θ  

for each 3,...,q p  in each repetition. Then, we adopt 

the optimized q  by minimizing each criterion in each 

repetition. After that, we calculate 

for     ˆ ˆ ˆ( ),
ˆ,r E np

 θ
Y Y  each criterion, where 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ), ( ),
ˆ ˆˆ ' 'n    

 
θ

Y μ X A X
θ

1 Ξ , which is obtained using 

̂  and  ˆ ̂θ  for each criterion and the optimized q  

in each repetition. The average of   ˆ ˆ ˆ( ),
ˆ,r E

 θ
Y Y  over 

10,000  repetitions is regarded as the MSE of ˆ ˆ ˆ( ),
ˆ

 θ
Y . 

We compare the values predictedusing the estimators 

ˆˆ

μ  and ˆ ˆ ˆ( ),

ˆ
 θ

Ξ with those using the LS estimators μ̂  

and Ξ̂ , and the estimators ˆˆ

μ  and ˆ

ˆ


Ξ  in (5). When 

we use ˆ
ˆ


Ξ , we obtain ̂  by minimizing  ,p kC 0  

and  ,p kMC 0 . As in the case of using ˆ ˆ ˆ( ),
ˆ

 θ
Ξ , we 

adopt q  by using each criterion in each repetition for 

Ξ̂  and ˆ
ˆ


Ξ . Some of the results are shown in Tables 1 

and 2. The values in the tables are obtained 

by  ˆ ˆ ˆ( ),
ˆMSE / np

 
 
 θ
Y , 

 ˆ
ˆMSE np


 
 Y where ˆ ˆ ˆ

ˆ ˆˆn  
   Y μ X A X1 Ξ ,and

 ˆMSE np 
 Y  where ˆ ˆˆn    Y μ X A X1 Ξ . 

Each estimator optimized by using the pMC  crite-
rion for  , θ̂ , and q  is more improve than that by 
using the pC  criterion for each estimator in almost all 
situations. This indicates that the pMC  criterion is a 
better estimator of the MSE of each predicted value of 
Y  than the pC  criterion. The reasons for this are that 
the pMC  criterion is an unbiased estimator of MSE  
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Table 1. MSE when q is selected using each criterion for each method in each repetition ( 6)k  . 

Using ˆ ˆ ˆ( ),
ˆ

 θ
Y  Using ˆ

ˆ
Y  Using Ŷ  

y  a  p  n  
pC  pMC  pC  pMC  pC  pMC  

0.2 0.2 5 30 0.127 0.123 0.133 0.125 0.206 0.199 

   50 0.080 0.079 0.082 0.080 0.121 0.119 

  10 30 0.119 0.098 0.121 0.090 0.168 0.119 

   50 0.063 0.058 0.062 0.056 0.080 0.070 
 0.8 5 30 0.110 0.101 0.143 0.135 0.206 0.199 
   50 0.067 0.065 0.088 0.086 0.122 0.119 
  10 30 0.111 0.080 0.128 0.093 0.170 0.119 
   50 0.056 0.049 0.063 0.057 0.080 0.070 
 0.99 5 30 0.090 0.078 0.147 0.140 0.207 0.199 
   50 0.054 0.050 0.090 0.088 0.122 0.120 

  10 30 0.095 0.060 0.129 0.094 0.169 0.118 
   50 0.045 0.036 0.064 0.058 0.079 0.069 

0.8 0.2 5 30 0.133 0.131 0.154 0.147 0.208 0.201 
   50 0.087 0.086 0.093 0.092 0.122 0.120 

  10 30 0.123 0.101 0.136 0.106 0.179 0.133 

   50 0.069 0.065 0.070 0.065 0.089 0.080 

 0.8 5 30 0.113 0.103 0.159 0.153 0.207 0.200 

   50 0.066 0.063 0.094 0.092 0.122 0.120 

  10 30 0.108 0.074 0.140 0.107 0.178 0.131 

   50 0.055 0.047 0.072 0.065 0.088 0.078 

 0.99 5 30 0.092 0.078 0.162 0.156 0.208 0.201 

   50 0.053 0.049 0.095 0.094 0.122 0.120 

  10 30 0.096 0.059 0.142 0.108 0.178 0.131 
   50 0.046 0.037 0.073 0.066 0.087 0.078 

Average 0.086 0.074 0.110 0.098 0.147 0.130 

 
Table 2. MSE when q is selected using each criterion for each method in each repetition ( 12)k  . 

Using ˆ ˆ ˆ( ),
ˆ

 θ
Y  Using ˆ

ˆ
Y  Using Ŷ  

y  a  p  n  
pC  pMC  pC  pMC  pC  pMC  

0.2 0.2 5 30 0.299 0.292 0.312 0.296 0.383 0.364 

   50 0.184 0.183 0.183 0.180 0.222 0.217 
  10 30 0.317 0.247 0.326 0.226 0.382 0.248 
   50 0.146 0.137 0.146 0.134 0.165 0.150 
 0.8 5 30 0.285 0.279 0.313 0.295 0.384 0.365 
   50 0.175 0.173 0.182 0.179 0.223 0.218 
  10 30 0.305 0.223 0.329 0.216 0.378 0.226 
   50 0.145 0.132 0.145 0.129 0.155 0.135 
 0.99 5 30 0.224 0.204 0.314 0.296 0.383 0.364 
   50 0.142 0.138 0.183 0.180 0.222 0.218 
  10 30 0.270 0.173 0.330 0.211 0.377 0.221 
   50 0.134 0.119 0.143 0.123 0.148 0.127 

0.8 0.2 5 30 0.323 0.321 0.342 0.331 0.387 0.368 
   50 0.204 0.204 0.205 0.203 0.224 0.219 
  10 30 0.330 0.277 0.344 0.256 0.389 0.282 
   50 0.165 0.153 0.167 0.152 0.178 0.159 
 0.8 5 30 0.298 0.294 0.337 0.321 0.385 0.367 
   50 0.191 0.191 0.200 0.197 0.224 0.220 
  10 30 0.309 0.244 0.346 0.251 0.386 0.265 
   50 0.161 0.150 0.166 0.151 0.175 0.159 
 0.99 5 30 0.228 0.208 0.338 0.322 0.386 0.368 
   50 0.142 0.137 0.199 0.196 0.223 0.219 
  10 30 0.263 0.170 0.347 0.236 0.384 0.247 
   50 0.126 0.106 0.161 0.139 0.166 0.145 

Average 0.086 0.074 0.110 0.098 0.289 0.245 
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and each of the parameters in each estimator is optimized 
by minimizing the pMC  criterion. When 6k  , ,

ˆ
θΞ  

provides a greater improvement than either ˆ Ξ  or Ξ̂  
in all situations. The estimator ,

ˆ θΞ , which is optimized 
using the pMC  criterion, has the smallest MSE among 
these estimators for almost situations when 6k  . Here, 
ˆ Ξ  provides a greater improvement than Ξ̂  when 

6k   in all situations. When a  is large, the estimator 
,

ˆ θΞ  provides a greater improvement than ˆ Ξ  in most 
situations when 12k  . On the other hand, ˆ Ξ  pro-
vides a greater improvement than ,

ˆ
θΞ  in most situa-

tions when a  is small, 12k   and 10p  . If 
12k  , then ,

ˆ θΞ  and ˆ Ξ  improve the LS estimator. 
Comparing the results for 6k   with the results for 

12k   reveals that these estimators become poor esti 
mators when k  becomes large. The reasons for this are 
thought to be that 1S  and A  become unstable and 
the  12M t  has some curves that are in a different scale. 
Each MSE using each method and the pC  criterion is 
similar to that using the pMC  criterion if n  becomes 
large because Mc  is close to 1. When a  becomes 
large, ,

ˆ
θΞ  improves the LS estimator more than when 

a  is small. Since a  controls the correlation in A , 
the multicollinearity in A  becomes large when a  
becomes large. Then, ˆ

Ξ  is not a good estimator be-
cause   1A A  is unstable. Hence, we can avoid the 
multicollinearity problem in A  by using ,

ˆ
θΞ , which 

is one of the purposes of the present study. In all situa-
tions, the new estimators improve the LS estimator Ξ̂ . 
In addition, ,

ˆ
θΞ  is better than ˆ

Ξ  in most situations, 
especially when k  is small or a  is large. In general, 

,
ˆ

θΞ  optimized using pMC  is the best method. 
 
5. Conclusions 
 
In the present paper, we estimate the longitudinal trends 
nonparametrically by using the nonparametric 
GMANOVA model in (1), which is defined using basis 
functions as X  in the GMANOVA model. When we 
use basis functions as X , the LS estimators μ̂  and Ξ̂  
incur overfitting. In order to avoid this problem, we pro-
posed ˆμ  and ˆ

Ξ  in (5) using the smoothing parame-
ter   0  and the q q  known penalty non-negative 
definite matrix K . However, if multicollinearity occurs 
in A , Ξ̂  and ˆ

Ξ  are not good estimators due to large 
variance. In the present paper, we also proposed ,

ˆ
θΞ  in 

(7) in order to avoid the multicollinearity problem that 
occurs in A  and the overfitting problem by using basis 
functions as X . The estimator ˆ

Ξ controls the smooth-
ness of each estimated longitudinal curve using only one 
parameter  . On the other hand, in the estimator ,

ˆ
θΞ , 

the rough smoothness of estimated longitudinal curves is 
controlled using , and each smoothness of  1 , ,t   

 k t  in the varying coefficient model (4) is controlled 
by θ . 

We also proposed the pC  and pMC  criteria in (10) 

and (11) for optimizing the ridge parameter θ  and the 
smoothing parameter  . Then, using the pGC  crite-

rion in (14) and minimizing this criterion in Theorem A, 
we obtain the optimized θ  using the pC  and pMC  

criteria in closed form as (12) and (13) for any . Thus, 
we can regard the pC  and pMC  criteria as a function 

of  . 
Hence, we need to optimize only one parameter   in 

order to optimize 1k   parameters in ,
ˆ

θΞ using these 
criteria. On the other hand, we must optimize two pa-
rameters when we use ,

ˆ
 Ξ  in (6). This optimization is 

difficult and requires a complicated program and a long 
processing time for simulation or analysis of real data 
because the optimized   cannot be obtained in closed 
form even if   is fixed. This is the advantage of using 

,
ˆ

θΞ . This advantage does not appear to be important 
because of the high calculation power of CPUs. However, 
this advantage is made clear when we use ,

ˆ
θΞ  together 

with variable selection. Even if k  becomes large, then 
this advantage remains when ,

ˆ
θΞ  is used because the 

optimized θ  obtained using each criterion is always 
obtained as (12) and (13) for any k . Furthermore, we 
must optimize q  if we use model (1) to estimate the 
longitudinal trends. This means that we optimize the pa-
rameters in the estimators and calculate the valuation of 
the estimator for each q , and then we compare these 
values in order to optimize q . Since this optimization 
requires an iterative computational algorithm, we must 
reduce the processing time for estimating the parameters 
in the estimator. Hence, the advantage of using ,

ˆ
θΞ  is 

very important. This optimized ridge parameter in (12) 
and (13) corresponds to that in [18] when pX I  and  

,q q K O . 

Using some matrix properties, we showed that 

 tr G  and  tr θH  in the pC  and pMC  criteria are 

always nonnegative. From  tr 0 G  for any 0   

in lemma 3.1, we also established the relationship be-

tween  (C)
it   and  (M)

it   for any 0   in corol-

lary 3.1. Then, in Theorem 3.1, we established the rela-

tionship between  (C) (C)ˆ ˆ
i   and  (M) (M)ˆ ˆ

i   if (C)̂  

and  M̂  are the same, where  Ĉ  and  M̂  are ob-
tained by minimizing the pC  and pMC  criteria. Note 

that this relationship corresponds to that in [9] when 

pX I  and ,q q K O . In Theorem 3.2, we also estab-

lished the relationships between   C(C)ˆ ˆ
i   and 
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  M(M)ˆ ˆ
i   for the more general case, in which  Ĉ  

and  M̂  are different. The reason of the relationship in 

Theorem 3.2 is occurred is that  (C)ˆ
i   and  (M)ˆ

i   

for each 1, ,i k   can be regarded as a function of  . 

The numerical results reveal that ˆ
Ξ  and ,

ˆ
θΞ  have 

some following properties. These estimation methods 
ˆ
Ξ  and ,

ˆ
θΞ  improve the LS estimator in all situations, 

especially when a  is large. This indicates that the 

proposed estimators are better than the LS estimator. 

Even if a  becomes large, we note that ,
ˆ

θΞ  is stable 

because we add the ridge parameter to A A  in the LS 
estimator. This result indicates that the multicollinearity 
problem in A  can be avoided by using the estimator in 
(7). These estimators can be used to estimate the true  
longitudinal trends nonparametrically using basis func-
tions as X  without overfitting. The LS estimator and 
the proposed estimators ˆ

Ξ  and ,
ˆ

θΞ  optimized using 
the pMC  criterion provide a greater improvement than 
the estimators optimized using the pC  criterion in most 
situations. The reason for this is that the pMC  criterion 
is the unbiased estimator of MSE of the predicted value 
of Y . Based on the present numerical study, ˆμ  and 

,
ˆ

θΞ  can be used to estimate the longitudinal trends in 
most situations. In addition, the pMC  can be used to 
optimize the smoothing parameter   and the number of 
basis functions q . Hence, we can use ˆ μ  and ,

ˆ θΞ , 
the parameters θ ,  , and q  of which are optimized 
by the pMC  criterion for estimating the longitudinal 
trends. 
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7. Appendix 
 
7.1. Minimization of the pGC  Criterion 

 
In this appendix, we show that the optimizations using 
the pC  and pMC  criteria in (10) and (11) are obtained 

in closed form as (12) and (13) for any   0 . [9] 

proposed the generalized pC   pGC criterion for the 

MGR regression (originally the pGC  criterion for se-

lection variables in the univariate regression was pro-
posed by [1]). Similar to their idea, we proposed the 

pGC  criterion for the nonparametric GMANOVA mod-

el. 
By omitting constant terms and some terms with re-

spect to   in the pC  and pMC  criteria in (10) and 

(11), these criteria are included in a class of criteria 
specified by   0 . This class is expressed by 

the pGC criterion as 

       ,
ˆ, | , 2tr tr ,pGC r     θ θθ Y Y G H   (14) 

where the function r̂  is given by (8). Note that 

 , |1pGC θ  and  M, |pGC cθ  correspond to the 

terms with respect to θ  in the pC  and pMC  criteria. 

Using this pGC criterion, we can deal systematically 

with the pC  and pMC  criteria for optimizing θ . 

Let       (G) (G) (G)
1

ˆ ˆ ˆ| | , , | 'k       θ  ,

  (G)ˆ | 0, 1, ,i i k       which minimize the pGC  

criterion for any   0 . Then,  (C)ˆ θ  and 

 (M)ˆ θ are obtained as    (C) (G)ˆ ˆ |1 θ θ and 

   (M) (G)
M

ˆ ˆ | c θ θ , respectively. Thus, we can deal 

systematically with the optimizations of θ  when we 
use the pC  and pMC  criteria. This means that we 

need only obtain  (G)ˆ | θ  in order to obtain 

 (C)ˆ θ  and  (M)ˆ θ for any   and some  . If 

 (G)ˆ | θ  is obtained in closed form for any fixed  , 

we do not need to use the iterative computational algo-
rithm for optimizing the ridge parameter θ . In order to 

obtain  (G)ˆ | θ , we obtain  (G)ˆ |i   , 

 1, ,i k   in closed form, as shown in the following 

theorem. 

Theorem A. For any i  and   0 ,  (G)ˆ |i    

is obtained as  

 
  

 
      

 

(G)ˆ |
0 0 |

|
| 0 | ,

|

otherwise

i

i

i i
i i ii

i ii

t

d t
t t u

t u

  
 

 
    

  

 

    




(15) 



I. NAGAI 
 

Copyright © 2011 SciRes.                                                                              OJS 

12 

where      | tri ii ii it v u d      G . 

proof. Since ,
ˆ ˆn    θ θY μ X H YG1  and we use the  

      1 1ˆtr ' ' ' tr ' .n   
   θ θμ X Y S H YG YS G Y H1  

properties of the function r̂  in Section 3.1, we can cal-

culate   ,
ˆˆ ,r θY Y in the pGC  criterion in (14) as fol-

lows: 

     
  

, ,

1

ˆˆ ˆ ˆ ˆ, , ,

ˆ2tr ( ) ' .

n n p

n

r r r  

 


  

  

θ θ

θ

Y Y Y μ X H YG O

μ X Y S H YG

1

1
 

Since  G G for any  , θ θH H  and n kθH 1 0  

for any θ , the second term in the right-hand side of the 
above equation can be calculated as 

Note that    1 1)
        θH A A A Q Q A AQ D Q AΘ Θ   

because Q  is an orthogonal matrix and ' ' Q A AQ D . 

Hence, we obtain the following results: 

   1 1 1tr tr ( ) , 
      θYS G Y H Q A YS G Y AQ D Θ  

 
 
 

,

1

1 1 1

ˆ ,

tr

tr ( ) ( ) .

n pr 

 

 



  



    

θ

θ θ

H YG O

H YG S G Y H

Q A YG S G Y AQ D D DΘ Θ

 

Since D  and   1D Θ  are diagonal matrices, we 

obtain      1 1 2     D Θ D D Θ D D Θ . Hence 

 ,
ˆˆ ,r θY Y  is calculated as 

   
     

,

1 2

ˆˆ ˆ ˆ, ,

2tr tr ,

nr r 

 

 

   

θY Y Y μ X

V D UD D

1

Θ Θ
 

where 1
 

  U Q A YG S G Y AQ and 1


  V Q A YS G Y AQ . 

Clearly, U  and V  change with  . Based on this 

result and     tr tr θH D D
-1

Θ , we can calculate 

the pGC  criterion in (14) as follows: 

      
   

2

1

ˆ ˆ, | , tr

2tr tr ( ) .

p nGC r 



   







   

  

θ Y μ X UD D

V G D D

1 Θ

Θ
 

Then, we calculate the second and third terms in the 
right-hand side of the above equation as follows: 

      

 
 

2 1

2
1

tr 2tr tr

tr
2 ,

k
ii ii ii

i ii i i

v dd u

dd





 




 



   

    
  



UD D V G D D

G

Θ Θ

 

where iju  and ijv  are the  ,i j th element of U  and 

V , respectively. Clearly, iju  and ijv  also vary with 

 . Note that 0iiu  ,  1, ,i k   for any 0   be-

cause 1S  is a positive definite matrix (see, e.g., [3]). 

Let  , |i i    ,  1, ,i k   be as follows: 

 
 

 
2

tr
, | 2 .ii ii ii

i i
i ii i

v dd u

dd


   




 



G
  (16) 

Using  , |i i    , we can express 

     
1

ˆ ˆ, | , ' ' , | .
k

p n i i
i

GC r       


 θ Y μ X1  

Since  ˆ ˆ, ' 'nr  Y μ X1  does not depend on θ , we 

can obtain  (G)ˆ |i    by minimizing  , |i i    for 

each 1, ,i k   and any    0 . In order to obtain 

 (G)ˆ |i   , we consider the following function for 

w : 

 
 

 
2

tr
2 .ii ii ii

i
ii

v dd u
w

d wd w





 



G
    (17) 

If we restrict w  to be greater than or equal to 0, then 

this function is equivalent to the function  , |i i     

in (16), which must be minimized. Note that 

 lim 0w i w  and  0lim
iw d i w    . Letting 

   i iw w w    , we obtain 

 
 

    3

2
tri i ii ii i i

i

w d u v d d w
d w

      


G  

Let ŵ  satisfy   ˆ| 0i w ww    and ŵ   , then ŵ  

is obtained by  

 
    |

ˆ , if | 0 ,
|
i i

i ii
i ii

d t
w t u

t u

 
  

  


  


 

where      | tri ii ii it v u d      G . Note that 

 i w  in (17) has a minimum value at ŵ , which is 

  ˆ| 0i w ww    and   ˆ| 0i w ww   . Note that the sign of 

 |it    is the same as the sign of   0|i ww  . In order 

to obtain  (G)ˆ |i    0 , we consider the following 

situations: 
1)  | 0it     is satisfied, 

2)  | 0it     and  | 0i iit u     are satis-

fied, 
3)  | 0it     and  | 0i iit u     are satis-

fied. 
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In (1), ˆ 0id w   , because 0iiu   and 0  . In 

addition,    0i iw   for any 0w  , because 

ˆ 0w  , and  | 0it     indicates that the sign of 

  0|i ww   is nonnegative. This means that the mini-

mum value of  i w  in 0w   is obtained when 

0w   in situation (1). In (2), ˆ 0w  , and then the 

minimum value of  i w  in 0w   is obtained when 

ˆw w . In (3), since ˆ iw d   and   0| 0i ww   , we 

obtain    10i i w    2i w  for any 2 1 0w w  . 

Hence,  i w  is minimized when w    in 0w  . 

From the above results, we obtain  (G)ˆ |i    0  as 

follows: 

 
  

 
      

 
 

(G)ˆ |
0 0 |

|
| 0 | ,

|

otherwise

1, , .

i

i

i i
i i ii

i ii

t

d t
t t u

t u

i k

  
 

 
    

  

 

    



 

 

Thus, the theorem is proven. 

Note that  (G)ˆ | θ  corresponds to that in [9] when 

pX I  and ,q q K O . Since we obtain  (C)ˆ θ  and 

 (M)ˆ θ  in closed form as (15) for any  , we must 

optimize only one parameter   in order to optimize 

1k   parameters. The use of ,
ˆ

θΞ is advantageous be-

cause only an iterative computational algorithm is re-
quired for optimizing only one parameter   for any k . 
This means that we can reduce the processing time re-

quired to optimize the parameters in the estimator ,
ˆ

θΞ  

which is defined by (7). When we use ˆ
Ξ  in (5), we 

also need the same iterative computational algorithm to 
optimize only one parameter  . 

On the other hand, when we use ,
ˆ
 Ξ  in (6), the 

pGC  criterion for optimizing   for any fixed   is 

obtained as 

     
1

ˆ ˆ, | , ' ' , | .
k

p n i
i

GC r        


 Y μ X1  

Since we need to minimize  1
, |

k

ii
   

  in order 

to optimize  , we cannot obtain  (G)ˆ |    that 

minimizes this pGC  criterion for ,
ˆ
 Ξ  in closed form, 

even if   is fixed. Thus, we use an iterative computa-

tional algorithm to optimize the parameters   and   
simultaneously. This iterative computational algorithm 
for optimizing two parameters is difficult and requires a 
longer processing time than the optimization of a single 
parameter 
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