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Abstract 
T-wave alternans (TWA), consisting in an alternation of the electrocardiographic (ECG) repolari- 
zation segment (T-wave), is a promising index of the risk of sudden cardiac death. By definition, it 
is characterized by a frequency component, termed fTWA, that matches half heart rate. The heart- 
rate adaptive match filter (AMF) based method is a technique for automatic TWA identification 
from the digital ECG. Aim of the present study was to provide a complete technical description of 
the filter able to explain its methodological principles. The AMF is usually realized as a 6th order 
Butterworth filter with a narrow (0.12 Hz) passing band centered in fTWA. It is applied in a bidirec- 
tional fashion, so that final filtering order is 12. While extracting the TWA component, the AMF 
simultaneously filters out every ECG component including noise and artefacts, and thus results are 
very robust. Goodness of the technique was tested using 8 synthetic ECG tracings corrupted by 
typical noisy factors, such as white random noise, baseline wanderings, heart-rate variability, and 
others. Six ECG tracings were affected by 100 µV TWA, whereas two were not. Results indicate that 
the AMF-based method is able to prevent false-positive and false-negative detections and, thus, 
represents a useful tool for a reliable TWA identification. 
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1. Introduction 
Despite recent advances in the treatment of life-threatening ventricular arrhythmias, sudden cardiac death (SCD; 
an unexpected death due to cardiac causes occurring within an hour of symptom onset in a person with known or 
unknown cardiac disease) remains one of the leading causes of death in developed countries [1]. At the present 
time, patients are selected for clinical evaluation and treatment of ventricular arrhythmias only after they have 
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experienced and survived a major cardiac event. Thus, from a public health viewpoint, identification and treat- 
ment of such high-risk subjects before the occurrence of a cardiac event are expected to have a great impact on 
the problem of SCD [2]. 

The simplest way to diagnose most of the cardiac abnormalities that can lead to SCD is to perform an elec- 
trocardiogram (ECG) test, which is noninvasive, painless and affordable, and provides a recording of the elec- 
trical activity of the heart by means of surface electrodes disposed on the skin in standardized positions. The 
ECG signal is, by its nature, an analog pseudo-periodical signal constituted by the repetition of a typical wave- 
form-complex, representing a cardiac cycle (heartbeat) (Figure 1). At rest cardiac cells are polarized (electrical- 
ly negative inside) but, if electrically stimulated, can temporally depolarize to generate the myocardium contrac- 
tion. Under normal conditions, the electrical impulse is spontaneously generated by the sinoatrial node. Such 
impulse is then propagated throughout the right and left atria via the internodal tracts to stimulate the atrial 
myocardium contraction, generating the P wave. The internodal tracts end in the atrioventricular node which 
delays ventricular contraction, as represented by the PR segment. From the atrioventricular node the electrical 
impulse is propagated to the ventricles through the Bundle of His that splits into the left and right bundle branches, 
which further taper out into numerous Purkinje fibers to stimulate contraction of individual groups of myocardial 
cells. The spread of electrical activity through the ventricles is represented by the QRS complex, which also ob- 
scure most of atrial repolarization. Eventually, the ventricles repolarize, generating the electrocardiographic J 
wave, ST segment, and T and U waves. Nowadays most ECG recorders acquire the ECG signal in digital format, 
so that it can be stored in a computer memory and automatically processed for information extraction. 

Among all the possible causes of SCD there are the abnormalities in the repolarization phase of the heart, 
which are known to be associated to susceptibility to malignant ventricular arrhythmias and SCD [3]. The stan- 
dard indicator of cardiac safety in clinical trials is the QT interval [4], which is measured as the time distance 
between the onset of the Q wave and the offset of the T wave, thus representing the total duration of the contrac- 
tion and subsequent relaxation of the ventricles. The QT-interval measure, however, is strongly method- [5] and 
lead-dependent [6], and thus little reliable. The difficulties in accurately measuring the QT interval, together 
with the clinical observation that not all pronged QT intervals necessarily lead to ventricular arrhythmias [7], has 
stimulated the interest in identifying new alternative markers of abnormal repolarization [8], among which mi- 
crovolt T-wave alternans (TWA) is the most promising one [2] [9]-[16]. 

T-wave alternans (TWA) consists in an alternation of the ECG T-wave amplitude on every-other-beat bases. 
Macroscopic (i.e. visible) forms of TWA are quite rare and may even show alternating T-wave polarity (Figure 
2). Instead, microvolt forms of TWA are more common, but require specifically designed algorithms to be iden- 
tified [17]-[19] because invisible to the naked eye. Both macroscopic and microvolt TWA have been associated 
to malignant ventricular arrhythmias and SCD [2] [9]-[16]. 

The heart-rate adaptive match filter (AMF) based method is a popular technique for automatic TWA identifi- 
cation [20]. It is has been used in several comparative [18] [19] [21] and clinical studies [10] [22]-[26], each of 
which has identified a specific peculiarity of the technique. Nevertheless, a detailed technical description of the 
filter, which allows a clear understanding of its methodological principles, has never been reported. Thus, aim 

 

 
Figure 1. ECG complex relative to a single heartbeat 
showing all typical waves.                         
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Figure 2. ECG affected by macroscopic, visible TWA with alter- 
nating T-wave polarity.                                     

 
of the present study was to provide such a detailed AMF description. A simulation study was then used to dem- 
onstrate the goodness of the AMF-based method in identifying TWA in the typical noisy conditions usually af- 
fecting real ECG tracings. 

2. The Heart-Rate Adaptive Match Filter Based Method 
Ideally, at fixed heart rate (HR), TWA is characterized by a single frequency, by definition equal to half heart 
rate. However, in real clinical ECG tracings some physiologic HR variability always occurs. Consequently, the 
AMF-based method supposes TWA to be characterized by a small frequency band centered in half mean heart 
rate (fTWA), and conceives the AMF as a HR (and, thus, fTWA) adaptive narrow-band passing filter (ideally a 
match filter) with its passing band centered in fTWA. Its implementation consists of a 6th order bidirectional But-
terworth band-pass filter characterized by a 0.12 Hz wide passing band centered in fTWA, which can be thought 
as cascade of a low-pass filter (LPF; cut-off frequency fLPF = fTWA + dfTWA, with dfTWA = 0.06 Hz) and a high- 
pass filter (HPF; cut-off frequency fHPF = fTWA − dfTWA) [20]. The squared module of the AMF is expressed by 
the following equation: 
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In the practical computerized applications involving digital ECG tracings the AMF has to be designed in the 
digital domain. To compute the digital AMF filter coefficients bi and ai (i = 0, 2… 6), bilinear transformation 
with frequency prewarping was used to convert the analog filter into a digital filter. Careful frequency adjust- 
ment guarantees that the analog filter and the digital filter will have the same frequency response magnitude at 
the cut-off frequencies. The AMF transfer function is reported in Equation (2), where the actual values of bi and 
ai parameters depend on HR and sample frequency (a1 = a3 = a5 = 0): 
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An example of digital AMF magnitude and phase responses relative to a mean HR of 80 bpm (or 1.33 Hz) 
and a sampling rate of 200 Hz is displayed in Figure 3. The magnitude response is a narrow passing band 
around 0.67 Hz, which corresponds to half HR, while the phase response is a non-linearly descending curve. 

To avoid distortions due to the non-linearity of the phase response that causes the group delay not to be con- 
stant, the AMF is applied in a bidirectional fashion, that consists in a zero-phase digital filtering procedure per- 
formed by processing the input ECG data in both forward and reverse directions. The overall filter transfer func- 
tion equals the squared magnitude of the original filter transfer function and doubles its order, so that actual fil- 
tering order becomes 12. 
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Figure 3. Digital AMF magnitude and phase responses relative to a mean HR of 80 bpm (fTWA 
= 0.67 Hz).                                                                     

 
Each time the AMF is fed with an ECG, it first computes HR and corresponding fTWA, and then filters out 

every ECG components but the one relative to TWA. Thus, the output of the AMF is an amplitude-modulated 
sinusoidal signal, called the TWA signal, having the same length of the input ECG and characterized by a fre- 
quency which matches fTWA. If really pertaining to TWA (and not, for example, to QRS oscillations which 
match fTWA), the TWA signal maxima and minima have to fall inside in the ECG repolarization segment (ST 
segment and T-wave) (Figure 4). The local amplitude of the TWA signal in correspondence of the ith beat pro-
vides a quantification of the TWA amplitude (TWAAi, in µV) characterizing that beat. If the TWA signal has its 
maxima and minima outside the repolarization segment (as in the presence of QRS alternans, for example), the 
TWAAi values are set to zero (Figure 4). Eventually, in case of an ECG tracing affected by no alternans (of any 
kind), the TWA signal at the output of the AMF reduces to a zero constant signal. Consequently, all the TWAAi 
values are equal to zero. A global measure of TWA amplitude (TWAA) relative to an ECG tracing can be ob- 
tained by averaging all TWAAi values over the number of beats. 

3. Simulation Study 
3.1. Synthetic ECG Data 
Basic tracing of our simulation set-up consisted of an N-fold (N = 64) repeated real digital (sampling rate: 200 
Hz) ECG complex, 0.75 s long, with no visible noise and no baseline wanders. TWA fundamental frequency 
(fTWA) was 0.67 Hz, that is 1/(0.75 × 2 s) or 0.5 cycles per beat. T-wave was identified in a 160 ms window cen- 
tered around the T-wave apex. When present, TWA was obtained increasing the T-wave amplitude of 100 µV. 
Globally, 8 synthetic ECG tracings were considered to include the most typical noise factors affecting clinical 
recordings (Figure 5): 
 no TWA: ideal ECG tracing affected by no TWA and no noise; 
 QRSA: ECG tracings affected by no TWA but by QRS alternans (QRSA) obtained by increasing the QRS 

amplitude of 100 µV; 
 const TWA: ECG affected by a form of TWA which remains constant and equal to 100 µV; 
 linear TWA: ECG affected by a form of TWA which linearly increases from 0 µV to 100 µV and linearly 

decreases from 100 µV to 0 µV; 
 on-off TWA: ECG affected by a form of TWA which instantaneously increases from 0 µV to 100 µV; 
 noise TWA: ECG tracing affected by constant 100 µV TWA and by zero-men white random noise of ± 100 

µV in amplitude; 
 baseline TWA: ECG tracing affected by constant 100 µV TWA and modulated with a sinusoidal baseline 

characterized by a frequency of 0.27 Hz (every 5 beats) and an amplitude of 100 µV.  
 HRV TWA: ECG tracing affected by constant 100 µV TWA and by a HR variability (HRV) of ±25 ms 

around its mean value (0.75 s). 
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Figure 4. Example of T-wave alternans (TWA) and QRS alternans (QRSA).               

3.2. Simulation Results 
Application of the AMF to 8 synthetic ECG tracings provided the 8 TWA signals displayed in Figure 6. TWA 
signal was a zero-constant for the tracing affected by no TWA, while was sinusoidal (100 µV of amplitude) in 
the presence of QRSA. In the latter case, however, its maxima and minima did not occurred in correspondence 
of the ECG repolarization segment. Consequently, TWAA was found to be zero, analogously to what found for 
the former case (Figure 7). For the ECG characterized by constant TWA, a constant-amplitude sinusoidal TWA 
signal was extracted, which allowed identification of a constant TWA of 100 µV of amplitude (Figure 7). Am- 
plitude modulated TWA signals were instead obtained for linearly and instantaneously changing TWA (Figure 
6), which allowed identification values of TWAA close to the simulated ones (Figure 7). In particular estimated 
TWAA overcame the simulated values when TWA was linearly changing (errors between 6 and 22%), whereas 
it showed a transitory trend where the simulated one was instantaneously changing. Also in this latter case, es- 
timated and simulated TWAA values were very close in correspondence of the ECG segments affected by sta- 
tionary TWA (estimated TWAA was between 0 µV and 8 µV instead of zero for the first part of the ECG trac- 
ing, and above 90 µV in the second, with an error < 10%). Eventually, TWAA estimation was not significantly 
affected by the presence of noise (maximum error: 9%) and baseline wanderings (maximum error: 3%), whereas 
in the presence of HR variability the TWAA estimation error reached 20%. 

4. Discussion 
This study describes how adaptive match filtering can be used in a biomedical application finalized to TWA 
identification from digital ECG signals. TWA is a promising indicator of SCD ideally characterized by a fre- 
quency that, by definition, matches half HR (i.e. fTWA). Although TWA is an electrophysiological phenomenon 
which implies stable sinus rhythm, some small variations of the HR are usually acceptable, so that the pheno- 
menon is more properly characterized by a very narrow band around fTWA. Thus, a heart-rate adaptive filter, with 
a narrow passing band appears as a useful tool to extract the frequency components characterizing TWA from an 
ECG tracing. While extracting the TWA signal, the AMF simultaneously filters out any other ECG component, 
including noise and artifacts. Because of this, the AMF-based method for TWA identification is a technique par-
ticularly robust to noise and interferences likely affecting real ECG tracings [21]. Still, other kinds of alterna- 
tions, such as QRSA and some noise components, may fall in the narrow frequency band characterizing TWA, 
jeopardizing its correct identification. To minimize the probability of such occurrence, the phase of the TWA 
signal is analyzed before measuring its amplitude to determine TWAA. The maxima and the minima of the 
TWA signal, which is a pseudo-sinusoid, occur in correspondence of the center of mass of the alternations at 
fTWA present in the ECG signal. If such alternations mostly pertain to the T-waves, such maxima and minima 
must fall in correspondence of such waves. If this is not the case, TWA is not identified. 
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Figure 5. Synthetic ECG tracings (see text for details). Where present, TWA is highlighted by parallel dotted 
lines.                                                                                       



L. Burattini et al. 
 

 
715 

 
Figure 6. TWA signals at the output of the AMF when fed with the synthetic ECG tracings.                    
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Figure 7. Estimated and simulated TWAA values in each synthetic ECG tracing.                          
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Usually, the AMF is realized as a 6th order Butterwort filter, characterized by a magnitude response that is 
maximally flat in the pass-band and monotonic overall. The Butterworth filter sacrifices roll-off steepness for 
monotonicity in the pass- and stop-bands, but this is does not represents a limitation for the AMF. Indeed, it is 
applied bidirectionally, so that the final filtering order is 12, which is quite high for ECG applications (roll-off 
steepness increases with increasing filter order).  

In the simulation study reported in this work, a MATLAB implementation of the AMF-method provided by 
B.M.E.D. Bio-Medical Engineering Development SRL (http://www.bmed-bioengineering.com) was used for 
TWA identification from synthetic ECG tracings affected by the most typical and representative noise factors. 
Results confirm the goodness of this technique in both avoiding false-positive as well as false-negative identifi- 
cations, even though the presence of noise and interferences, such as HRV, may compromise perfect quantifica- 
tion of TWAA. The noise level and the baseline amplitude considered here were both 100 µV, i.e. equal to 
TWAA. Thus, the signal-to-noise ratio was low, around 1. In the worst corrupted conditions, the maximum error 
reported was 20% which does not represent a significant practical problem from a clinical point of view, since it 
is usually much more important to know if TWA is present or not and its order of magnitude rather than its exact 
amplitude. Very small levels of TWA (for example under 10 µV) are usually considered negligible, and could 
even be eliminated using a threshold criterion. 

5. Conclusion 
Heart-rate adaptive match filtering represents a useful technique for a reliable TWA identification from the digi- 
tal ECG. The filter can efficiently be implemented using a digital 6th order narrow-passing-band Butterworth fil- 
ter, which has to be specifically designed for each ECG tracing, since the passing band has centered around the 
fTWA, which is by definition, equal to half heart-rate. Given the non-linearity of the phase response, the filter has 
to be applied in a bidirectional fashion to avoid signal distortions. 
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