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Abstract 
The collective behavior of a ring of coupled identical van der Pol oscillators is numerically studied 
in this work. Constant, gaussian and random distributions of the coupling parameter along the 
ring are considered. Three values of the oscillators constant are assumed in order to cover from 
quasilinear to nonlinear dynamic performance. Single and multiple coupled frequencies are ob-
tained using power spectra of the long term time series. Phase portraits are obtained from nu-
merical simulations, and the coupled behavior is analyzed, compared and discussed. 
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1. Introduction 
It is known that the van der Pol oscillator can represent many oscillating systems in a wide variety of applica-
tions: biological rhythms [1], heartbeat [2] [3], chemical oscillations [4], circadian rhythms [5], and so on. The 
coupled behavior of van der Pol oscillators has been studied in the past considering different conditions and ap-
plying diverse analysis techniques, for example: diffusive displacement coupling [6]; weak displacement coupl-
ing using harmonic balance [7]; weak displacement and velocity couplings using perturbation methods [8]; 
strong coupling with detuning using perturbation methods [9]; strong diffusive coupling using matched asymp-
totic expansions [10]; weak and moderate amplitude coupling with numerical solution [11]; weak and strong 
bath coupling using Floquet theory and numerical solution [5]; Whittaker method to determine the synchronized 
states in a ring of four mutually coupled non-identical van der Pol oscillators [12]. 
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Some works on the collective behavior of large rings of coupled van der Pol oscillators have been reported. In 
[13] the authors consider the synchronized states in a ring of mutually coupled self-sustained electrical oscilla-
tors described by coupled Van der Pol equations. They analyze the stability of the synchronization of the ring 
using the Floquet theory, the Whittaker method and numerical investigations. In [14] the dynamic behavior and 
synchronization of a very large ring of coupled van der Pol oscillators is studied by linearization and subsequent 
conversion of the original equations into a canonical Hill’s equation; the influence of the coupling parameter 
value on the ring stability is investigated by determining the value and sign of the non-periodic term of the Hill's 
equation. In a recent work [15] one of the present authors consider a ring of van der Pol oscillators, and the fo-
cus of his work is on the emergent behavior of a large number of oscillators. He determines the conditions under 
which time-independent solutions are obtained, and the linear stability of these solutions is investigated. Besides, 
the effect of the singularity of the coupling matrix on the ring dynamics is explored: when this becomes singular, 
an infinite number of steady states are present, and the phenomenon of oscillation death arises. 

In [13]-[15], the value of the coupling parameter remains constant along the ring. No variations or variable 
distributions of the coupling parameter along the ring are studied or even considered. In this work a ring of N 
identical van der Pol oscillators, as is sketched in Figure 1, is considered. Three variable distributions: constant, 
gaussian and random of the coupling parameter along the ring are proposed. The collective behavior of the ring 
under the variable distributions is numerically studied and compared with that of a constant distribution. The in-
fluence of the oscillator constant on the ring behavior is also considered. Three values of the oscillator constant 
are assumed, namely 0.1, 0.5 and 1; the dynamic performance of the ring of coupled van der Pol oscillators goes 
from quasilinear to strongly nonlinear, depending on the kind of coupling distribution. 

2. Mathematical Model and Coupling Schemes 
The van der Pol oscillator is a well known oscillator which is mathematically represented as 

( )2 1 0x a x x x+ − + =                                     (1) 

where x is the oscillator position and a is the uncoupled oscillator constant. In this work the case of van der Pol 
oscillators in the form of a ring with each oscillator coupled to its two nearest neighbors is considered. For a ring 
of N oscillators the following expression holds 

( ) ( )2
1 11 2i i i i i i i i ix a x x x b x x x− ++ − + = − +                             (2) 

 

 
Figure 1. Ring of N coupled oscillators. 
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where 1 i N≤ ≤  and bi is the coupling parameter corresponding to the ith oscillator, which depends on the an-
gular position θi of the ith oscillator on the ring. Besides, i iθ θ= ∆  and 2π Nθ∆ = . 

Given that the coupling parameter depends on the oscillator position in the ring, a coupling vector B can be 
defined as 

[ ]1 2,  , T
Nb b b=B                                      (3) 

For a gaussian distribution of B along the ring, bi is determined from 

( )2
221

2π

i

ib e
θ µ

σ

σ

−
−

=                                     (4) 

where σ is the standard deviation and μ is the mean or expectation of the gaussian distribution. 
For a random distribution of the coupling parameter, 

( )1 2 1( ) rand ,1S S S Nλ= + −  B                               (5) 

where λ, S1 and S2 are constants, and rand (N, 1) is a matrix of random numbers. 
For a constant distribution of the coupling parameter, 

B = c                                           (6) 

In order to allow a quantitative comparison among the above distributions, all of them must satisfy 

2π

0

1 d d
π

b
θ

θθ
θ

=

=
=∫                                       (7) 

where d is a constant. Equation (7) implies that if d = 2, then for a constant distribution in Equation (6) c = d/2 
and in this case 

[ ]T2, 2, , 2d d d=B                                   (8) 

3. Numerical Solution 
Equation (2) corresponding to the ring of coupled oscillators was numerically solved through the fourth-order 
Runge-Kutta method [16]. The time step used for integration was 1 × 10−5, which is small enough to guarantee 
numerical stability and convergence. As in [15], it was considered that N = 100 is a sufficiently large amount of 
oscillators for analysis, and that any increase in the amount of oscillators does not change the global behavior of 
the ring. The Initial conditions for position and velocity of oscillators were determined from [15] 

( ) ( )sini i ix t A k tθ ω= −                                  (9) 

where 
2 2

2

4π
1 i

i
k b

N
ω = +                                    (10) 

Equation (9) represents a wave of amplitude A, wave number k and frequency ω traveling in the positive θ di-
rection. Then, the initial conditions of position and velocity are, respectively, given by 

( ) ( )0 sini ix A kθ=                                    (11) 

( ) ( )0 cosi ix A kω θ= −                                  (12) 

In the computer simulations, it was assumed that A = 1, k = 2 and i iθ θ= ∆ . Identical oscillators were consi-
dered in the numerical simulations. Three values of the oscillator constant, namely 0.1, 0.5 and 1, were consi-
dered in order to change the dynamic performance of the ring from quasilinear to strongly nonlinear. For N = 
100 and d = 2, the following parameter values were defined: 1) for the gaussian distribution σ = 4, μ = 1; 2) for 
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the random distribution λ = 2, S1 = 0, S2 = 2; 3) for the constant distribution c = 1. All these values satisfy the 
condition given by Equation (7). 

4. Results and Discussion 
Figure 2 and Figure 3 show the histograms corresponding to the gaussian and random distributions of the 
coupling parameter, respectively. The typical bell-shaped form of a gaussian data distribution is appreciated in 
Figure 2, whereas an irregular coupling parameter of a random distribution is observed in Figure 3. Both dis-
tributions satisfy the condition given by Equation (7). Phase portraits for the three coupling parameter distribu-
tions and the three considered values of the oscillators constant were constructed using long term time series of 
the first and the fifty oscillators. This pair of oscillators was selected because is one of the pairs most apart in the 
ring. 

4.1. Constant Distribution 
Figure 4 shows the phase portraits for constant distribution of the coupling parameter for a = 0.1, a = 0.5 and a 
= 1. The phase portrait of Figure 4(a) corresponds to two time series with equal frequency and a constant phase 
shift [17], as is appreciated in the time series of Figure 5(a). The phase portraits of Figure 4(b) and Figure 4(c) 
come from two time series with multiple frequencies and variable phase shift, as is shown in the time series of 
Figure 5(b) and Figure 5(c). Uncoupled frequencies of 0.1591, 0.1567 and 0.1500 Hz for a = 0.1, a = 0.5 and a 
= 1, respectively, are obtained from the power spectra of the long term time series. Coupled frequencies for con-
stant distribution of the coupling parameter, obtained from the respective power spectra, are detailed in the second  

 

 
Figure 2. Histogram of the coupling parameter under gaussian distri-
bution. 

 

 
Figure 3. Histogram of the coupling parameter under random distri-
bution. 
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row of Table 1. For a = 0.1 just one frequency of 0.1603 Hz is present, presumably due to the quasilinear beha-
vior of uncoupled oscillators and the constant distribution of the coupling parameter. For a = 0.5 and a = 1, mul-
tiple frequencies are exhibited, being 0.1580 and 0.1526 Hz, respectively, the main frequencies corresponding to 
these rings. The coupled frequencies are greater than the frequencies corresponding to the uncoupled cases. 
From Table 1, Figures 4(a)-(c) and Figures 5(a)-(c) is observed that as the oscillator constant is increased, the 
coupled behavior of the ring becomes more complex given that the nonlinearity of oscillators is increased too. 
This behavior occurs in spite of the coupling parameter remains constant along the ring. 

4.2. Gaussian Distribution 
Phase portraits for the gaussian distribution case are depicted in Figures 6(a)-(c). As the oscillator constant is 
increased, the coupled behavior goes from a single frequency with constant phase shift for a = 0.1 to multiple 
frequencies with variable phase shift for a = 0.5 and a = 1. Main frequencies of 0.1603, 0.1580 and 0.1525 Hz 
are identical to those corresponding to the constant distribution case. However, the secondary frequencies are 
quantitatively different, as can be appreciated when the second and third rows of Table 1 are compared. As in 
the constant distribution, the dominant frequencies of gaussian distribution are greater than the uncoupled fre-
quencies. 
 
Table 1. Ring frequencies (Hz) obtained from power spectra. Main frequency in bold. 

COUPLING a = 0.1 a = 0.5 a = 1 

Null 0.1591 0.1567 0.1500 

Constant 0.1603 0.1580, 0.1563, 0.1624 0.1526, 0.1450, 0.1603 

Gaussian 0.1603 0.1580, 0.1565, 0.1532 0.1525, 0.1571, 0.1619 

Random 0.1595, 0.1580 0.1580, 0.1592, 0.1608 0.1557, 0.1587, 0.1693 

 

   
 

 
Figure 4. Phase portraits for a constant distribution of the coupling parameter. (a) a = 0.1; (b) a = 0.5; (c) a = 1. 
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Figure 5. Long time series for a constant distribution of the coupling parameter. (a) a = 0.1; (b) a = 0.5; (c) a = 1. Oscillator 
1 (solid), oscillator 50 (dashed). 
 

  
 

 
Figure 6. Phase portraits for a gaussian distribution of the coupling parameter. (a) a = 0.1; (b) a = 0.5; (c) a = 1. 
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4.3. Random Distribution 
The phase portraits for random distribution are shown in Figures 7(a)-(c). In accordance to the fourth row of 
Table 1, main frequencies for a = 0.1, a = 0.5 and a = 1 are 0.1595, 0.1580 and 0.1557 Hz, respectively. Phase 
portraits of Figure 7(a), Figure 7(b) correspond to anti-phase time series for a = 0.1 and a = 0.5, which exhibit 
multiple frequencies and variable phase shifts, and can be seen in Figure 8(a) and Figure 8(b), respectively. 
Phase portrait of Figure 7(c) corresponds to the two chaotic time series [17] of Figure 8(c) for a = 1 whose 
power spectra are depicted in Figure 9. This dynamic response is due to a combination of the highly disordered 
random distribution of the coupling parameter and the relatively high value of the oscillator constant, which 
causes a strong nonlinear behavior of uncoupled oscillators. 

4.4. Influence of the Oscillator Constant 
The collective behavior of the ring is mainly determined by the nature of the coupling distribution. However, the 
oscillators’ constant plays also a significant role in this behavior. As the oscillator constant is increased the ring 
nonlinearity is increased too. For a = 0.1 the coupled performance is little influenced by the coupling distribu-
tion, as is observed in the second column of Table 1. In this case, the coupled frequencies of 0.1603, 0.1603 and 
0.1591 Hz for constant, gaussian and random distribution, respectively, are very close to the uncoupled fre-
quency of 0.1591 Hz. However, as the oscillator constant is increased from 0.5 to 1, the coupled behavior be-
comes more complex, and multiple frequencies, anti-phase oscillations and even chaotic oscillations are exhi-
bited, as is appreciated in Figures 6-9. 

5. Conclusions 
The collective behavior of a ring of coupled identical van der Pol oscillators with different coupling schemes 
was numerically studied. The nature of this behavior strongly depends on the kind of distribution of the coupling 
parameter and on the value of the oscillators constant. 

1) For a small value of the oscillators constant and a constant distribution of the coupling parameter, the ring 
behavior goes from quasilinear with a single frequency to multiple frequencies and variable phase shifts. 
 

 
 

 
Figure 7. Phase portraits for a random distribution of the coupling parameter. (a) a = 0.1; (b) a = 0.5; (c) a = 1. 
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Figure 8. Long time series for a random distribution of the coupling parameter. (a) a = 0.1; (b) a = 0.5; (c) a = 1. Oscillator 1 
(solid), oscillator 50 (dashed). 
 

  
Figure 9. Power spectra of the first (a) and 50th (b) oscillators for a = 1 under a random coupling distribution, corresponding 
to the time series of Figure 8(c). 

 
2) A random distribution of the coupling constant, combined with a high value of the oscillator constant, 

causes a coupled behavior which ranges from anti-phase to chaotic.  
3) The coupled behavior becomes more complex as the oscillator constant is increased, irrespective of the 

distribution of the coupling parameter. 
4) In the all cases considered, the coupled main frequency is greater that the uncoupled frequency, irrespec-

tive of the value of the oscillators constant or the nature of the coupling distribution. 
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