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Abstract 
Binary Bell Polynomials play an important role in the characterization of bilinear equation. The 
bilinear form, bilinear Bäcklund transformation and Lax pairs for the modified Kadomtsev-Pet- 
viashvili equation are derived from the Binary Bell Polynomials. 
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1. Introduction 
There are some techniques that can be used to solve the nonlinear evolution equations, such as inverse scattering 
transformation, Hirota method, Darboux transformation and the tanh method [1]-[4]. Among this methods, the 
bilinear method and bilinear Bäcklund transformation have proved particularly powerful. Through the dependent 
variable transformations, some nonlinear evolution equations can be transformed into bilinear forms. Applying 
the bilinear method developed by Hirota, we can obtian the soliton solutions and quasiperiodic wave solutions 
[5]-[7]. The construction of the bilinear Bäcklund transformation [8] by using Hirota method relies on a par- 
ticular skill in using appropriate exchange formulas which are connected with the linear presentation of the 
system. Yet, the construction of bilinear Bäcklund transformation is complicated. Recently, Lambert, Gilson et 
al. [9]-[11] proposed an alternative procedure based on the use of the Bell polynomials which enabled one to 
obtain parameter families of bilinear Bäcklund transformation and Lax pairs for the soliton equations in a lucid 
and systematic way. In Ref [12], Fan has constructed bilinear formalism, bilinear Bäcklund transformation, Lax 
pairs and infinite conservation laws for the nonisospectral and variable-coefficient KdV equation. 

In this paper, we will extend the Binary Bell polynomials to deal with the modified Kadomtsev-Petviashvili 
(mKP) equation. First, we derive the bilinear form for the mKP equation by the binary Bell polynomials. Second, 
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the bilinear Bäcklund transformation and Lax pairs are obtained in a quick and natural manner. 

2. The Bilinear Form for the mKP Equation 
The mail tool used here is a class of generalized multi-dimensional binary Bell polynomials. First, we give some 
notations on the Bell polynomials to easily understand our presentation. 

Lambert et al. proposed a generalization of the Bell polynomial [9]-[11]. Let 0, 1, ,kn k l≥ =  , denote 
arbitrary integers, ( )1, , lf f x x=   be a C∞  multi-variable function, the following polynomials  

( ) ( ) ( )1
1 1 1

exp expl
l l l

nn
n x n x x xf f f= − ∂ ∂



                             (1) 

is called multi-dimensional Bell polynomial (generalized Bell polynomial or Y-polynomials). If all partial  
derivatives ( )1

1 1 1
0, , , 1,l

l l l

nr
r x r x k kx xf r n k l= ∂ ∂ = =



    are taken as different variable elements, then the  

generalized Bell polynomial ( )
1 1 l ln x n x f


  is the multivariable polynomial with respect to these variable  

elements 
1 1, , l lr x r xf



. The subscripts in the notation ( )
1 1 , , l ln x n xY f



 denote the highest order derivatives of f  

with respect to the variable , 1, ,kx k l=   respectively. 
For the special case ( ),f f x t= , the associated two-dimensional Bell polynomials defined by (1) read  

( ) ( ) ( )2 3
2 2 3 3 2, , 3 .x x x x x x x x x xf f f f f f f f f f= = + = + +                     (2) 

( ) ( ) 2
, , 2 , 2 , 2 ,, 2 .x t x t x t x t x t x t x t x x tf f f f f f f f f f f f= + = + + +                     (3) 

Base on the use of above Bell polynomials (1), the multidimensional binary Bell polynomials ( -poly- 
nomials) can be defined as follows  

( ) ( ) 1 1

1 1 1 1 , ,1 1
1 1

, , 1
, , , ,

, , 1

,   is  odd
,

,  is  even
l l

l l l l r x r xl l
l l

r x r x l
n x n x n x n x f

r x r x l

v r r
v w Y f

w r r

+ += =  + +




 







                (4) 

which is a multivariable polynomials with respect to all partial derivatives ( )
1 1 , , 1   odd

l lr x r x lv r r+ +


  and  

( )
1 1 , , 1   even , 0, , , 0, , .

l lr x r x l k kw r r r n k l+ + = =


    

The binary Bell polynomials also inherits the easily recognizable partial structure of the Bell polynomials. 
The lowest order binary Bell polynomials are  

( ) ( ) 2
2 2,  , ,x x x x xv v v w w v= = +                                  (5) 

( ) ( ) 3
, 3 3 2, ,  , 3 .x t xt x t x x x x xv w w v v v w v v w v= + = + +                           (6) 

The link between binary Bell polynomials ( )
1 1

,
l ln x n x v w



  and the standard Hirota bilinear equation  
1
1

l
l

nn
x xD D F G⋅  can be given by an identity  

( ) ( ) 1
1 1 1

1ln , ln l
l l l

nn
n x n x x xv F G w FG FG D D F G−= = = ⋅



                       (7) 

in which 1 2 1ln n n+ + + ≥ , and operators 
1
, ,

lx xD D  are classical Hirota bilinear operators defined by  

( ) ( ) ( ) ( )11
1 1 11 1 1 , ,, , , , .ll

l l x l ll

nnnn
x x x x l l x x x xx xD D F G F x x G x x′ ′ ′ ′= =′ ′⋅ = ∂ − ∂ ∂ − ∂ ×



               (8) 

In the particular case when F G= , the formula (7) becomes  

( )

( )

1
1

1 1

1 1

2

,

1

, , 1

0, 2 ln

0,   is  odd,
,   is  even

l
l

l l

l l

nn
x x

n x n x

l

n x n x l

G D D G G

q G

n n
P q n n

− ⋅

= =

+ +=  + +











                              (9) 
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in which the P-polynomials can be characterized by an equally recognizable even part partitional structure  

( ) ( ) ( )2 2
2 2 , 4 4 2 6 6 2 4 2,  ,  3 ,  15 15 .x x x t xt x x x x x x x xP q q P q q P q q P q q q q q= = = + = + +             (10) 

The formulaes (7),(9) and (10) will prove particular useful in connecting nonlinear equations with their 
corresponding bilinear equations. This means that once a nonlinear equation is expressible as a linear combi- 
nation of the P-polynomials, then it can be transformed into a linear equation. 

The binary Bell polynomials ( )
1 1 , , ,

l ln x n x v w


  can be separated into P-polynomials and Y-polynomials  

( )
( )
( )

( ) ( ) ( ) ( )

1
1

1 1

1 1

1 1 1 1 1
1 1

1

, , ln , ln

, , ln , 2 ln

1

, ,
even 0 0 1

,

,

.

l
l

l l

l l

l l l l l
l l

nn
x x

n x n x v F G w FG

n x n x v F G q G

nn ll
i

r x r x n r x n r x
n n r r i i

FG D D F G

v w

v v q

n
P q Y v

r

−

= =

= =

− −
+ + = = = =

⋅

=

= +

 
=  

 
∑ ∑ ∑∏

















               (11) 

The key property of the multi-dimensional Bell polynomials  

( )
1 1 1 1, , ln , , .

l l l ln x n x v n x n xY v ψ ψ ψ= =
 

                               (12) 

implies that the binary Bell polynomials ( )
1 1 , , ,

l ln x n x v w


  can still be linearized by means of the Hopf-Cole  

transformation lnv ψ= , that is , F Gψ = .  

( ) ( )

( ) ( ) ( ) ( )

1
1

1

1 1 1 1 1
1

1
exp 2 ,

1
, ,

0 0 1

l
l

l

l l l l l
l

nn
x x G q F G

nn l
i

r x r x n r x n r x
r r i i

FG D D F G

n
P q v

r

ψ

ψ ψ

−
= =

−
− −

= = =

⋅

 
=  

 
∑ ∑∏









                   (13) 

The formulaes (11) and (13) will then provide the shortest way to the associated Lax system of nonlinear 
equations. 

In this paper we consider the mKP equation  

( )1 2 1
3 23 6 6 0.t x y x y xu u u u u u u− −+ + ∂ − + ∂ =                         (14) 

Let a potential field q  be  
.xu q=                                           (15) 

Substituting (15) into (14), we have  

( ) 2
4 2 2 23 6 6 0.xt x y x x y xE q q q q q q q q= + + − + =                          (16) 

Introducing two new variables  
ln ,   ln ,q g f w fg= =                                   (17) 

using the binary Bell polynomials (5) and (6), Equation (16) can be written into  

( ) ( ) ( ) 2
3 2 2 2 3 2 2, , 3 3 3 9 6 0.x t x y x x x x x x y xE q q w q w q q w q w q q q q= ∂ + + − − − + =            (18) 

A possible choice of such constraint maybe  
2

2 ,y x xq w q= +                                     (19) 

then  

( ) ( ) 2
2 2 2 2 3 2, , 3 .y x xy x y x xy x xy x x x x x xq q w q q q q q w q w q w q q   = ∂ − + = ∂ − + +               (20) 

Substituting (20) into (18) and using the relation (19), we have  

( ) ( ) ( )3, , 3 , 0.x t x xyq w q w q w ∂ + + =                            (21) 
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Therefore, from (19) and (21), we deduce a couple system of  -polynomials for the mKP equation  

( ) ( )2, , ,y xq w q w=                                    (22) 

( ) ( ) ( )3, , 3 , 0.t x xyq w q w q w+ + =                               (23) 

By application of the identity (7) and the transformation (17), Equations (22) and (23) lead to the bilinear 
form for the mKP equation  

2 ,y xD g f D g f⋅ = ⋅                                     (24) 

3 3 0.t x x yD g f D g f D D g f⋅ + ⋅ + ⋅ =                              (25) 

Using Hirota's bilinear method, it is easy to solve the multisoliton solutions for the mKP equation. For 
example, the one-soliton solution reads  

( ) ( )0 02 3 2 31 eln ,  4 , 4
1 e x

qu kx k y k t qx q y q t
k

ξ η

ξ η ξ ξ η η
+

+

 +
= = − − + = + − + − 

           (26) 

where ( )0ξ  and ( )0η  are variable constant.  

3. The Bilinear Bäcklund Transformation and Lax Pairs for the mKP Equation 
In this section, we consider the bilinear Bäcklund transformation and Lax pair for the mKP equation. 

Set  

ln ,  ln ,  ln ,  ln ,g gq q w fg w fg
f f

= = = =




  



                           (27) 

be two different solutions of (16), respectively. We associate the two-field condition  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
2 2 2 24 2

2 2
2 24 2

3 6 6 6 6

3 6 6

x x y x x x y xxt x y

x y x x y xxt x y

E q E q q q q q q q q q q q q q q q

q q q q q q q q q q q q

− = − + − + − − + + −

= − + − + − + − − −

       

     

         (28) 

By the relation  
2

2 ,y x xq w q= +                                        (29) 

2
2 .y x xq w q= +                                          (30) 

Equation (28) can be transformed into  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2 24 2

4 2 2 2 2 2

3 6 6

3 3 3 .
x x x xxt x y

xt x y x x x x

E q E q q q q q q q q w q w

q q q q q q q q w w q q w w

− = − + − + − + −

= − + − + − + − + + + −

     

      

      (31) 

Let  

1 2ln ln ,g fq q v v
g f

− = − = −




                                  (32) 

1 2ln ln ,q q gg ff w w+ = − = −

                                 (33) 

1 2ln ln ,g fw w v v
g f

− = + = +




                                 (34) 

1 2ln ln ,w w gg ff w w+ = + = +

                                 (35) 
so Equation (31) becomes  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
1 2 1 2 1 2 1 2 1 2 1 2 1 24 2 2 2 2 2

1, 1,4 1,2 1,2 1,2 2, 2,4 2,2 2,2 2,2

3 3 3

3 6 3 6 0.
xt x y x x x x

xt x y x x xt x y x x

E q E q v v v v v v v v w w w w v v

v v v v w v v v v w

− = − + − + − + − + + − +

= + + + − + + + =



 (36) 
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Similar to the (21), by the relation  
2

1, 1,2 1, ,y x xv w v= +                                      (37) 

2
2, 2,2 2, .y x xv w v= +                                     (38) 

Equation (36) can be transformed into  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 3 1 1 2 2 2 2 3 2 2, 3 , , , 3 , , 0.x t xy x x t xy xv w v w v w v w v w v w   ∂ + + − ∂ + + =             (39) 

Then from (27) to (39), we get the system of  -polynimials  

( ) ( )2, , ,y xv w v w=                                    (40) 

( ) ( )2, , ,y xv w v w=                                      (41) 

( ) ( )1 1 2 1 1, , ,y xv w v w=                                  (42) 

( ) ( )2 2 2 2 2, , ,y xv w v w=                                  (43) 

( ) ( ) ( )1 1 1 1 3 1 1, 3 , , 0,t xy xv w v w v w+ + =                             (44) 

( ) ( ) ( )2 2 2 2 3 2 2, 3 , , 0.t xy xv w v w v w+ + =                            (45) 

Using the link between Bell Polynomials and Hirota bilinear bilinear Bäcklund transformation (7), the bilinear 
Bäcklund transformation can be written as  

2 ,y xD g f D g f⋅ = ⋅                                   (46) 

2 ,y xD g f D g f⋅ = ⋅ 

                                    (47) 

2 ,y xD g g D g g⋅ = − ⋅                                    (48) 

2 ,y xD f f D f f⋅ = ⋅                                    (49) 

( )33 0,t x y xD D D D g g− + ⋅ =                                (50) 

( )33 0.t x y xD D D D f f+ + ⋅ =                               (51) 

Through the bilinear Bäcklund transformation, we can get the soliton solutions for the mKP equation. 
In the following, we will give the Lax pair for the mKP equation. By transformations  

, 2 ln ,g q q
g

θ = = 



                                  (52) 

and the relation (13), the formulaes (48) and (50) become  

( )2 2 ,y x xP qθ θ θ= − −                                 (53) 

( ) ( )3 23 3 3 0.t xy xy x x xP q P qθ θ θ θ θ− − + + =                        (54) 

Set  

,g
f

ψ =


                                       (55) 

then ,f
g

θ ψ=




 by the relation ln ,gu
f

=




 (53) and (54) grow  

2 2 ,y x xuψ ψ ψ= − +                                 (56) 

2 14 12 6 6 6 0,t xxx xx x x x y xu u u uψ ψ ψ ψ ψ ψ−+ − − + + ∂ =                      (57) 
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which is the Lax pair of the mKP equation. 

Similar to the (56) and (57). Let , 2 lnf q f
f

ϑ = =


, (49) and (51) make  

( )2 2 ,y x xP qϑ ϑ ϑ= +                                   (58) 

( ) ( )3 23 3 3 0.t xy xy x x xP q P qϑ ϑ ϑ ϑ ϑ+ + + + =                          (59) 

Let f
g

φ =


, then g
f

ϑ φ= , by the relation ln ,gu
f

=  (58) and (59) develop into  

2 ,y xx xuφ φ φ= +                                       (60) 

2 1
24 12 6 6 6 0,t xxx xx x x y xu u u uφ ϕ φ φ φ φ−+ + + + + ∂ =                        (61) 

which is the Lax pair for the mKP equation.  

4. Conclusion 
Binary Bell Polynomials play an important role in the characterization of bilinear equation. By the Binary Bell 
Polynomials, we give the bilinear form, bilinear Bäcklund transformation and Lax pairs for the modified 
Kadomtsev-Petviashvili equation. This method is a lucid and systematic way. This method can be extended to 
the other soliton equations.  
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