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Abstract 
Multimoment hydrodynamics equations are applied to investigate the phenomena of appearance 
and development of instability in problem on a flow around a solid sphere at rest. The simplest 
solution to the multimoment hydrodynamics equations coincides with the Stokes solution to the 
classic hydrodynamics equations in the limit of small Reynolds number values, Re 1 . Solution 

0Sol  to the multimoment hydrodynamics equations reproduces recirculating zone in the wake 
behind the sphere having the form of an axisymmetric toroidal vortex ring. The 0Sol  solution 
remains stable while the entropy production in the system exceeds the entropy outflow through 
the surface confining the system. The passage of the first critical value 0Re∗  is accompanied by the 

0Sol  solution stability loss. The 0Sol  solution, when loses its stability, reproduces periodic pul-
sations of the periphery of the recirculating zone in the wake behind the sphere. The 1Sol  and 

2Sol  solutions to the multimoment hydrodynamics equations interpret a vortex shedding. After 

the second critical value 0Re∗∗  is reached, the 0Sol  solution at the periphery of the recirculating 
zone and in the far wake is replaced by the 2Sol  solution. In accordance with the 2Sol  solution, 
the periphery of the recirculating zone periodically detached from the core and moves down-
stream in the form of a vortex ring. After the attainment of the third critical value 0Re∗∗∗ , the 2Sol  
solution at the periphery of the recirculating zone and in the far wake is replaced by the 1Sol  so-
lution. In accordance with the 1Sol  solution, vortex rings penetrate into each other and form the 
continuous vortex sheet in the wake behind the sphere. The replacement of one unstable flow re-
gime by another unstable regime is governed the tendency of the system to discover the fastest 
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path to depart from the state of statistical equilibrium. Having lost the stability, the system does 
not reach a new stable position. Such a scenario differs from the ideas of classic hydrodynamics, 
which interprets the development of instability in terms of bifurcations from one stable state to 
another stable state. Solutions to the multimoment hydrodynamics equations indicate the direc-
tion of instability development, which qualitatively reproduces the experimental data in a wide 
range of Re values. The problems encountered by classic hydrodynamics when interpreting the 
observed instability development process are solved on the way toward an increase in the number 
of principle hydrodynamic values. 
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1. Introduction 
Detailed evaluating the results of the direct numerical integration of the Navier-Stokes equations against expe-
riment in problem on flow past a hard sphere at rest is carried out in [1]. Experiment records three stable me-
dium states. Each of these three stable flows begins to develop in its own direction, qualitatively different from 
other flows when it loses stability. Calculation satisfactory reproduces all three stable medium states observed 
experimentally. However, the calculation is incapable of producing anything that corresponds to seven unstable 
regimes observed along the three directions of instability development. The analysis of numerous divergences 
between the results of numerical integration of the Navier-Stokes equations and the experiment [1]-[3] led to the 
following conclusion. Solutions to the classic hydrodynamics equations successfully reach the border of the in-
stability field represented by the dashed slanting line in Figure 1 from [3]. As Reynolds number grows, these 
solutions move along the border of the field. However, the solutions to the classic hydrodynamics equations are 
unable to cross this border and to pass into the instability field.  

The Navier-Stokes equations themselves are called as the most probable reason for discrepancies between 
calculation and experiment [1]-[4]. It may be likely that the Navier-Stokes equations become inapplicable to un-
stable phenomena. The responsibility for the failure of the classic hydrodynamics was laid on the approximation 
made in deriving the Boltzmann equation, namely, the hypothesis of molecular chaos “Stosszahlansatz”. The 
Boltzmann hypothesis closes the kinetic equation, allowing classic hydrodynamics to be constructed for only 
three lower principle hydrodynamic values. It turns out that the neglect of higher principle hydrodynamic values 
does not introduce visually observable changes into the picture of stable flows. This error, however, grows very 
rapidly after the loss of stability.  

In present paper the multimoment hydrodynamics equations [5] are applied to solve a problem on flow past a 
hard sphere at rest at a wide range of Re  values. The direction of evolution of the ground axisymmetric flow 

( )0
expU x  [1] after losing its stability is studied. In Section 2, the problem is formulated. In Section 3, the prob-

lem is solved for the Stokes flow around a sphere, i.e., at Re 1 . The Section 4 is devoted to construction of 
the 0Sol  solution to the multimoment hydrodynamics equations suitable of interpreting the stationary axisym-
metric flow at a moderately high Re  values. The Section 5 examines the behavior of the 0Sol  solution that 
loses its stability after the passage of the first critical Reynolds number value 0Re∗ . In Section 6, the characteris-
tic features of the appearance of instability are interpreted in terms of entropy. The principle of retention and 
loss of the open system stability is formulated. In Section 7, the characteristic features of the development of in-
stability are interpreted in terms of entropy. The evolution criterion is formulated. The Section 8 is devoted to 
finding the solutions to the multimoment hydrodynamics equations capable of reproducing a vortex shedding. 
The Section 9 provides an algorithm to select one unstable solution of many found unstable solutions. The se-
lected solution indicates the direction of system evolution. In Section 10, the results are compared with the ex-
perimental data. 

2. Problem Statement 
Consider a space filled with thermodynamically equilibrium gas. Suppose that a solid sphere of radius a  
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moves in gas at constant velocity 0U  along the 0Z  axis of the immobile Cartesian frame of reference 
0 0 0X Y Z . Let us now pass from 0 0 0X Y Z  to the Cartesian frame of reference XYZ  with the axes parallel to 

those of 0 0 0X Y Z  and the origin made coincident with the center of the moving sphere. In the XYZ  frame of 
reference, the sphere is at rest, the inflowing-gas velocity at an infinite distance from the sphere, 0U , is aligned 
with the positive direction of the Z  axis, and the flow problem is stationary.  

The pair distribution function ( ) ( )0
0 0,pf G v  corresponding to the equilibrium state is  

( ) ( )
3 2 3 2 2 2

0 0 0 0
0 0

0 0 0 0

, exp
2 2π 2π 2 2p
n MMf

kT kT kT kT
µµ     

= − −     
     

G v
G v                    (2.1) 

where 0n  and 0T  are the local density of the number of particles and the temperature of unperturbed gas, 
2M m= , 2mµ = , m  is the mass of a gas particle, and 0G  and 0v  are the velocity of the center of mass 

and relative velocity of the pair of particles. In XYZ , the pair distribution function ( ), ,pf vx G  can be written 
as  

( ) ( ) ( ) ( )0, , , , ,p p pf v f v f v= + ∆x G G x G  

( ) ( ) ( )3 2 3 2 2 2
0 0

0
0 0 0 0

, 2π exp
2π 2π 2 2p

MM vf v n
kT kT kT kT

µ µ −   
 = − −   
      

G U
G               (2.2) 

0 0 0 v= + = =G G U v v v  

Let ,x y , and z  be the Cartesian coordinates of point x  in the space; ,r θ , and ϕ  are its spherical coor- 
dinates, sin cos , sin sin ,x r y rθ ϕ θ ϕ= =  and cosz r θ= , Figure 1. Bring the origin of the Cartesian frame 
of  

 

 
Figure 1. The XYZ  frame with its origin at the center of the sphere. The 

rX X Xθ ϕ  frame with its origin at some point x in the gas.                
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reference rX Y Zθ ϕ  into coincidence with point x  so that the rX  axis is directed along x  vector. Mark the 
projections of vector G  onto the XYZ  axes by ,x yG G , and zG , its projections onto the axes of rX Y Zθ ϕ , 
by ,rG Gθ , and Gϕ , and its spherical coordinates, by  ,G ε , and ω , Figure 1.  

The basic property of pair distribution functions (17) from [3] is that ( ), , ,pf t vx G  is conserved with time 
along the trajectory of the center of mass of a pair of particles. In the stationary case, the ( ), ,pf vx G  function 
remains unchanged along a straight line parallel to vector G   

( ), ,
0pf v∂

=
∂

x G
G

x
                                   (2.3) 

The Fxy x yG y G x= − , Fzx z xG x G z= − , and Fzy z yG y G z= −  functions are the first integrals of Equation 
(2.3). These functions were termed in [6] trajectory invariants. In this study, consideration is restricted to gas 
flows around a sphere, which are invariant under rotation through an arbitrary angle ϕ  about the Z  axis. Let 
us compose combinations of trajectory invariants Fxy , Fzx , and Fzy , invariant with respect to this rotation 

F sin sin sinxy rG θ ε ω= −  

( ) ( )2 2Ф F F cos sin sin cos sin cosz x zx y zyG G G r θ ε θ ε ε ω= − + = +               (2.4) 

( )1 22 2 2Ф F F F sinr xy zx zy Gr ε= + + =  

By virtue of the flow geometry, there are two independent regions of integration with respect to G  at each 
point x  in the gas. The first region, denote it by 1W , is a spherical cone, Figure 2. This region incorporates 
the trajectories of centers of mass of pairs of particles that originate and terminate at the surface of the sphere. 
The integration limits for this group of trajectories are ( )0 , 0 2π, 0 arcsinG a rω ε≤ ≤ ∞ ≤ ≤ ≤ ≤ . The second 
region, 2W , embraces all possible trajectories of centers of mass of particle pairs converging to point x . The 
integration limits for the second group of trajectories are unbounded.  

 

 
Figure 2. Regions of integration with respect to G.                    
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According to the general approach to solving the multimoment hydrodynamic equations in terms of pair func-
tions, outlined in [6], solution ( ), ,pf v∆ x G  is sought for in the form of an infinite series of the products of tra-
jectory invariants (2.4) 

( ) ( )
3 2 3 2 2 2

0 0 00 0 0 0

, , 4π exp , Ф Ф F
2π 2π 2 2

k l m n
p klmn z r z xy

k l m n

M M vf v c v G
kT kT kT kT

µ µ +∞ +∞ +∞ +∞

= =−∞ = =

     
∆ = − −     

     
∑ ∑ ∑∑Gx G G   (2.5) 

The spatial dependence of ( ), ,pf v∆ x G  (2.5) is controlled by trajectory invariants (2.4), and coefficients 
klmnc  are independent of x . In keeping with definitions given in [5], the expressions for the principal hydrody-

namic values—the moments of ( ), ,pf vx G  (2.2)—can be written as  

0
1 1 d
2 2 pn n f= + ∆∫ g , 

0 0
1 1 d
2 2i i i pnU n U G f= + ∆∫ g , 

2

0 0
3 3 d
4 4 2

v
p

vp n kT fµ
= + ∆∫ g                             (2.6) 

2
2 2

0 0 0 0
3 3 1 1 3 3, d
4 4 4 4 4 4 2

G G G
p

MGp s Mn U MnU s n kT f= + − = + ∆∫ g , 

v vp nkT= , G Gp nkT= , 

0 0 0 0 0
1 1 1 1, d
2 2 2 2 2 2

G G G
ij ij i j i j ij ij i j pP S Mn U U MnU U S n kT MG G fδ1 1
= + − = + ∆∫ g , 

,G G G G G G
ij ij ij ij ij ijp P p s S sδ δ= − = − , 

2

0 0 0
1 3 1 3 1, d
2 4 2 4 2 2

v v v v i
i i i i i p

G v
q n kT U Q p U Q f

µ
= + − = ∆∫ g , 

2
2 2

0 0 0 0 0 0
1 5 1 1 5 1, d
2 4 4 2 4 2 2

G G G G G i
i i i i i ki k i i p

MG G
q n kT U + Mn U U Q p U p U MnU U Q f−1 1

= + − − = ∆
2 4 ∫ g  

Here, n  is the local density of the number of particles; U  is the hydrodynamic velocity; Gp , GT , G
ijP , 

and Gq  are the pressure, temperature, stress tensor, and heat flux corresponding to motion of the centers of 
mass of pairs of particles; vp , vT , and vq  correspond to relative motion of particles within pairs; 2d = d dv vg G . 

Nonprincipal hydrodynamic values v
ijp  and Gvq  are given by Equation (21) from [3] with the Navier- 

Stokes accuracy. In terms of spherical coordinates, these values for cylindrically symmetric flows considered in 
this study (i.e., for flows invariant with respect to rotation through an arbitrary angle ϕ  about the Z  axis) 
assume the form  

4 42
3 3

v v
v vr r r
rr v v

U q Qp
r r rp p

η ηη π
∂ ∂ ∂

= − − + = −
∂ ∂ ∂

 

  

4 42
3 3

v vv v
v vr r r

v v

U q QU q Qp
r r r r r rp p

θ θ θ
θθ

η ηη π
θ θ θ

   ∂ ∂ ∂ = − + − + + = − +    ∂ ∂ ∂     

 

  

ctg ctg ctg4 42
3 3

v vv v
v vr r r

v v

U q QU q Qp
r r r r r rp p

θ θ θ
ϕϕ

θ θ θη ηη π
    = − + − + + = − +    

     

 

  

2 2
3 3

v vv v
v r r r
r v v

U q QU q Qp r r r
r r r r r r r r rp p

θ θ θ
ϕ

η ηη
θ θ θ

       ∂ ∂ ∂∂ ∂ ∂ = − + − + = − +        ∂ ∂ ∂ ∂ ∂ ∂             

 

  

2 4div div
3 9

v v
vp

η ηπ =
 

U + q                               (2.7) 
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( )

2
2

5 sin sin
4 4 sin

ctg
3 2

4 3

v Gv G
Gv rrr
r v

v
G G v v v v v v vr r r

r r r rv v

kT pkT pkTq r r
r m r m mp r

U U U UU U UkT p p q q q q q q q
m r r r r r r rp r p

θ

θ θ θ θ
θθ ϕϕ θ θ θ

η η θ θ
θθ

θη η
θ θ

   ∂ ∂ ∂ = − − +    ∂ ∂ ∂       
∂ ∂∂ ∂ + + − + + + + + − ∂ ∂ ∂ ∂ 

 

 

 

( )

2
2

5 sin sin
4 4 sin

ctg
3 4

4 3

v G v G
Gv r

v

v
G G v v v v v v vr r r

r r r rv v

kT p kT pkTq r r
r m r m mp r

U U U UU U UkT p ctg p q q q q q q q
m r r r r r r rp r p

θ θθ
θ

θ θ θ θ
ϕϕ θ θ θ θ θ

η η θ θ
θ θθ

θη ηθ
θ θ

    ∂ ∂ ∂ = − − +     ∂ ∂ ∂       
∂ ∂∂ ∂ + − − + + + + + − ∂ ∂ ∂ ∂ 

 

 

 

Here, η  is the coefficient of the dynamic viscosity. From the definitions of gas pressure p , temperature T , 
viscous stress tensor ijp , and heat flux q  [5] it follows that they are linear combinations of moments (2.6) 
and (2.7) 

5
2 2 2 2 6

G v G vG v G v
ij ij Gvi i

ij i i

p p q qp p T Tp T p nkT p q q
++ +

= = = = = + +             (2.8) 

According to [5], the overall equations of conservation of the number of particles, momentum, and energy 
assume the form  

0i

i

nUn
t x

∂∂
+ =

∂ ∂
                                         (2.9) 

1 0
2

G
ij vi

i
j

SnU
t m x

 ∂∂
+ +∏ =  ∂ ∂ 

                                   (2.10) 

53 3 0
4 4 2 6 2

G vG v Gv
i i

i

Q Qs p
t x

  ∂ ∂ Λ
+ + + + =  ∂ ∂   

                             (2.11) 

The basic property of pair distribution functions (17) from [3] subdivides Equations (2.10) and (2.11). As re-
cast in terms of the spherical coordinates, the v

i∏  and GvΛ  components assume the following form for the cy-
lindrically symmetric flow in question  

1 2 ctg 0
vvv

v v v v vrrr
r rr r

ppp p p p p
r r r r

θ
θθ ϕϕ θ θ

θ
∂∂∂  Π = + + + − − + = ∂ ∂ ∂

 

( )1 ctg 3 0
v vv

v v v vr
r

p pp p p p
r r r r

θθ θ
θ θθ ϕϕ θθ

θ θ
∂ ∂∂  Π = + + + − + = ∂ ∂ ∂

                    (2.12) 

( ) ( )2
2

1 sin 2 sin 2 0
sin

Gv Gv v v Gv v v
r r rr r r rr q U p U p r q U p U p

rr θ θ θ θ θ θθθ θ
θθ

∂ ∂    Λ = + + + + + =    ∂ ∂ 
   (2.13) 

The boundary conditions must allow for the fact that the contribution of the ( ), ,pf v∆ x G  function given by 
Equation (2.5) to the hydrodynamic values vanishes at an infinite distance from sphere 

( ), , 0p r
f v

→∞
∆ →x G                                    (2.14) 

At the surface of the sphere, i.e., at r a= , one has to impose the no-leak and no-slip conditions 

0 0r r a r anU nUθ= =
= =                                  (2.15) 

Heat flux rq  traversing each element of the sphere surface must be counterbalanced by the heat flux within 
the sphere cond

rq  and the thermal radiation E∆  

( )cond
r rr a r a

q q E
= =
= + ∆                                   (2.16) 
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( )0
cond
r

Tq E T T
r

γ σ∂
= − ∆ = −

∂
 

Here, γ  is the coefficient of the thermal conductivity of the sphere, and σ  is the coefficient of the sphere 
emissivity.  

3. Flow around a Sphere at Small Re 
Let us formulate dimensionless parameters 2 2

0 0Ma mU kT= , where Ma  denotes the Mach number, and the 
Reynolds number 0 0 0Re 2mn U a η=  , ( )0 0Tη η=  . Multimoment hydrodynamics Equations (2.9)-(2.13) will 
be brought to a dimensionless form in a conventional manner [7]. It turns out that the dimensionless equations 
contain 2Ma  and Re . Hydrodynamic values can be represented as parametric series 

( ) ( ) ( ) ( ), ,2
0 0

0 1 0 1

ˆMa Re
k l k l k l

k l k l
F F F F F

∞ ∞ ∞ ∞

= =− = =−

= =∑∑ ∑∑


                       (3.1) 

Here, ( )F F= x  sequentially assumes values ( )n x ; ( ) ( )n x U x ; ( )vp x , ( )Gs x , and ( )G
ijs x ; ( )GQ x   

and ( )vQ x , and 0F  sequentially assumes values 0n ; 0 0n U ; 0 0n kT ; 0 0 0n kT U . Symbols   and 


 appear  
over dimensionless quantities. Multimoment hydrodynamics Equations (2.12), (2.13) are written with the Navi-
er-Stokes accuracy, by which token expansion (3.1) contains no terms with 2l ≤ − .  

Consider the flow regime at small Reynolds number Re 1 . At the hydrodynamic stage of description cha-
racterized by small values of the Knudsen number Kn 1 , Ma Kn Re 1∼ ⋅  . Terms of the order of  

2
0 0Ma Ren kT  dominate expansion (3.1) of the second-order moments vp  and ( )G

ijS x  in the flow regime in 
question. In expansions (3.1) of hydrodynamic values n , vp , and G

ijS , it will suffice to retain only 
( ) ( )1, 1 1, 1, vn p− −  , and ( )1, 1G

ijS −

, respectively. Expansion (3.1) of the particle density flux nU  is reasonably be re- 

stricted to ( )( )0,0
nU , which provides for the 2

0 0Ma Ren kT  desired order of the terms in Equation (2.7) for  
v
ijp . As noted in [6], the Navier-Stokes approximation is not accurate enough to calculate temperature compo-

nents ( )1, 1GT −

 and ( )1, 1vT −

. Thus, at Re 1 , the spatial dependence of temperature is neglected. 
Let us truncate expansion (2.5) to the three lowest-order terms 

( ) ( ) { }
3 2 3 2 2 2

0 1 2
1 2 3

0 0 0 0

, , 4π exp Ф Ф Ф
2π 2π 2 2p z r z z r

M M vf v c G c c G
kT kT kT kT

µ µ −     
∆ = − − + +     

     

Gx G      (3.2) 

1 1 100 2 0010 3 1200c c c c c c−= = =  

Each of three terms of series (3.2) can contribute to each principal hydrodynamic value ( n , nU , vp , Gs , 
G
ijs , vq , and Gq ). Considering that the principal hydrodynamic values are linearly independent, coefficients 
, 1, 2,3ic i = , of expansion (3.2) can be written as linear combinations of six arbitrarily chosen components 

( ) ( ) ( )
( )

2 2
,,
,

, 0 0

,
2 2

r s
k lk l

i i i r s
r s

MG vc c v c
kT kT

µ   
= =    

   
∑G                              (3.3) 

To calculate the hydrodynamic values (2.6), the first component of series (3.2) has to be integrated with re-
spect to G  with the appropriate weight function of velocities G  and v  within region 2W , and the second 
and third components, within region 1W . Why ( )0

pf∆  is approximated by Equation (3.2), and its components 
are integrated in such a way is explained below. The integration yields 

3

0 0 1 2 3cos 2 cos 2 cosr
a anU n U A A
r r

θ θ θ= + +  ( )0,0
1 0 0 1

ˆA n U A=  

3

0 0 1 2 3sin sin sina anU n U A A
r rθ θ θ θ= − − +  ( )0,0

2 0 0 2
ˆA n U A=                    (3.4) 

2

0 3 22 cos an n A
r

θ= +  ( )
2

1, 1
3 0 3

Ma ˆ
Re

A n A − 
=  

 
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2

0 0 3 0 22 cosv ap n kT D kT
r

θ= +  ( )
2

1, 1
3 0 0 0 3

Ma ˆ
Re

D kT n kT D − 
=  

 
 

2

0 0 3 0 24 cosG as n kT B kT
r

θ= +  ( )
2

1, 1
3 0 0 0 3

Ma ˆ
Re

B kT n kT B − 
=  

 
 

2 4

3 0 2 48 cosG
rr

a as B kT
r r

θ
 

= − 
 

 
2 4

3 0 2 44 cosG G a as s B kT
r rθθ ϕϕ θ

 
= = − − 

 
 

4

3 0 44 sinG
r

as B kT
rθ θ= −  

Here, 

( )
( )

( )
( )

( )
( )

1 2
0,0 0,0 0,00

1 1 0,0 1 1,0 1 0,1
2π 32

2 π 2
kT

A c c c
a M
   = + +     

 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

3 2
0,0 0,0 0,0 0,0 0,0 0,00

2 2 0,0 2 1,0 2 0,1 2 2,0 2 3,0 2 1,1
2π 3 93 12 60

2 π 2 2
kTaA c c c c c c
M

   = + + + + +     
 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

3 22
1, 1 1, 1 1, 1 1, 1 1, 1 1, 10

3 3 0,0 3 1,0 3 0,1 3 2,0 3 3,0 3 1,1
2π 3 93 12 60

2 π 2 2
kTaA c c c c c c
M

− − − − − −   = + + + + +     
              (3.5) 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

3 22
1, 1 1, 1 1, 1 1, 1 1, 1 1, 10

3 3 0.0 3 1,0 3 0,1 3 2,0 3 3.0 3 1,1
2π 34 20 120 6

2 π 2
kTaB c c c c c c
M

− − − − − −   = + + + + +     
 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

3 22
1, 1 1, 1 1, 1 1, 1 1, 1 1, 10

3 3 0,0 3 1,0 3 0,1 3 2,0 3 3,0 3 1,1
2π 5 153 12 60

2 π 2 2
kTaD c c c c c c
M

− − − − − −   = + + + + +     
 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 2 3 2 3 2 2
0,0 0,0 0,0 0,0 1, 1 1, 1

0 0 0 0 01 , 1 , 2 , 2 , 3 , 3 ,2
0 0 0

1 2 Maˆ ˆ ˆ
Rer s r s r s r s r s r s

M M Mc a n U c c n U c c n c
kT a kT kTa

− −       
= = =       

      
 

The order of coefficients 1A  and 2A  appearing in Equations (3.4, 3.5) depends on the only density flux 

component, ( )( )0,0
nU , retained in expansion (3.1) at Re 1 . The order of coefficients 3A , 3B , and 3D  de- 

pends on components ( ) ( )1, 1 1, 1, ,vn p− −   and ( )1, 1G
ijS −

 of expansion (3.1). Using one of six linear combinations of  

coefficients ( )
( )0,0
2 ,r sc , we eliminate the contribution to the particle density n , proportional to 0Man , which is 

missed in expansion (3.1). Using two linear combinations of coefficients ( )
( )0,0
2 ,r sc , we eliminate the contribution  

to vp  and Gs  that is proportional to 0 0Man kT  and is missed in expansion (3.1). Two other linear combina- 

tions of ( )
( )0,0
2 ,r sc  enable us to eliminate the contribution to vq  and Gq  that is proportional to 0 0 0n kT U . The 

reason why vq  and Gq  contain no terms proportional to 0 0 0n kT U  will be elucidated in Section 4. The last, 

sixth linear combination of ( )
( )0,0
2 ,r sc  yields 2A  in Equation (3.5). Three linear combinations of ( )

( )1, 1
3 ,r sc −  enable us  

to eliminate the contribution to nU  being proportional to 0 0 Ma Ren U  and the contribution to vq  and Gq  
being proportional to 0 0 0 Ma Ren U kT , which are missed in Equation (3.1). The first term of series (3.2) con- 

tributes only to the first and the third moments of the ( ), ,pf vx G  function. Two linear combinations of ( )
( )0,0
1 ,r sc  

offer means of eliminating the contribution to vq  and Gq  being proportional to 0 0 0n kT U . 
Using boundary conditions (2.15) we obtain ( )0,0

1
ˆ 3 4A = − , ( )0,0

2
ˆ 1 4A = . The components of tensor ( )v

ijp x  
(2.7) can be determined from Equation (3.4). Substituting ( )v

ijp x  and ( )vp x  from (3.4) into any of the equ-
ations of momentum conservation (2.12), we obtain ( )1, 1

3
ˆ 3 2D − = − . When analyzing the multimoment hydrody- 

namics equations in the order of 2
0 0 Ma Ren kT  [6], it was inferred that ( ) ( ) ( )1, 1 1 1 1 1ˆ ˆ ˆG v

ij ij ijs p p− − −= = ,  
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( ) ( ) ( )1 1 1 1 1 1ˆ ˆ ˆG vs p p− − −= = , hence, ( )1, 1
3

ˆ 3 4B − = − , ( )1, 1
3

ˆ 3 2A − = − . Substituting the foregoing expressions for the 

coefficients ( )0,0
1Â , ( )0,0

2Â , ( )1, 1
3Â − , ( )1, 1

3B̂ − , ( )1, 1
3D̂ −  into Equation (3.4) and using definitions (2.8), we obtain  

( )( ) 30,0

0 0 0 0 3

3cos 1
2 2r
a an U nU n U
r r

θ
 

= − + 
 

 ( )( ) 30,0

0 0 0 0 3

3sin 1
4 4
a an U nU n U
r rθ θ

 
= − + + 

 
      (3.6) 

( ) ( )( )
2

1, 1 1, 10 0
0 02

0

3
cos 1

2
U an n n n n

akT r
η

θ− −= − = +


   

( ) ( )( )
2

1, 1 1, 10 0
0 0 0 02

3
cos 1

2
U an kT p p n kT p
a r

η
θ− −= − = +



                        (3.7) 

( )
2 4

1, 1 0 0
0 0 2 4

3
cosrr

U a an kT p
a r r

η
θ−  

= − − 
 



  ( )
4

1, 1 0 0
0 0 4

3
sin

2r
U an kT p
a rθ

η
θ− =



  

( ) ( )
2 4

1, 1 1, 1 0 0
0 0 0 0 2 4

3
cos

2
U a an kT p n kT p
a r rθθ ϕϕ

η
θ− −  

= = − 
 



   ( )1 1
0 0ij ijp n kT p −=   

Distributions (3.6), (3.7) follow from the classic hydrodynamics equations [7] for the Stokes flow, which are 
identical to the multimoment hydrodynamics equations in the limit Re 1  [6]. 

The hydrodynamic values (3.6), (3.7) assume the form of a linear combination of the products of ( )ka r  by 
trigonometric functions. To calculate (3.6), (3.7), the first component of Equation (3.2) was integrated with re-
spect to G  within the 2W  region, and the second and third components, within the 1W  region. If, on the 
contrary, the first component is integrated within 1W , and the others, within 2W , Equation (3.4) contain the  

products of irrational ( ) 1 22 21
k

a r
+

−  and trigonometric functions. However, with such products in Equation  

(3.4), it is impossible to satisfy boundary conditions (2.15) and equations of momentum conservation (2.12) si-
multaneously. When the higher-order terms are being retained in expansion (2.5), the functions will appear in 
Equation (3.4) which are nonlinear in cosθ and sinθ and the Equations (2.15) and (2.12) cannot, as previously, 
be satisfied simultaneously. 

4. Stationary Flow around a Sphere at Moderately High Re 
Consider a flow at a moderately high Re  and 2Ma 1 . In this case, ( )( )0,0

nU  will be retained together with  

two other components of expansion (3.1) of the flow density nU : ( )( )0, 1l
n

+

U and ( )( )1,l
nU , 0,1, .l =   In ad- 

dition to already obtained components of expansions (3.1) of the zero- and second-order moments of the ( ), ,pf vx G  
pair distribution function, ( ),k ln , ( ),v k lp , and ( ),G k l

ijS  with 0,1k =  и 0,1,l =  , will be taken into account. 
Expansions (3.1) of the energy fluxes GQ  and vQ  will be limited to ( ),G k lQ  and ( )v k,lQ  with 0,1k =  и

1,0, .l = −   
Expressions for hydrodynamic values (2.6) will be constructed by the same principle as in Section 3—as li-

near combinations of the products of ( )ka r  and trigonometric functions. This principle governs both the 
structure of the retained terms of expansion (2.5) and the region of integration with respect to G  for each term 
of expansion (2.5). In addition to three terms given by Equation (3.2), the following components of expansion 
(2.5) will be included  

( ) ( ) ( ) ( ) ( ) ( )1 1,0 1,1, , , , , ,p p pf v f v f v∆ = ∆ + ∆x G x G x G  

( ) ( )

{ }

3 2 3 2 2 2
1,0

0 0 0 0

1 2 1 3 2 1 1
4 5 6 7 8 9 10

, , 4π exp
2π 2π 2 2

Ф Ф Ф F Ф Ф Ф Ф

p

r z r r xy z z r z z z r z

M M vf v
kT kT kT kT

c c G c c G c G c G c G

µ µ

− − − − −

     
∆ = − −     

     

× + + + + + +

Gx G
               (4.1) 

4 0 100 5 2 100 6 0 302 7 1000 8 1 100 9 1010 10 1 110c c c c c c c c c c c c c c− − − − −= = = = = = =  
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( ) ( )

{
}

3 2 3 2 2 2
1,1

0 0 0 0

1 3 1 2 2 1
11 12 13 14 15

2 2 1 4 4 1 4
16 17 18 19 20 21

, , 4π exp
2π 2π 2 2

Ф Ф Ф Ф Ф Ф

Ф Ф Ф

p

z r z r z z z z r z

z z r z z r z r

M M vf v
kT kT kT kT

c G c G c c G c G

c c G c G c G c G c G

µ µ

− − −

− −

     
∆ = − −     

     

× + + + +

+ + + + + +

Gx G

              (4.2) 

11 1 100 12 3 100 13 0010 14 2010 15 2 110 16 0000c c c c c c c c c c c c− − −= = = = = =  

17 2000 18 2 100 19 4000 20 4 100 21 4100c c c c c c c c c c− −= = = = =  

Generally, each component of expansions (4.1, 4.2) contributes to each principle hydrodynamic value, irres-
pective of the order of terms retained in expansion (3.1). Considering that the principle hydrodynamic values are 
linearly independent, each coefficient , 4, , 21ic i =  , should be represented as series (3.3) of six terms for any  
considered order of expansion (3.1). Function ( )1,0

pf∆  given by (4.1) is used to calculate the zero- and the 

second-order moments. The contribution of ( )1,0
pf∆  is eliminated from the first- and third-order moments  

through the use of Equation (3.3), as in Section 3. Function ( )1,1
pf∆  (4.2) is used exclusively to calculate the 

first- and the third-order moments. The terms of Equation (4.1) proportional to 4c , 5c , 6c  and the terms of 
Equation (4.2) proportional to 11c , 12c  are integrated with respect to G  within region 2W . The terms of 
Equation (4.1) proportional to 7 10, ,c c  and the terms of Equation (4.2) proportional to 13 21, ,c c  are inte-
grated with respect to G  within region 1W .  

Distributions of the principle hydrodynamics values (2.6) are given in [8] by Equations (A.1)-(A.7). The ex-
pressions (A.1)-(A.7) are written in terms of coefficients , 1, ,50iC i =  . Coefficients iC  are expressed in 
terms of , 4, , 21ic i =   which appear in Equations (4.1), (4.2). Each coefficient ic  is expanded into series 
(3.3) of six ,r s − terms for each considered ,k l − order of expansion (3.1). In what follows, the relationships 
between iC  and ic  required to derive explicit expressions for ( )1,0

pf∆  and ( )1,1
pf∆ , will be omitted. Each 

coefficient , 1, ,50iC i =  , contains dimensionless multiplier ˆ
iC . 

In order to calculate ˆ , 1, ,50iC i =  , one needs, as in Section 3, to satisfy boundary conditions (2.14)-(2.16) 
and equations of conservation (2.12), (2.13). Imposing boundary conditions (2.15) upon the particle density flux 
nU  (A.5) from [8], we express 16 coefficients ˆ

iC , 34, , 44,46, ,50i =    in terms of 34 remained coeffi-
cients [8]. As revealed in [6], the 2 1

0 0 0Ma Reln kT U − -order approximation to the total energy-flux vector Q  
( )0,1,l =   is  

2*
0 * 0 0 0 01

5 2 2

G G v
ij i

i i i
i j

s mn U UT s pQ Q T Q
x nk x n

λ
 ∂∂ +

= − + + = = 
∂ ∂  

                    (4.3) 

Here 15 4k mλ η=   is the coefficient of the thermal conductivity. Substituting the expressions for hydrody-
namic values (A.1)-(A.4) from [8] into Equation (4.3), it is possible to express 8 coefficients ˆ

iC , 26, ,33i =  , 
in terms of 26 remained coefficients. Substitute Equations (A.2), (A.5), and (A.6) from [8] into equation of mo-  
mentum conservation (2.12) and equate the coefficients of the ( ) cos sink n ma r θ θ  products for either of the  
orders, 2

0 0Man kT a  and 4
0 0Ma Ren kT a . Then 6 coefficients ˆ

iC , 21, , 25,45i =  , can be expressed in 
terms of 20 remained coefficients ˆ

iC , 1, , 20i =  , [8]. Eventually, the expressions for the principle hydrody-
namic values (2.6) can be written as  

( ) ( )( ) ( ) ( )1, 1 1 1 1,
0

0
1 l

l
n n n n n n

∞
−

=

= + + = ∑                                  (4.4) 

( ) ( ) ( )( ) ( )( ) ( ) ( )3 21 2 2 2
1 2 3 4

ˆ ˆ ˆ ˆMa 1 2 cos 1 3cos 1 2 cosn C a r C a r C a r C a rθ θ θ = − + − − − − 
  

(1, 1) (1) (1) (1, )
0 0

0
(1 )v v v v v l

l
p n kT p p p p

∞
−

=

= + + =∑   

                       (4.5) 

( ) ( )( )31 2 2
20

ˆMa 40 3cos 1vp C a rθ = − − 
  
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( ) ( )( ) ( ) ( )1, 1 1 1 1,
0 0

0
1 G G G G lG

l
s n kT s s s s

∞
−

=

= + + = ∑                             (4.6) 

( ) ( ) ( )( )( )( ) ( ) ( )

( )( )( ) ( ) ( )

1 2 2
1 19 6

3 22
5 20 7

ˆ ˆ ˆMa 5 3 2 3 cos 1 8 3

ˆ ˆ ˆ2 40 3cos 1 4 3 cos

Gs C C a r C a r

C C a r C a r

θ

θ θ

= − + + +
+ + − + 



 

( ) ( )( ) ( ) ( )1, 1 1 1 1,
0 0

0

G G G G lG
ij ij ij ij ij

l
s n kT s s s s

∞
−

=

= + = ∑                            (4.7) 

( ) ( ) ( )( )( )( ) ( ) ( )

( )( )( ) ( )( )

( )( ) ( ) ( ) ( )

1 2 2
1 19 6

3 52 2
5 20 8

2 42
18 7 9

ˆ ˆ ˆMa 5 12 1 6 11cos 1 4 3

ˆ ˆ ˆ4 80 3cos 1 4 3cos 1

ˆ ˆ ˆ3 3cos 1 8 3 cos 2 cos

G
rrs C C a r C a r

C C a r C a r

C a r C a r C a r

θ

θ θ

θ θ θ

= − + − +

+ + − − −

+ − + − 



 

( ) ( ) ( )( )( )( ) ( ) ( )

( )( )( ) ( )( )

( ) ( )( ) ( ) ( ) ( )

1 2 2
1 19 6

3 52 2
5 20 8

2 42
18 7 9

ˆ ˆ ˆMa 5 48 1 24 31cos 11 2 3

ˆ ˆ ˆ2 40 3cos 1 7cos 3

ˆ ˆ ˆ3 4 7cos 3 4 3 cos cos

Gs C C a r C a r

C C a r C a r

C a r C a r C a r

θθ θ

θ θ

θ θ θ

= − + − + −

− + − + −

+ − + − + 



 

( ) ( ) ( )( )( )( ) ( ) ( ) ( )( )( )

( )( ) ( ) ( )( ) ( ) ( ) ( )

31 2 2 2
1 19 6 5 20

5 2 42 2
8 18 7 9

ˆ ˆ ˆ ˆ ˆMa 5 48 1 24 13cos 7 2 3 2 40 3cos 1

ˆ ˆ ˆ ˆ5cos 1 3 4 5cos 1 4 3 cos cos

Gs C C a r C a r C C a r

C a r C a r C a r C a r

ϕϕ θ θ

θ θ θ θ

= − + − − − − + −
+ − + − + − + 



 

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

31 2
1 19 5 20

5 4
8 18 9

ˆ ˆ ˆ ˆMa 5 2 cos sin 6 120 cos sin

ˆ ˆ ˆ8 cos sin 6 cos sin sin

G
rs C C a r C C a r

C a r C a r C a r

ϕ θ θ θ θ

θ θ θ θ θ

= − + +
− − − 



 

( )( )
  ( )( )

( )( )0,0 1, 0, 1

0 0
0

l l

i i i i i i
l

nU n U nU nU nU nU nU
∞ +

=

   = + = +      
∑                  (4.8) 

 ( ) ( )( ) ( )( )
( )( ) ( )( )

222 3
14

22 22 4
20

ˆMa 1 15 3cos 5cos 1

ˆRe 3 30cos 35cos 1

rnU C a r a r

C a r a r

θ θ

θ θ

 = − −  
 + − + −  

 

 ( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

2 42 2
14

4 23
20

ˆMa 1 60 3sin 5sin cos 1 2 3

ˆRe 12sin cos 28sin cos 1

nU C a r a r a r

C a r a r

θ θ θ θ

θ θ θ θ

 = − − − +  
 + − −  

 

 ( )  ( )  ( )  ( )  ( )  ( )  ( )0,0 0 1 0 0, 1 1 1, 1
0 0 0

0 0

v v v v v l v v lv
i i i i i i i i

l l
Q n kT U Q Q Q Q Q Q Q

∞ ∞+ −

= =

 = + + = =   ∑ ∑              (4.9) 

 ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( )

1 3 52 3 3
10 11 12

3 2 2 42 2
13 15 16 17

ˆ ˆ ˆMa cos 2cos 1 3 3cos 5cos 2 cos

ˆ ˆ ˆ ˆ2 cos 2 2 cos 1 2 1 3cos

v
rQ C a r C a r C a r

C a r C a r C a r C a r

θ θ θ θ θ

θ θ θ

= − − + − +
+ + + + − 

 

 ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

1 3 52 2 2
10 11

3 4
12 13 17

ˆ ˆMa 1 2 sin cos 1 4 sin 5sin cos

ˆ ˆ ˆsin sin sin cos

v
Q C a r C a r

C a r C a r C a r

θ θ θ θ θ θ

θ θ θ

= + −
− + − 
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 ( ) ( ) ( )( )
( )  ( )

( )( )0,0 0, 10,0 0, 1
03 2 3 2 0,1,

lv v l
i i ii iQ nU nU Q nU l

++ = − = =  
  

 ( )  ( )  ( )  ( )  ( )  ( )  ( )0,0 0 1 0 0, 1 1 1, 1
0 0 0

0 0

G G G G G l G G lG
i i i i i i i i

l l
Q n kT U Q Q Q Q Q Q Q

∞ ∞+ −

= =

 = + + = =   ∑ ∑           (4.10) 

 ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( )

1 3 52 3 3
10 11

3 2
12 13 15

2 42 2
16 17

3 22
7 4 19 6 3

22
19 5

ˆ ˆMa 5 3 cos 2cos 5 9 3cos 5cos

ˆ ˆ ˆ10 3 cos 10 3 cos 10 3

ˆ ˆ10 3 cos 5 6 1 3cos

ˆ ˆ ˆ ˆ ˆMa Re 8 20 cos 2 8 20

ˆ ˆ ˆ2 cos 18 240

G
rQ C a r C a r

C a r C a r C a r

C a r C a r

C C a r C C C a r

C a r C C

θ θ θ θ

θ θ

θ θ

θ

θ

= − − −

− − −

− − − 
+ + + + +

+ + − +( )( )( )42
20 2

ˆ30 1 3cosC a rθ − − 

 

 ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 3 52 2 2
10 11

3 4
12 13 17

3 42
7 4 5 20 2

ˆ ˆMa 5 6 sin cos 5 12 sin 1 5cos

ˆ ˆ ˆ5 3 sin 5 3 sin 5 3 sin cos

ˆ ˆ ˆ ˆ ˆMa Re 4 10 sin 36 480 60 sin cos

G
Q C a r C a r

C a r C a r C a r

C C a r C C C a r

θ θ θ θ

θ θ θ

θ θ θ

= − − −
+ − + 

 + + − − + − 

 

 ( ) ( ) ( )( )
( )  ( )

( )( )0,0 0, 10,0 0, 1
05 2 5 2 0,1,

lG G l
i i ii iQ nU nU Q nU l

++ = − = =  
  

In (4.4)-(4.10) ( ) ( ),

0

ˆ ˆ ˆRe Re k ll
i i i

l
C C C

∞

=

= = ∑ , 1k =  for 1, ,19i =  , 0k =  for 20i = . 

The terms proportional to 0 Reln  and 0 0 Re , 1, 2,ln kT l =  , were dropped from Equations (4.4)-(4.7) for the 
zero-and the second-order moments, respectively, because for Equation (2.13) to be satisfied in the order of 

0 0 0n kT U a , all the coefficients of these terms must be zero. For Equation (2.13) to be good in the order of  
2

0 0 0Ma Ren kT U a , one has to put expression (4.9) for 
 ( )0,

, 0,1,
v l
iQ l =   From the conditions for no heat flux 

q  at the surface of the sphere (at r a= ) and at infinite distance from the sphere the expression follows (4.10) 

for 
 ( )0,

, 0,1,
G l
iQ l =  Let us next substitute Equations (4.4)-(4.10), and (3.6), (3.7) into Equation (2.13) and equate 

the coefficients of ( ) cosk ma r θ  products of the order of 2
0 0 0Ma Ren kT U a . It turns out that all but the  

( )3a r  and ( )3 2cosa r θ  products satisfy the law of energy conservation. These two products satisfy Equation 
(2.13) at 

19
ˆ 0C =                                       (4.11) 

As previously, Equation (2.13) must be satisfied for each ( ) cosk ma r θ  product of the order of  
4

0 0 0Ma Ren kT U a  individually. Eventually we obtained a nonlinear set of eighteen algebraic equations 
(A.8-A.10) from [8]. In [8], of eighteen equations we retained sixteen ones.  

The total energy flux equals the heat flux at the surface of the sphere, 
r a r a= =

=Q q . Using the solutions of  

the internal boundary problem for the Laplace equation, the temperature distribution inside the sphere can be 
expanded in terms of Legendre polynomials [9]. The coefficients of this expansion can be calculated by match-
ing the temperature distribution kT p n=  (4.4)-(4.7) at the surface of the sphere with the distribution derived 
from the solution of the internal boundary problem. The resulting balance of heat fluxes at the surface of the 
sphere (2.16) in order of 2

0 0 0 Ma Ren kT U  becomes  

( ) ( ) ( ) ( ) ( )3 6 19 3 6 1 19
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ2 4 5 4 15 4 2 4 3 4 9 4 9 1 3C C C C C C Cσ  + + = + − + +   

( ) ( ) ( ) ( )1
4 7 4 7

ˆ ˆ ˆ ˆˆˆ2 4 5 1 15 Re 4 2 3C C C Cσ γ−  + + = − +                         (4.12) 
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( ) ( ) ( ) ( ) ( )2 5 20 19 2 5 1 19
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ6 18 5 48 2 15 4 2 2 2 2 9 2 9C C С C C C C Cσ γ  + − + = − + − +   

Here, ( ) ( )
0 0

3ˆ ˆ,
T T

T aγ γ λ σ σ λ= = 

  . 

Sixteen equations (П.8, П.9, П.13) from [8] supplemented with three Equation (4.12), and Equation (4.11) 
form closed nonlinear set of twenty algebraic equations for twenty coefficients ˆ

iC , 1, , 20i =  . Four coeffi-
cients, namely 1Ĉ , 2Ĉ , 3Ĉ , and 4Ĉ , appear in the distribution of particle density (4.4). Seven coefficients 5Ĉ , 

6Ĉ , 7Ĉ , 8Ĉ , 9Ĉ , 18Ĉ , and 19Ĉ , are responsible for the distributions of pressure and stress (4.6), (4.7). Seven 
coefficients, 10Ĉ , 11Ĉ , 12Ĉ , 13Ĉ , 15Ĉ , 16Ĉ , and 17Ĉ , appear in the distributions of energy flux (4.9), (4.10), 
two coefficients, 14Ĉ  and 20Ĉ  , govern the distribution of particle-density flux (4.8). 

When constructing the distributions of hydrodynamic values in Section 3, the series (2.5) was truncated to the 
terms that contribute linearly in cosθ  and sinθ  to these distributions. Going beyond the limits of the 
Re 1  case, we retained seven terms in Equation (4.1) and eleven terms in Equation (4.2). The expansion (4.1) 
is used to calculate the zero- and the second-order moments and makes the contributions to Equations (4.4)-(4.7) 
that are proportional to 1, cosθ , and 2cos θ . The expansion (4.2) is used to calculate the first- and the third- 
order moments and gives rise to the r -components of Equations (4.8)-(4.10) proportional to cosθ  and 3cos θ . 
With higher-order terms of expansions (4.1), (4.2) taken into account, the contributions to Equations (4.4)-(4.10) 
are proportional to more high powers of cosθ . We were compelled to make one exception associated with re-
tention of the trajectory invariants proportional to 19c , 20c , and 21c  in Equation (4.2). Owing to these inva-
riants, the rnU  distribution (4.8) involves the component proportional to 4cos θ , lacking in the expansions of 
the other hydrodynamic values (2.6). The terms of expansion (4.2) proportional to 19c , 20c , and 21c  enabled 
us to allow for the terms of the order of 0 0 Reln U , 1, 2,l =  , in the distribution of particle-density flux (4.8). 
The terms of this order dominate nU  at Re 1 . 

Numerical integration of the nonlinear set of 20 algebraic equations was carried out at ˆ 100γ = , and ˆ 0.5σ = . 
Calculations have revealed a great many roots. However, at 10 Re 129.1< ≤ , the set has only one invariably 
stable root ( )0ˆ

i iС С= , 1, , 20i =  , displayed in Figure 4 in [8]. According to the (0)
iС , 1, , 20i =  , solution, 

an axisymmetric recirculating zone is formed in the wake behind the sphere at Re~20. This recirculating zone 
has the shape of an axisymmetric toroidal ring. It expands as Re  grows but its shape remains unchanged 
(Figure 3(а)). At *

0Re Re 129.1= = , the system becomes unstable. At Re 1 , the Barnett corrections [7] are 
known to be commensurate with the Navier-Stokes terms. For this reason the calculations [8] were interrupted at 
Re 10= . 

5. First Unstable Flow Regime  
As the flow around sphere becomes unstable, the problem becomes nonstationary. As in the stationary case, the 
pair distribution function ( ), , ,pf t vx G  is represented as 

( ) ( ) ( ) ( )0, , , , , , ,p p pf t v f v f t v= + ∆x G G x G                              (5.1) 

Here, ( ) ( )0 ,pf vG  is given by Equation (2.2), and ( ), , ,pf t v∆ x G  is given by Equation (2.5) with time-de- 
pendent coefficients klmnc . In going to a stationary flow, pair distribution functions lose their main property (17) 
from [3]. Retaining, as previously, 21 trajectory invariants in expansion (2.5), we arrive at distributions (A.1)-(A.7) 
from [8] of hydrodynamic values with time-dependent coefficients ( )ˆ ˆ

i iC C t= , 1, ,50i =  . Coefficients 
( )ˆ ˆ

i iC C t=  are derived from the condition that hydrodynamic values satisfy boundary conditions (2.14)-(2.16)  
 

 
(a)                                        (b) 

Figure 3. (а) Schematic representation of recirculating zone in near wake be-
hind the sphere; (b) Schematic representation of vortex ring in far wake.       
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and nonstationary Equations (2.9)-(2.11). Executing the sequence of transformations, which in Section 4 led us 
to the closed algebraic set of twenty equations, we obtain a closed nonstationary set of twenty equations denoted 
hereafter by 20S . Sixteen algebraic Equations (A.8), (A.9), and (A.13) from [8] supplemented with three alge-
braic Equation (4.12), remain unchanged when passing from the stationary problem to the nonstationary one. 
However, Equation (4.11) changes to  

5
19

ˆ
ˆ 0ˆ

C
C

t
∂

+ =
∂

                                        (5.2) 

where ( )0
ˆRe 2t a U t= . 

Expressions (4.4)-(4.10) with time-dependent coefficients ( )ˆ ˆ
i iC C t= , 1, , 20i =  , define distributions of 

principle hydrodynamic values. The 20S  set is applied to study the time history of coefficients  

( ) ( ) ( ) ( ) ( ) ( )0 0 0ˆˆ ˆ ˆ , 1, , 20R
i i i iC t C t C C t iδ= = + =  . The ( )0ˆ , 1, , 20iC i =   stationary solution is described in Section 

4. Functions ( ) ( )0ˆ R
iC tδ  give deviations from the stationary solution ( )0ˆ , 1, , 20iC i =  . 

As revealed by numerical integration of the 20S  set, solution ( )0ˆ
iC , 1, , 20i =  , remains asymptotically 

stable up to certain critical *
0Re  value, *

0Re 129.1= . This means that the ( ) ( )0ˆ R
iC tδ  small deviations from the  

stationary solution ( )0ˆ
iC , 1, , 20i =  , are damped at *Re Re< . The passage of *

0Re  is accompanied by the  
( )0ˆ
iC , 1, , 20i =  , solution stability loss. Starting with 0t = , the ( ) ( )0ˆ R

iC tδ , 1, , 20i =  , small axisymmetric 
deviations begin to increase exponentially at *

0Re Re> . The solid curve in Figure 4 is the time history of ( ) ( )0
20Ĉ t  

at Re 180= . The ( ) ( )0ˆ R
iC tδ , 1, , 20i =  , deviations grow up to time * 0t > . At *t t= , the ( ) ( )0ˆ R

iC tδ  solu-
tion is cut off. Why the solution to the 20S  set terminates at t t∗=  is best explained in terms of trajectories 
on the phase plane ( )0

5С̂ , ( )0
19С̂  (Figure 6 in [8]). It turned out that at *t t> , the 20S  set becomes unsuitable 

for modeling evolution of the physical system. 
Time history of the ( ) ( )0

20Ĉ t  coefficient at *0 t t< <  creates time dependence at the distribution of particle- 
density flux (4.8). The distribution (4.8) corresponds to observed evolution of the periphery of the recirculating 
zone in the wake behind a sphere [10] [11]. In accordance with experiment, starting with 0t = , and up to t t∗= , 
the periphery of the recirculating zone in the wake behind a sphere moves translationally, receding from the 
sphere. Starting with t t∗=  the periphery of the recirculating zone moves back towards the sphere [10] [11]. 

 

 
Figure 4. Time evolution of ( )0 3

20
ˆ 10C− ⋅  and ( )0 3

20
ˆ 10C +− ⋅ , Re = 180. Sol-

id curve corresponds to α -ensemble, dashed curve corresponds to β -en- 
semble. t̂∗  = 2.333 for α -ensemble, t̂∗  = 1.333 for β -ensemble.                                                         
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Suppose that at time t t∗= , velocities of all gas particles flowing around the sphere reversed their direction, 
and the boundary conditions were also reversed. Then the periphery of recirculating zone in the wake behind the 
sphere starts moving back towards the sphere at t t∗= . As proven in [6], macroscopic motion of the gas with 
reversed velocities of its constituent particles is governed by the reverse equations for pair functions. So, ob-
served reverse motion of the periphery of recirculating zone should be described by means of the reverse equa-
tions. 

However, upon reversing velocities of all gas particles and the boundary conditions, certain details of ma-
croscopic motion of the gas disagree with experiment [10] [11]. For example, upon reversal of gas-particle ve-
locities, the gas involved in vortex motion starts circulating in the opposite direction. However, all gas particles 
cannot be set in reverse motion at t t∗= . Nevertheless macroscopic reversal of all gas-particle velocities and 
boundary conditions is by no means the only way of initiating reverse motion in the wake as a whole. At t t∗= , 
reverse motion in the physical system starts spontaneously [10] [11], i.e., without any interference from outside. 
Insofar as the reverse equations apply to a vortex propagating backward upon reversal of all gas-particle veloci-
ties, it is reasonably assumed that the same equations apply to a vortex set in reverse motion in some other way. 

Both the direct and the reverse multimoment hydrodynamics equations are specified by Equations (54)-(56) in 
[5]. However, expressions for reverse nonprinciple hydrodynamic values +v

ijp  and +Gv
iq  are specified by Equ-

ation (2.7), in which each term of the right-hand side has opposite sign [6]. 
Executing the sequence of transformations, which led us to the closed nonstationary set 20S , we obtain a 

closed nonstationary set of twenty equations for coefficients ˆ
iC+ , 1, , 20i =  , denoted hereafter by 20S + . 

Sixteen algebraic Equations (A.8), (A.9), and (A.13) from [8] supplemented with three algebraic equations (4.12) 
remain unchanged in going from the direct to the reverse nonstationary problem. However, Equation (5.2) 
changes to  

5
19

ˆ
ˆ 0ˆ

C
C

t

+
+

+

∂
− =

∂
                                     (5.3) 

It turned out that the ( ) ( ) ( )0ˆ ˆ
i iC t C t++ + += , 1, , 20i =  , solution to the 20S +  set existed in the neighbor-

hood of the cut-off point. According to [12] [13], the law of large numbers is violated near singular points (bi-
furcations, regions of the coexistence of several stable solutions, etc.), and large spontaneous fluctuations may 
appear in the system. In conformity with [12] [13], a large spontaneous fluctuation causes the transfer of the 
system from the cut-off point to the ( ) ( )0ˆ

iC t+ + , 1, , 20i =  , solution at time *t t= . Starting with *t t= , axi- 

symmetric deviations ( ) ( )0ˆ R
iC tδ + + , 1, , 20i =  , begin to decay exponentially, ( ) ( ) ( ) ( ) ( )0 0 0ˆˆ ˆ R

i i iC t C C tδ+ ++ += + .  

At time *2t t= , the ( ) ( )0ˆ
iC t+ +  solution reaches the neighborhood of the ( )0

iС , 1, , 20i =  , stationary solution. 
At time *2t t=  further evolution of the ( ) ( )0ˆ

iC t+ + , 1, , 20i =  , solution finishes. The ( ) ( )0ˆ
iС t , 1, , 20i =  , 

solution exists at *0 t t≤ ≤ , the ( ) ( )0ˆ
iC t+ + , 1, , 20i =  , solution exists at * *2t t t≤ ≤ , *2t t t+ = − + . At any 

time instant 0 *0 t t≤ ≤ : 
( ) ( ) ( ) ( )0 0

0 0

ˆ ˆ
i it t t t

C t C t+ +
+ = =

=                                (5.4) 

A large spontaneous fluctuation causes the transfer of the system from the ( ) ( )0ˆ
iC t+ + , 1, , 20i =  , solution  

to the ( )0ˆ
iC , 1, , 20i =  , solution at time *2t t= . The ( )0ˆ

iC , 1, , 20i =  , solution is unstable. It follows that  
small axisymmetric deviations ( ) ( )0ˆ R

iC tδ + + , 1, , 20i =  , begin to grow starting with time *2t t= . This pro-  
cess is repeated periodically. So, we obtained the solution ( ) ( )0ˆ

iC t , ( ) ( )0ˆ
iC t+ + , 1, , 20i =  , referred hereinaf- 

ter as 0Sol . 
Numerical integration of the 20S , 20S +  set draws the time history of coefficients ( ) ( )0ˆ

iC t , ( ) ( )0ˆ
iC t+ + . The  

time history of ( ) ( )0
20Ĉ t  and ( ) ( )0

20Ĉ t+ +  shown in Figure 4 by a solid line corresponds to initial deviation  
( ) ( )0 9

19
ˆ 0 10RC tδ −= = . Deviations ( ) ( )0ˆ 0R

iC tδ =  1, ,18,20i =   are dependent quantities and can be calculated 
from the 20S  set, in which equation (5.2) is substituted by equation ( ) ( )0 9

19
ˆ 0 10RC tδ −= = . Calculation gives 

( ) ( )0 9 10ˆ 0 ~ 10 10R
iC tδ − −= − , 1, , 20i =  . The equations of the 20S , 20S +  set were integrated with the ac-

curacy ε∆  of the order of ( ) ( )0
19

ˆ 0RC tδ = . Accuracy 9~ 10ε −∆  is a measure of fluctuations of hydrodynamic 
values at thermodynamic equilibrium. The time history of the coefficients ( ) ( )0

20
ˆ RC tδ  and ( ) ( )0

20
ˆ RC tδ + +  from 

Figure 4 corresponds to axisymmetric pulsations of the periphery of recirculating zone in the wake behind a 
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sphere. The half-period of pulsations *t  was estimated at approximately one minute at ~ 1a sm  and 0 ~ 10U s m s . 
The dashed curve in Figure 4 is the ( ) ( )0

20
ˆ RC tδ , ( ) ( )0

20
ˆ RC tδ + +  dependence calculated at ( ) ( )0 6

19
ˆ 0 10RC tδ −= =   

with accuracy 9~ 10ε −∆ . Thus, the 20S , 20S +  nonlinear set “draws apart” initially close trajectories. This 
sensitivity to initial conditions was called the Loretz “butterfly effect” [14]. 

The multimoment hydrodynamics equations [5], as well as the classic hydrodynamic equations, govern space 
and time evolution of the whole ensemble of systems (Gibbs ensemble) rather than of some individual system. 
All the microscopic parameters of each individual system are compatible with the initial macroscopic parame-
ters which are present not in the form of particular values but in the form of intervals allowing for their possible 
fluctuations [15]. Thus, each statistical coefficient, ( ) ( )0ˆ

iC t , 1, , 20i =  , is a linear combination of a great 
many dynamic coefficients ( ) ( )0

,
ˆ D

i jC t , denote their number by K which can be infinitely large 

( ) ( ) ( ) ( )0 0
,

1

1ˆ ˆ 1
K

D
i i j

j
C t C t K

K =

= ∑                             (5.5) 

Dynamic coefficients ( ) ( )0
,

ˆ D
i jC t  are calculated within the classic mechanics. Fluctuation ( ) ( )0ˆ

iC tδ  at any  
time is defined as a difference between the dynamic and statistical coefficients,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0
, ,

ˆ ˆ ˆ ˆD D
i i j i j iC t C t C t C tδ δ= = − , or which is the same, as a difference between two arbitrary dynamic 

coefficients, ( ) ( ) ( ) ( ) ( ) ( )0 0 0
, ,

ˆ ˆ ˆD D
i i k i lC t C t C tδ = − . 

Consider the range of the system parameters ( )*
0Re < Re  within which the equations for statistical coeffi- 

cients have stable solution ( )0ˆ
iC , 1, , 20i =  . Within this range, the overwhelming majority of dynamic coeffi-

cients ( ) ( )0
,

ˆ D
i jC t  passing in the immediate vicinity of ( )0ˆ

iC  at 0t =  ( ) ( ) ( ) ( ) ( )( )0 0 0
,

ˆˆ ˆ0 0 1D
i i j iC t C t Cδ = = = −   

will remain in the vicinity of ( )0ˆ
iC  indefinitely long ( ) ( ) ( ) ( )( )0 0ˆ ˆ 0i iC t C tδ δ = . Statistical solution ( )0ˆ

iC ,  

1, , 20i =  , describes most of the dynamic trajectories ( ) ( )0
,

ˆ D
i jC t , 1, ,j K=  , with the accuracy ( ) ( )0ˆ 0 1iC tδ =  . 

The situation in the unstable range ( )*
0Re Re>  is radically different. Consider two ensembles of systems. 

The first α -ensemble at 0t =  incorporates systems with coefficients ( ) ( ),
ˆ 0 , 1, , , 1D

i jC t j K Kα
α α= =    within  

small vicinity ( ) ( )ˆ 0 1iC tαδ =   near α -solution ( ) ( )ˆ 0 , 1, , 20iC t iα = =  , here, ( ) ( ) 9
19

ˆ 0 10C tα −= = . The se- 

cond β -ensemble at 0t =  incorporates systems with coefficients ( ) ( ),
ˆ 0 , 1, , , 1D

i jC t j K Kβ
β β= =    within 

small vicinity ( ) ( )ˆ 0 1iC tβδ =   near β -solution ( ) ( )ˆ 0 , 1, , 20iC t iβ = =  , here, ( ) ( ) 6
19

ˆ 0 10C tβ −= = . Let 
( ) ( ) ( ) ( )

0 0
ˆ ˆ , 1, , 20i it t

C t C t iα β

= =
=  , at time 0t = . Time history of the coefficients ( ) ( )20Ĉ tα  and ( ) ( )20Ĉ tβ  is  

drawn in Figure 4 (solid and dashed curves). Initially close trajectories diverge. It immediately follows that each 
dynamic j -coefficient, ( ) ( )0

,
ˆ D

i jC t , strictly speaking, behaves in its own way. There is no unique ( ) ( )0ˆ
iC t , 

1, , 20i =  , which describes any dynamic coefficient from the set ( ) ( )0
,

ˆ D
i jC t , 1, , , 1j K K=   , for the whole 

ensemble with the accuracy ( ) ( )0 0 1iC tδ =  . The Gibbs ensemble disintegrates.  
Disintegration of the Gibbs ensemble in the unstable region suggests the follows. The multimoment hydrody-

namics Equations (2.9)-(2.11) governing the Gibbs ensemble as a whole are invalid in the region where solutions 
to these equations become unstable. The v

ijp  and Gv
iq  dissipation moments (2.7) are also true for the ensem- 

ble as a whole. Deviations ( ) ( )0ˆ R
iC tδ , 1, , 20i =  , are nothing but fluctuations of stationary coefficients ( )0ˆ

iC ,  
1, , 20i =  . 

Fluctuation ( ) ( )0ˆ R
iC tδ  of some coefficient ( )0ˆ

iC , namely, ( )0
19Ĉ , is preset at 0t = , for example,  

( ) ( )0
19 19

ˆ 0RC t bδ = = . Fluctuations ( ) ( )0ˆ 0R
iC tδ = , 1, ,18,20i =  , of other coefficients are calculated from the 

20S  set, in which Equation (5.2) is substituted by equation ( ) ( )0
19 19

ˆ 0RC t bδ = = . Time evolution of the so for- 
mulated fluctuation is approximated by solution of the 20S , 20S +  set. Fluctuation of any hydrodynamic val-
ue at any instant t  and any point x  is calculated from Equations (4.4)-(4.10). The fluctuations are interre-
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lated in time and space. In [8], these interrelated fluctuations have been termed regular. However, there is a fac-
tor always present in real physical systems. It is the spontaneous chaotic fluctuation [16]. Spontaneous fluctua-
tions are random independent events. Thus, fluctuation ( ) ( )0ˆ

iC tδ  of the ( )0ˆ
iC  statistical coefficient is 

( ) ( ) ( ) ( ) ( ) ( )0 0 0ˆ ˆ ˆR S
i i iC t C t C tδ δ δ= +                                 (5.6) 

After the attainment of the first critical value *
0Re , the 0Sol  solution to the multimoment hydrodynamics 

equations loses its stability. The conservation laws (2.9)-(2.11) governing the Gibbs ensemble as a whole become 
invalid. Regular fluctuations alone cannot provide for fulfillment of Equations (2.9)-(2.11). Strictly speaking, to 
solve the unstable problem accurately, one needs to switch from the statistical to the dynamic level of descrip-
tion and apply the equations of classical mechanics modeling the dynamics of each individual gas particle. 
However, numerical integration of the classical mechanics equations for a tremendous number of particles 
(which is sometimes infinite) is an extremely arduous problem. This line of attack seems ill advised.  

In [17], when modeling an individual system, each hydrodynamic value in the equations of conservation was 
supplemented with its spontaneous fluctuation component. As was done in [17], let us attract spontaneous fluc-
tuations. With spontaneous fluctuations taken into account, equations of conservation (2.9)-(2.11) are satisfied in 
the case of both direct and reverse multimoment hydrodynamics equations. To satisfy the Equations (2.9)-(2.11), 
the contribution of the time derivative of regular fluctuations ( ) ( )0ˆ R

iC tδ  must be counterbalanced by the con- 
tribution of time and space derivatives of spontaneous fluctuations ( ) ( )0ˆ S

iC tδ . Namely 
( ) ( ) ( ) ( )0 0ˆ ˆ

0 1,2,3,4,6,7,14,19,20ˆ ˆ

R S
i i

i

C t C t
f i

t t
δ δ∂ ∂

+ + = =
∂ ∂

                  (5.7) 

The if  functions incorporate space derivatives of spontaneous fluctuations. In the case of reverse equations 
of conservation, besides of Equation (5.7), the change in third equation of set (4.12) (namely, the replacement of 

20Ĉ  by 20Ĉ− ) must be counterbalanced by the contribution of spontaneous fluctuations. 
Let us now transform Equation (5.7) to the dimensional form and assess the order of spontaneous fluctuations 

varying on time and space scales τ  and l . Possible large-scale spontaneous fluctuations with 0Re a Uτ  
and l a

  are of the order of large-scale regular fluctuations. Realistic small scale spontaneous fluctuations 
with 0Re a Uτ  and l a

  contribute very little, if at all, to the distributions of hydrodynamic values. 
However, their time and space gradients are of the basic order of magnitude. 

6. Interpretation of System Stability Loss in Terms of Pair Entropy  
Let us mentally circumscribe a sphere of radius А a>  around the sphere of radius a . Let us term the gas 
confined between the surfaces of the coaxial spheres the physical system or simply the system. Let us now turn 
the А  radius of the larger sphere to infinity. In pursuance of the А a  condition, the number of particles 
clinging to the surface of the sphere of radius А  at any instant is negligibly small compared to the total num-
ber of particles in the system. The А a  condition makes it possible to form quasi-isolated system. The 
processes occurring in a quasi-isolated system are studied without regard for interaction of this system with the 
ambient medium [16]. According to [16], let us neglect fluctuations of hydrodynamic values characterizing the 
system as a whole, which arise due to permeability of the external sphere of radius А . In pursuance of the 
А a , these fluctuations cannot alter the general physical pattern of the processes.  

When deriving equations of entropy conservation (А.6), we reasoned from the concept of a Gibbs ensemble 
of systems. When modeling an individual system, each hydrodynamic value in the equations of conservation 
should be supplemented with its fluctuation component [17]. Let us correct Equation (А.9) for the ( ) ( )0 ,pS tδ x   
fluctuation of the  ( ) ( )0 ,pS t x  pair entropy, ( ) ( ) ( ) ( ) ( ) ( )0 0 0, , ,p p pS t S t S tδ= +x x x . Here, superscript (0) corres- 
ponds to the 0-solution to the multimoment hydrodynamics equations. Integrating the resulting equations with 
respect to x  over the volume of the system V  yields 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0 0 0 0 0p
EX p IN p p p p

S t
S t S t S t S t S t

t
δ

∂
+ ∆ = ∆ = +

∂
                    (6.1) 

In accordance with (6.1), evolution of the ( ) ( )0
pS t  pair entropy is defined by two factors, by the ( ) ( )0

IN pS t∆   
entropy production in the system and the ( ) ( )0

EX pS t∆  entropy outflow through the surface confining the system.  
Balance Equation (6.1) is valid for ( ) ( )0

pS t  and ( ) ( )0
pS tδ  individually. The ( ) ( )0

pS t  function characterizes 



I. V. Lebed 
 

 
180 

the ensemble of systems as a whole. The second term of the left-hand side of Equation (6.1) is integrated over 
surface confining volume V  (over the surface of the spheres of radii А  and a ). Note that the physical 
meaning of the Boltzmann entropy was established without resorting to the concept of a Gibbs ensemble [18]. 
Inequalities (А.3) were also derived without invoking this concept. Thus, inequalities (А.3) are also valid for 

( )pS t , ( )ppS t , and ( )1S t , and entropies ( )pS t , ( )ppS t , and ( )1S t  also convey the meaning of volume 
occupied by the system in the Г-space.  

In terms of Equation (5.6), the ( ) ( )0 ,pS tδ x  fluctuation can be written as  
( ) ( ) ( ) ( ) ( ) ( )0 0 0R S
p p pS t S t S tδ δ δ= +                                   (6.2) 

Here, superscripts “R” and “S” mark the contribution of regular and spontaneous fluctuations to the entropy.  
Explicit analytical expressions for space distributions of principle hydrodynamic values (4.4)-(4.10) contain 

dimensionless parameters ( 2Ma  and Re ). The Re -dependence is contained within the ( )ˆ ˆ Rei iC C= ,  
1, , 20i =  , coefficients. In terms of Equations (4.4-4.10), the components of Equation (6.1) can be written in 

the form of an infinite series in 2Ma  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, 0,2
0

0 0

ˆMa
kk k

p p p
k k

S t S t S S t
∞ ∞

= =

= =∑ ∑                             (6.3) 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

10 0, 0,20
2

0 00

ˆMa
Re

kk k
p p pIN EX IN EX IN EX

k k

S
S t S t S t

τ

∞ ∞ +

= =

∆ = ∆ = ∆∑ ∑  

Here, 0 0 0S kn v= , ( ) 3
0 4 3 πv a= , 0 0 0 02 n kTτ η= . Substituting distributions of hydrodynamic values (3.6), 

(3.7), (4.4)-(4.10) into (А.7), (А.10) and integrating the resulting expressions with respect to x  over the vo-
lume V  yield  

( )
3

0,0 0 0

0

ln 3
2 2 2πp

kN n mS
kT

     = − −  
     

                             (6.4) 

( ) ( ) 3
0,1 0 0 0

0 0

ln 1
2 2 2πp

k N N n E EmS
kT T

  −   −  = − + +  
     

                       (6.5) 

( ) ( ) ( ) ( ) ( ) ( )( )0,2 0,2 0,2 0,24
0 0

ˆ ˆMaR R
p p p pS S t kn v S S tδ δ+ = +                         (6.6) 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0,2 0,2 2
1 1 2 1 3 1 5 1 6 1 8

2 2
1 18 1 19 1 20 1 20 1 2 2 5

2

2 19 2 20 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4131 640 1 5 2 39 10 11 3 4 123 16

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ871 160 72136 17325 Re 90 7097 640 4 5 6 5

ˆ ˆ ˆ ˆ ˆ2 5 2144 17325 Re 19 80

R
p pS S t C C C C C C C C C C C

C C C C C C C C C C C C

C C C C C

δ+ = − − − − − + −

× − + − − + +

+ − + + ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

22
3 3 6 3 19 3 20

2 2
3 4 4 7 4 5 5 8 5 18 5 19

2 22
5 20 5 20 5 6 6 19 6 20 6

2
7 7 9

ˆ ˆ ˆ ˆ ˆ ˆ ˆ12 12 4 544 225 Re

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ201 32 3 2 Re 24 5 24 5 18 5 9 5

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ192 385 Re 192 3 5 9 6 1024 225 Re 287 32

ˆ ˆ ˆ2 2 3

C C C C C C C

C C C C C C C C C C C C

C C C C C C C C C C C

C C C

+ + −

+ + + − + − + +

− + + + + − +

+ − ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22
7 8 8 18 8 19 8 20 8 20

22 2
8 9 18 18 19 18 20 18 20 18

22
19 19 20 19 20 19

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4 Re 2 3 5 3 10 1024 17325 Re 96

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ3 80 1 4 63 8 123 40 10336 5775 Re 72 1641 160

ˆ ˆ ˆ ˆ ˆ ˆ219 160 35152 17325 Re 36 339 64

C C C C C C C C C C

C C C C C C C C C C

C C C C C C

− + − − + −

+ + + + − + +

+ − + + ( )

( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) }

4 22 3 2 2
20 20 20 20 20

1 3 6 18 19

24293408768 49517887419

ˆ ˆ ˆ ˆ ˆRe 768 77 Re 2400 12 240968512 52026975 Re 27 4 1 Re

ˆ ˆ ˆ ˆ ˆln2 1107 160 27 8 45 8 243 40 261 80

C C C C C

C C C C C

+

× − + + + +

 + − − − − 
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( ) ( ) ( ) ( ) ( ) ( )( )
4

0,1 0,1 0,1 0,10 0
2

0

Ma ˆ ˆ
Re

R R
IN p IN p IN p IN p

kn v
S S t S S tδ δ

τ
∆ + ∆ = ∆ + ∆                   (6.7) 

( ) ( ) ( ) ( )( )20,1 0,1
20

ˆ ˆ ˆ36 8192 45 ReR
IN p IN pS S t Cδ∆ + ∆ = +  

( ) ( ) ( ) ( ) ( ) ( )( )
6

0,2 0,2 0,2 0,20 0
2

0

Ma ˆ ˆ
Re

R R
IN p IN p IN p IN p

kn v
S S t S S tδ δ

τ
∆ + ∆ = ∆ + ∆                  (6.8) 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0,2 0,2

2 2
1 20 1 2 2 5 2 19

2 2
2 20 2 20 2 3 3 6 3 19

2 2
3 20 3 4 4 7

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ28144 5775 Re 27 40 216 1296 5 144 5

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ24128 3465 Re 3456 27 5 360 288 96

ˆ ˆ ˆ ˆ ˆ ˆ352 25 Re 489 8 60 48 1944 2

R
IN p IN pS S t

C C C C C C C C

C C C C C C C C C C

C C C C C C

δ∆ + ∆

= − − − + + +

+ − + + + +

+ + + + + ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
5 5 19

2 2
5 20 5 20 5 6 6 19

2 2
6 20 6 7 11 12

22
19 19 20 19 20 19

ˆ ˆ ˆ5 432 25

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ49152 9625 Re 10368 5 81 25 288 5 192 5

ˆ ˆ ˆ ˆ ˆ ˆ4096 375 Re 126 5 48 5 64 5 64

ˆ ˆ ˆ ˆ ˆ ˆ216 25 76288 28875 Re 1152 5 297 25

371489169735

C C C

C C C C C C C C

C C C C C C

C C C C C C

+

+ − + + +

+ + + + −

+ + − +

+ ( )( ) ( ) ( )
( )( ) ( )

4 2

20 20 20

2 2
20 20 20

ˆ ˆ ˆ68 3163642807325 Re 29212672 17325 Re

ˆ ˆ ˆ1262774528 58963905 Re 13824 936 5 69948 9625

C C C

C C C

+

+ + − + 

 

Here, 0 0N n V= , ( )0 0 03 2E n kT V= , dN n= ∫ x , ( )3 2 dE nkT= ∫ x . Coefficients  
( ) ( ) ( ) ( ) ( )0 0 0ˆ ˆ Re ,Re , 1, , 20R

i i i iC C C C t iδ= = + =  , are given in Section 4. The terms of distributions (4.4)-(4.10) 
proportional to ( )a r  give rise to terms proportional to ( )А a−  and ( )ln А a  ( )А a  in Equation (6.6) 
upon integration with respect to x  over volume V . That is why, in deriving (6.6), the integration limit for in-
definitely increasing terms is changed by putting 1 2, π 0, 2π 0r θ ϕ≤ ≤ ≤ ≤ ≤ ≤ .  

The ( )0,1
pS  function (6.5) incorporates the total number of particles in the system N  and the total thermal 

energy E . Owing to aforesaid condition ( )А a  and the boundary conditions (2.16) adapted to an individual 
system, fluctuations of these quantities ( N  and E ) can be excluded from consideration. Thus, ( )0,1 0pS t∂ ∂ = . 
So, pair entropy ( )0,1

pS  accurate to the order of 2
0 0Makn v  does not change at time. Hence, the system stability 

is independent of terms of this order. The study of Equation (6.1) undertaken in [19] has revealed that entropy  
production in the system ( ) ( ) ( )0,1 0,1R

IN p IN pS S tδ∆ + ∆  (6.7) compensates the entropy outflow through the surface 

confining the system ( ) ( ) ( )0,1 0,1+ R
EX p EX pS S tδ∆ ∆ , then, ( ) ( )0,1 0S

EX pS tδ∆ =  because the ( ) ( )0,1S
IN pS tδ∆  term is  

omitted for the reason to be explained later in this section. 
In problem with time independent boundary conditions, entropy balance Equation (6.1) accurate to the order 

of 6 2
0 0 0Ma Rekn v τ  assume the form 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
0,2 0,2

0,2 0,2 0,2 0,2 0,2

R S
p p R S R

EX p p p IN p p

S t S t
S S t S t S S t

t

δ δ
δ δ δ

∂ +
+ ∆ + + = ∆ +

∂
    (6.9) 

As is noted in Section 5, spontaneous fluctuations in large systems tend to be as small as possible. Further, the 
nearest vicinities of the point at which the solution breaks will be omitted from consideration. In this case, in 
accordance with the law of large numbers [12] [13], large spontaneous fluctuations can be disregarded. The 
contempt for large spontaneous fluctuations makes it possible to omit the ( ) ( )0,S i

IN pS tδ∆ , 1, 2i = , terms al-
lowing for small spontaneous fluctuations. However, varying with space and time on the scales l a

  and 
0Re a Uτ , small spontaneous fluctuations keep equations of conservation (6.9) valid. Thus, space and time 
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gradients of small spontaneous fluctuations must be retained on the left hand side of Equation (6.9). 
Derivative ( ) ( )0,2R

pS t tδ∂ ∂  is calculated from Equation (6.6). One of ways of allowing for the contribution 
of spontaneous fluctuations ( ) ( )0,2S

pS t tδ∂ ∂  is to introduce a random source [17]. However, numerical integra-
tion of the 20S , 20S +  set is as much in error as the random source method. Thus, the contribution of sponta-
neous fluctuations is taken into account involuntary, owing to the error in numerical calculation ( ) ( )0,2R

pS t tδ∂ ∂ .  
The study of the ( ) ( )0,2 ,p t∂ ∂S x x  spatial variation of the pair entropy [19] has revealed that the  

( ) ( ) ( )( )0,2 0,2+ R
EX p pS S tδ∆  term models entropy removal from the system exclusively through the surface of the  

solid sphere of radius a . By virtue of the А a  condition, the ( ) ( )0,2S
EX pS tδ∆  term models entropy remov-

al by spontaneous fluctuations also through the surface of the sphere. The entropy balance in the solid sphere is 
maintained by thermal radiation.  

Suppose that at time 0t = , the system produces an entropy fluctuation ( ) ( )0,2

0
0p t

S tδ
=
< . The ( ) ( )0,2

0p t
S t tδ

=
∂ ∂   

values at Re  close to *
0Re  are plotted at Figure 5. As revealed by calculations, ( ) ( )0,2

0
0p t

S t tδ
=

∂ ∂ >  at 

*
0Re Re<  and ( ) ( )0,2

0
0p t

S t tδ
=

∂ ∂ <  at *
0Re Re> . Thus, at *

0Re Re< , any fluctuation with ( ) ( )0,2

0
0p t

S tδ
=
<  

generated by the system tends to fade out, whereas at *
0Re Re> , any fluctuation with ( ) ( )0,2

0
0p t

S tδ
=
<  tends 

to grow. Time history of ( ) ( )0,2
pS t tδ∂ ∂  is illustrated in Figure 6. From Figure 6 follows that ( ) ( )0,2 0pS t tδ∂ ∂ >  

at *
0Re 129 Re= <  and 0t ≥ . Hence, entropy fluctuations ( ) ( )0,2

0
0p t

S tδ
=
<  generated by the system die  

down monotonically, and the entropy of the system ( ) ( )0
pS t  tends to its stationary value ( )0

pS . At *
0Re 130 Re= >  

and 0t ≥ , ( ) ( )0,2 0pS t tδ∂ ∂ < . Thus, entropy fluctuations ( ) ( )0,2

0
0p t

S tδ
=
<  produced by the system build up  

 

 

Figure 5. Pair entropy derivative ( ) ( )0,2 0,2ˆ ˆˆ ˆR
p pS t S tδ∂ ∂ = ∂ ∂  as a func-

tion of Re, *
0Re 129.1= . The curves correspond to ( ) ( )( )0,2 4ˆ ˆ 10R

pS t tδ∂ ∂ ⋅  

at time 0t = . Pair entropy deviation at 0t =  is taken to be indepen-
dent of Re: ( ) ( )0,2 6

0
ˆ 1.5 10R

p t
S tδ −

=
= − × .                               



I. V. Lebed 
 

 
183 

 

Figure 6. Time history of the pair entropy derivative ( ) ( ) ( ) ( )0,2 0,2ˆ ˆˆ ˆR
p pS t t S t tδ∂ ∂ = ∂ ∂ . 

Curve 1 corresponds to ( ) ( )( )0,2 4ˆ ˆ 10R
pS t tδ∂ ∂ ⋅  at a subcritical Re value of Re = 129. 

Curve 2 corresponds to ( ) ( )( )0,2 3ˆ ˆ 10R
pS t tδ∂ ∂ ⋅  at a supercritical Re value of Re = 130.  

 
monotonically up to point *t t=  where the solution breaks, and the entropy of the system ( ) ( )0

pS t  deviates in-
creasingly farther from its stationary value ( )0

pS  with increasing t . As revealed by calculations, fluctuations 
always fade out at *

0Re Re< , and build up at *
0Re Re> . The ( ) ( )0,2

pS tδ  function is given by Equation (6.6). 
From balance Equation (6.1) follows that at *

0Re Re< , the pair entropy formed in the system per unit time 
due to binary collisions, 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )0 0,1 0,1 0,2 0,2+ +R R
IN p IN p p IN p pS t S S t S S tδ δ∆ = ∆ + ∆  

exceeds the pair entropy removed through the surface confining the system per unit time,  
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )0 0,1 0,1 0,2 0,2 0,2+ +R R S

EX p EX p p EX p p pS t S S t S S t S tδ δ δ∆ = ∆ + ∆ +  

with the result that fluctuations produced by the system die out. At *
0Re Re> , conversely, the pair entropy out-

flow ( ) ( )0
EX pS t∆  exceeds its production ( ) ( )0

IN pS t∆ , and fluctuations build up. Thus, the case of instability 
onset in a flow around a sphere is a prevalence of pair entropy outflow over its production at the instant the 
Reynolds number reaches its critical value.  

As revealed by calculations [19], the ( ) ( )0
1S t  Boltzmann entropy behaves exactly as the ( ) ( )0

pS t  pair en- 
tropy does, when the system passes through *

0Re . Hence, the cause of instability onset in the system, regardless 
of whether it is formulated in terms of pair entropy or in terms of Boltzmann entropy, remains the same.  

Earlier in the analysis we restricted consideration exclusively to entropy fluctuations with ( ) ( )0,2 0pS tδ < . The 
reason for this “asymmetry” is as follows. Under the second principle of thermodynamics, the probability of  

( ) ( )1 0S tαδ <  ( ) ( )( )0pS tαδ <  fluctuations in an isolated system is so much greater than that of ( ) ( )1 0S tαδ >   
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( ) ( )( )0pS tαδ >  fluctuations that the latter rarely, if ever, occur in nature [16]. As revealed by study [19], entro- 

py fluctuations with ( ) ( )1 0S tαδ >  ( ) ( )( )0,2 0pS tδ >  direct the system along extremely unlikely, i.e., impractic- 

able path. Nevertheless, the probability of ( ) ( )1 0S tαδ >  ( ) ( )( )0pS tαδ >  fluctuations in an open system is not 
to be ruled out [19]. 

Evolution of fluctuations generated by system depends on two factors, on entropy production and removal 
through the surface confining the system. The fact that these factors were analyzed without resorting to any 
kinds of approximations encourages us to believe in the universal nature of the established cause of instability 
onset. Therefore, the principle according to which an open system retains (or loses) its stability can be formu-
lated as follows. 

An open system with time-independent boundary conditions has a stable stationary α-state with entropy ( )
pS α  

while entropy production in it exceeds entropy outflow through the surface confining the system for ( ) ( ) 0pS tαδ ≤  
and does not exceed entropy outflow for ( ) ( ) 0pS tαδ ≥  

( ) ( ) ( ) ( ) ( ) ( )0, 0, for 0IN p EX p pS t S t t S tα α α− δ ∆ ∆ ≥ ≥ ≤                       (6.10a) 

( ) ( ) ( ) ( ) ( ) ( )0, 0, for 0IN p EX p pS t S t t S tα α αδ ∆ − ∆ ≤ ≥ ≥                       (6.10b) 

As soon as the parameters characterizing the system reach the values, at which at least one of inequalities 
(6.10а) and (6.10b) fails, the stationary α-state of the open system becomes unstable. 

The principle originally formulated for open system with time-independent boundary conditions can be ex-
pected to the case of open systems with time-dependent boundary conditions. Generally entropy ( ) ( )pS tα  cor-
responding to an ensemble of systems may not be reckoned as stationary value. If so, Equation (6.1) no longer 
implies that the entropy production ( ) ( )IN pS tα∆  equals its outflow ( ) ( )EX pS tα∆ . That is why, generally, the sta-
bility principle is formulated in terms of excess of the entropy production ( ) ( )IN pS tαδ∆  and excess of the en-
tropy outflow ( ) ( )EX pS tαδ∆ . 

The α-state with entropy ( ) ( )pS tα  of an open system remains stable while the excess of entropy production 
generated in the system exceeds its excess of outflow through the surface confining the system for ( ) ( ) 0pδS tα ≤  
and does not exceed the excess of outflow for ( ) ( ) 0pδS tα ≥  

( ) ( ) ( ) ( ) ( ) ( )0, 0, for 0IN p EX p pS t S t t S tα α αδ − δ δ ∆ ∆ ≥ > ≤                       (6.11a) 

( ) ( ) ( ) ( ) ( ) ( )0, 0, for 0IN p EX p pS t S t t S tα α αδ − δ δ ∆ ∆ ≤ > ≥                       (6.11b) 

As soon as the parameters characterizing the system reach the values, at which at least one of inequalities 
(6.11а) and (6.11b) fails, the α-state of the open system becomes unstable. 

Inequalities (6.10) for systems with time-independent boundary conditions are reduced to inequalities (6.11). 
However, the stability principle for stationary states (6.10) seems to be more “transparent”. The above formu-
lated stability principle remains invariant in going from pair to Boltzmann entropy [19].  

7. Interpretation of System Evolution in Terms of Pair Entropy  
In accordance with the principle of retention and loss of stability (6.11), in an open unstable system, any entropy 
fluctuation ( ) ( )0 0pS tαδ = <  begins to grow. In particular, for a system with time-independent boundary condi-
tions 

( ) ( ) ( ) ( ) ( ) ( )0 for 0 0p p
p

S t S t
S t

t t

α α
αδ

δ
∂ ∂

= < = <
∂ ∂

                         (7.1) 

Based on the expression (7.1), we can formulate the criterion of evolution of an open system with lost stabili-
ty.  

An open unstable system with time-independent boundary conditions, takes a direction of evolution that pro-
vides the most rapid decrease in entropy. Namely, of the two directions of development of the instability, having 
the same values of the entropy and entropy derivative at the time 0t t= , fluctuations find such a direction that is 
characterized by lower value of the second derivative of entropy: 
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( ) ( ) ( ) ( )
0 0

2 2

2 2
p p

t t t t

S t S t
t t

α β

= =

∂ ∂
<

∂ ∂
                                (7.2) 

wherein 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0 0
, p p

p t t p t t t t t tt

S t S t
S t S t

t

α β
α β

= = = =∂

∂ ∂
= =

∂
 

( ) ( ) ( ) ( )0 0 0 0p pfor   S t S tα βδ δ= < = <  

That is, at the time 0 0t t= > , the system takes the α-direction, for which the second derivative of the entropy 
with respect to time has a lower value compared to the respectively derivative for the β-direction. 

In constructing the approximate solution to the equation for the pair function ( ), , ,pf t vx G , only a limited 
number of terms is retain in the series of products of trajectory invariants (2.5). Different approximate solutions 
compatible with the boundary conditions of the problem differ in the number of terms retained in expression 
(2.5). To select the optimal approximate solutions, it is necessary to introduce an additional criterion. The logic 
of selecting one of the set of approximate solutions can be seen in the formulation of the criterion of evolution 
(7.2). 

Let λ  be the set of parameters characterizing the jth stable stationary solution ( ) ( ) ( )ˆ ˆj j
i iC C λ= , 1, ,j n=  , 

1, ,i s=  , to the multimoment hydrodynamic equations, and let an increase in λ  be accompanied by the de- 
parture of the system state from the state of statistical equilibrium. In the simplest case, the entropy ( ) ( )j

pS λ  is  
calculated in the entire space from one jth solution. Suppose that, at some value of the parameter 0λ λ= , the  
pair entropy ( ) ( )j

pS λ , calculated from the solution ( ) ( )ˆ j
iC λ , 1, ,j n=  , 1, ,i s=  , occurs in a small vicinity  

∆  ( )0∆ >  of the pair entropy ( ) ( )0
pS λ . The entropy ( ) ( )0

pS λ  is calculated based on the solution to the clas- 
sic hydrodynamics equations, which are valid in the 0λ →  limit. Based on expression (7.2), let us formulate a 
criterion for selecting the approximate stable solution for open system.  

In interpreting the behavior of open system with time-independent boundary conditions, a solution that pro-
vides the fastest drop in entropy should be chosen from the set of stable approximate solutions to the multimo-
ment hydrodynamics equations. Namely, at a certain value of the 0λ λ=  parameter, an approximate solution 
with the lowest value of the entropy derivative should be chosen among a few approximate solutions with the 
same entropy values in a small vicinity ∆  of the pair entropy ( ) ( )0

pS λ : 
( ) ( ) ( ) ( )

0 0
1, 2, , 1, 1, ,

k j
p pS S

j k k nλ λ λ λ

λ λ
λ λ= =

∂ ∂
< = − +

∂ ∂
 

                    (7.3) 

( ) ( ) ( ) ( )
0

0 1, 2, ,j
p pS S   j n

λ λ
λ λ

=
− < ∆ = 

 

This means that, at the given 0λ λ= , the priority lies with the kth approximate stable solution to the multi-
moment hydrodynamics equations for which the derivative of the pair entropy with respect to λ  has the lowest 
value among the respective derivatives provided by other similar solutions. In more complex cases, it may be 
necessary to compare the second derivatives of the ( )pS λ  entropy, as is done in (7.2). 

Criteria (7.2), (7.3) are suitable for interpreting open systems with time-dependent boundary conditions. 

8. Vortex Shedding Regimes 
According to the 0Sol  solution, the recirculating zone is formed in the wake behind a sphere. After the attain-
ment of *

0Re Re= , the periphery of the recirculating zone begins to pulsate periodically. Pulsating periphery 
demonstrates the absence of slightest indications of detachment from the core of the recirculating zone. Conse-
quently, there is no vortex street in the far wake behind the sphere. Therefore, the 0Sol  solution does not de-
scribe the vortex shedding. 

Let the distribution of the particle-density flux be:  

 ( )
22 2

2 4
20 2 2

ˆRe 3 30cos Θ 35cos Θ 1R
a anU C
R R

 
= − + − 

 
                       (8.1) 
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 ( )
4 2

3
Θ 20 4 2

ˆRe sin Θ 12cos Θ 28cos Θ 1a anU C
R R

 
= − − 

 
 

To obtain distribution (8.1), the second term on the right side of Equation (4.8) is written in ,ΘR -variables. 
Distribution (8.1) defines a vortex ring at 0r  distance from the sphere center, Figure 3(b). The vortex ring cen-
ter is located at the Z ′  axis, which forms the δ -angle with the Z -axis, Figure 7. The inflowing gas velocity 

0U  is aligned with the positive direction of the Z  axis of reference frame XYZ. The XYZ frame has its origin 
at the center of the sphere.  

Let us retain all the terms proportional to 1 19
ˆ ˆ, ,C C  in the distributions of principal hydrodynamic values 

(4.4-4.10). These distributions have the form of linear combinations of the products of the inverse power func-
tions of r  and trigonometric functions of the polar angle θ . To bring distribution (8.1) to this form, we 
change in Equation (8.1) from the ,ΘR  variables to the r', 'θ  variables, expand these expressions in a Taylor 
series in powers of 0 0,r r r r′ ′ > , and retain in this series only the terms independent of and linear in 0r r' :  

  

R Θ 21
ˆ sinr

anU nU nU C
r

θ′ ′= −
′

                                (8.2) 

  

Θ R 21
ˆ sin anU nU nU C

rθ θ′ ′= +
′
 

Then, we change from the spherical coordinates , ,r θ ϕ′ ′ ′  to the spherical coordinates , ,r θ ϕ . The variables 
,θ ϕ  and ,θ ϕ′ ′  are, respectively, the polar and azimuthal angles of the vector r  in the Cartesian reference 

frame with the Z  axis defining the direction of the flow incoming on the sphere and in the Cartesian reference 
frame with the Z ′  axis forming an angle δ  with the Z  axis, Figure 7. The transformations performed give 
rise to azimuthal angle ϕ  dependent terms in the distributions of the particle-density flux nU :  

     

r cos sinrnU nU nU nU nU nUθ θ ϕ θη η′ ′ ′= = = −                     (8.3) 

Here,  

sin sin sin sinθ η ϕ δ′ =  

sin cos cos cos sin sin cosθ η θ ϕ δ θ δ′ = +  

Along with the coefficient 20Ĉ , the transformed expression (8.3) for the distribution of the particle-density  
flux nU  contains two additional coefficients: 21 0Ĉ r a=  and 22

ˆ cosC δ= . The coefficient 21Ĉ  characteriz- 
es the distance from the vortex ring to the sphere surface, whereas the coefficient 22Ĉ  characterizes the devia-
tion of the vortex ring center from the Z  axis. Trajectory invariants for expansion (4.2), which lead to the dis-
tribution (8.3), are not written in the present Section. 

 

 
Figure 7. The Z axis of the XYZ  frame with its origin at the center of the 
sphere; , ,r θ  and ϕ  are the spherical coordinates of some point x.         
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The distributions of the principal hydrodynamic values (4.4)-(4.10) associated with the coefficients 1 19
ˆ ˆ, ,C C  

should be supplemented with distribution (8.3). The presence of ϕ -dependent terms in Equation (8.3) for the 
distribution of the particle-density flux nU  leads to the appearance of these terms in the hydrodynamics equa-
tions. Taking into account the dependence on ϕ  is beyond the accuracy limits of the approximation under con-
sideration. 

Expand expression (8.3) for the distribution of the particle-density flux nU  in a Fourier series in the azimu-
thal angle ϕ  and substitute the zeroth-order Fourier expansion term in the multimoment hydrodynamics Equa-
tions (2.9)-(2.11). Eighteen nonlinear algebraic equations are presented by relationships (A8)-(A10) in [8]. Right- 
hand sides of Equations (A8)-(A10) from [8] contain twenty coefficients ˆ

iC , 1, , 20i =  . In accordance with 
the algorithm presented in [8], we supplement these equations by terms containing the coefficients 21Ĉ  and 

22Ĉ . Let us supplement eighteen algebraic Equations (A8-A10) from [8] with three algebraic Equation (4.12) 
and differential Equation (4.2). As a result, we obtain a closed set of nonlinear equations of twenty-second order 
S22 for the coefficients ˆ

iC , 1, , 22i =  . It turned out that, in the investigated range of Re , of great many so-
lutions to the system S22, only two solutions correspond to such an entropy value that allows these solutions to 
compete with the solution 0Sol . We denote these solutions as 1Sol  and 2Sol . 

In the rearrangement of the distribution (8.1), the terms nonlinear in 0r r′  were omitted. Calculations 
showed that the omitted terms have no significant influence on the solutions 1Sol  and 2Sol . Substitute the full 
Fourier expansion of expression (8.3) for the distribution of the particle-density flux nU  into the multimoment 
hydrodynamics Equations (2.9)-(2.11) and integrate the resulting nonlinear system of differential equations over 
ϕ . In this case, we arrive at system S22 supplemented by several terms. Calculations have shown that these 
supplements produce no significant influence on the solutions 1Sol  and 2Sol . 

9. Selecting the Direction of Instability Development  
Figure 8 shows the time dependence of the ( )

( ) ( )0,2
0pS t  dimensionless pair entropy (6.3) calculated from the so- 

 

 
Figure 8. Time behavior of the pair entropy ( )

( ) ( )0,2
0

ˆ
pS t , ( )

( ) ( )+ 0
0

ˆ +
pS t  

calculated within the layer 0H  at ( )0
2 2ˆ ˆ 2.392r r= = , Re = 400, 

ˆ 6.99020*t = .                                            
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lution 0Sol  at Re = 400. The pair entropy is calculated in the dominant order, ( )
( ) ( ) ( )

( ) ( )0,2 0,24
0 00 0

ˆMap pS t kn v S t= . In  

calculating the ( )
( ) ( )0,2

0pS t  pair entropy, the spatial integration (A.4) is performed over a semispherical concentric 
layer 0H , Figure 9. The subscript in brackets corresponds to the limits of spatial integration. The 0Sol  solu-
tion describes periodic pulsations of the recirculating zone in the wake behind the sphere. The movement of the 
representative point over the curve (Figure 8) from 0t =  to *t t=  corresponds to the expansion or, in other 
words, the excitation of the recirculating zone, ( )0

ˆRe 2t a U t= . The pair entropy ( )
( ) ( )0,2

0pS t  will be used as a 
measure of excitation degree of recirculating zone. Beginning from the time 0t =  up to the time *t t= , the 
entropy decreases permanently. This behavior of the entropy corresponds to the movement away of the system 
state that lost its stability from the state of statistical equilibrium. By the time *t t= , the degree of excitation of  

the recirculating zone reaches a maximum, which corresponds to the minimum value of the ( )
( ) ( )0,2

0pS t  function.  

At the lettime *t t= , the 0Sol  solution to the multimoment hydrodynamics equations breaks. The movement 
of the representative point over the curve (Figure 8) from *t t=  to *2t t=  corresponds to the return of the 
most excited recirculating zone to its original position, i.e., the position corresponding to the time 0t = . Since 
the time *t t= , the movement of the representative point is described by the reverse equations of multimoment 
hydrodynamics [6]. The reverse equations are solved with regressive timing along the time axis, from the past to 
the future. This timing order is represented on the axis beneath the abscissa in Figure 3 ( *2t t t+ = − +  within  

* *2t t t≤ ≤ ). The ( )
( ) ( )0,2

0pS t  pair entropy exists in the range *0 t t≤ ≤ , whereas the ( )
( ) ( )+ 0,2
0

+
pS t  pair entropy  

(А.15), within * *2t t t≤ ≤ . The distribution of the hydrodynamics values involved in the expressions for ( )
( ) ( )0,2

0pS t   

and ( )
( ) ( )+ 0,2
0

+
pS t  are conjugated with the coefficients ( ) ( )0ˆ

iC t  and ( ) ( )0ˆ
iC t+ + , 1, , 20i =  . Relationships (5.4) 

between the coefficients ( ) ( )0ˆ
iC t+ +  and ( ) ( )0ˆ

iC t  yield ( )
( ) ( ) ( )

( ) ( )+ 0,2 0,2
0 0

0 0

+
p pt t t t

S t S t+ = =
=  for any time 0t  within, 

0 *0 t t≤ ≤ . Figure 8 shows that most of the pulsation half-period *t , approximately *5 7t , the entropy of the 

system decreases rather weakly. A sharp decrease in the entropy ( )
( ) ( )0,2

0pS t  occurs within a short time of *2 7t .  

The function ( )
( ) ( )( )0,2 0

0pS t t−  is a portion of the pair entropy ( )
( ) ( )0,2

0pS t , which specifies the behavior of the en- 

tropy in the neighborhood, (0)
*t t− , of the point of solution break, *t t=   

( )
( ) ( ) ( )

( ) ( )( )0,2 0,2 0
0 0p pS t S t t= −                                    (9.1) 

Represent the ( )
( ) ( )( )0,2 0

0pS t t−  function as a sum of functions: 

( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )0,2 0,2 0,20 0 0

0 1 2p p pS t t S t t S t t− = − + −                             (9.2) 

The ( )
( ) ( )( )0,2 0

1pS t t−  entropy is calculated within a semispherical concentric layer 1H  (Figure 9). The  
 

 

Figure 9. Semispherical concentric layer 0H : 2
π1 , 0,2π 0
2

r r θ ϕ≤ ≤ ≤ ≤ ≤ ≤ ; 
 

semispherical concentric layer 1H : 1
π1 , 0,2π 0
2

r r θ ϕ≤ ≤ ≤ ≤ ≤ ≤ ; semis- 

pherical concentric layer 2H : 1 2
π, 0,2π 0
2

r r r θ ϕ≤ ≤ ≤ ≤ ≤ ≤ .             
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( )
( ) ( )( )0,2 0

2pS t t−  entropy is calculated within a semispherical concentric layer 2H . In calculating ( )
( ) ( )( )0,2 0

1pS t t−   

and ( )
( ) ( )( )0,2 0

2pS t t− , the parameters ( )0
1 1r r=  and ( )0

2 2r r=  were set constant.  
Let the representative point move upwards along the curve in Figure 8. By the time 1t t= , the recirculating  

zone reaches a degree of excitation characterized by the ( )
( ) ( )0,2

10pS t  function. The time 1t t=  corresponds to  

the point of intersection of the curves 1 and 2 in Figure 10. At the time 1t t= , the relations 

( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )

1 1 1

20,2 0,20 0 0
0 1 2

, 1, 2p p p
t t t t t t

iS t t S t t S t t i
= = =

− = − + − =
 

               (9.3a) 

( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )

1 1 1

20,2 0,20 0 0
0 1 2

,

1, 2
p p p

t t t t t t

iS t t S t t S t t
i

t t t
= = =

∂ − ∂ − ∂ −
= + =

∂ ∂ ∂

 



           (9.3b) 

are valid. 
The left-hand side of Equation (9.3a) defines the ( )

( ) ( )( )0,2 0
0pS t t−  function calculated within the layer 0H .  

The ( )
( ) ( )( )0,2 0

1pS t t−


 function on the right-hand side of (9.3a) is calculated within the layer 1H . In accordance  

with definition  

( )
( ) ( )( ) ( )

( ) ( )( )0,2 0,20 0 0,1 0p i p iS t t S t t t i t− = − + ∆ = ∆ >


                     (9.4) 

The ( )
( ) ( )( )0,2 0

1pS t t−


 function on the right-hand side of Equation (9.3a) was calculated within the 2H  layer  

from the solution 1Sol  at Re = 400. The 1Sol  solution describes the motion of a single vortex structure in the  
wake behind the sphere. The coefficient 21 0Ĉ r a=  in the 1Sol  solution highly accurately defines the position 

of the vortex structure at the Z axis, since 22
ˆ cos 1C δ= ≅  (Figure 7). In accordance with the 1Sol  solution,  

the vortex structure monotonically recedes from the surface of the sphere, being accompanied by dissipation of  

the vortex structure. This behavior of the vortex structure causes the increase in the ( )
( ) ( )( )1,2 0

2pS t t−


 pair entropy 

as t  grows. In calculating ( )
( ) ( )( )1,2 0

2pS t t−


, the initial time for the movement of a single vortex structure, ( )1t , is  

chosen so that, at the time ( )0
1t t t= − , the vortex structure moving in space would reach the position  

( )( ) ( )0 0
21 1 1

ˆ ˆC t t r− =  

where ( )( ) ( ) ( )( )0 0 1
21 21

ˆ ˆC t t C t t t− = − − . That is, at the time 1t t= , the position of a single vortex structure at the  

Z axis is determined by ( )0
1r , which defines the inner boundary of the 2H  layer. 

The left-hand side of Equation (9.3) corresponds to the state of the system S −  at which the 0H  layer is 
completely occupied by the recirculating zone, given by the 0Sol  solution. By the time 1t t= , the recirculating  

zone reaches the degree of excitation that is characterized by the ( )
( ) ( )( )0,2 0

10pS t t−  function. According to Equa- 

tion (9.2), in the S −  state, the core of the recirculating zone has a degree of excitation characterized by the  

function ( )
( ) ( )( )0,2 0

11pS t t− , whereas the periphery recirculating zone has a degree of excitation characterized by 

the function ( )
( ) ( )( )0,2 0

12pS t t− . The right-hand side of Equation (9.3) corresponds to a qualitatively different state  

of the system S + . Namely, in the S +  state, the periphery of the recirculating zone with the degree of excita- 

tion ( )
( ) ( )( )0,2 0

12pS t t− , corresponding to the state of the system S − , is replaced by a single vortex structure in the 

2H  layer, described by the 1Sol  solution. This vortex structure is characterized by the ( )
( ) ( )( )1,2 0

2pS t t−


 entropy. 

In the S +  state, the core of recirculating zone with the degree of excitation ( )
( ) ( )( )0,2 0

11pS t t−  corresponding to 

the state of the system S − , is replaced in the 1H  layer by a recirculating zone core with the different degree of  
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Figure 10. Time dependence of the entropy derivative ( )
( ) ( )( ),2 0ˆ ˆj
p iS t t t∂ − ∂ , 0,3i = , 0,1,2j = . The function 

( )
( ) ( )( )0,2 0

0
ˆ ˆ

pS t t t∂ − ∂  calculated within the layer 0H  at ( )0
2 2ˆ ˆ 2.392r r= = , Re = 400, ( )0ˆ 6.94658t =  is repre- 

sented by curve 1. Curve 2 is ( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )1 0 0 0 1 0

3 1 2
ˆ ˆˆ ˆ ˆ+p p pS t t t S t t S t t t ∂ − ∂ = ∂ − − ∂  

 

  at Re = 400, ( )0ˆ 6.94658t = . 

The function ( )
( ) ( )( )0,2 0

1
ˆ ˆ

pS t t t∂ − ∂


 is calculated in the layer 1H  at ( )0
1 1ˆ ˆ 1.740r r= = ; the function ( )

( ) ( )( )1 0
2

ˆ ˆ
pS t t t∂ − ∂


 

is calculated in the layer 2H  at ( )0
1 1ˆ ˆ 1.740r r= = , ( )0

2 2ˆ ˆ 2.392r r= = . The time of restructuring is 
( )0

1
ˆ ˆ ˆ 0.03605t t t= = + . The time count origin for the movement of a single vortex structure is ( )1ˆ 0.03561t =  for 

( )0
1̂

ˆ 0.03605t t= + . The function ( )
( ) ( )( )0,2 0

0
ˆ ˆ

pS t t t∂ − ∂  calculated within the layer 0H  at ( )0
2 2ˆ ˆ 2.204r r= = , Re = 

400, ( )0ˆ 6.94658t =  is represented by curve 3. Curve 4 is ( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )1,2 0 0,2 0 1,2 0

3 1 2
ˆ ˆˆ ˆ ˆ+p p pS t t t S t t S t t t ∂ − ∂ = ∂ − − ∂  

 

  

at Re = 400, ( )0ˆ 6.94658t = . The function ( )
( ) ( )( )0,2 0

1
ˆ ˆ

pS t t t∂ − ∂


 is calculated in the layer 1H  at ( )0
1 1ˆ ˆ 1.580r r= = , 

whereas the function ( )
( ) ( )( )1,2 0

2
ˆ ˆ

pS t t t∂ − ∂


 in the layer 2H  at ( )0
1 1ˆ ˆ 1.580r r= = , ( )0

2 2ˆ ˆ 2.204r r= = . The restruc-

turing time is ( )0
1

ˆ ˆ ˆ 0.03749t t t= = + . The initial point of time count for the movement of a single vortex structure 

is (1)ˆ 0.03561t =  at ( )0
1̂

ˆ 0.03749t t= + . The function ( )
( ) ( )( )0,2 0

0
ˆ ˆ

pS t t t∂ − ∂  calculated within the layer 0H  at     

( )0
2 2ˆ ˆ 4.162r r= = , Re = 260, ( )0ˆ 5.26473t =  is represented by curve 5. Curve 6 is                           

( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )2,2 0 0,2 0 2,2 0

3 1 2
ˆ ˆˆ ˆ ˆ+p p pS t t t S t t S t t t ∂ − ∂ = ∂ − − ∂  

 

  at Re = 260, ( )0ˆ 5.26473t = . The function              

( )
( ) ( )( )0,2 0

1
ˆ ˆ

pS t t t∂ − ∂


 calculated within the layer 1H  at ( )0
1 1ˆ ˆ 1.672r r= = ; the function ( )

( ) ( )( )2,2 0
2

ˆ ˆ
pS t t t∂ − ∂


 is cal-

culated in the layer 2H  at ( )0
1 1ˆ ˆ 1.672r r= = , ( )0

2 2ˆ ˆ 4.162r r= = . The time of restructuring is ( )0
1

ˆ ˆ ˆ 0.09539t t t= = + . 

The initial point of time count for the movement of a single vortex structure is ( )1ˆ 0.09310t =  at 
( )0

1̂
ˆ 0.09539t t= + . For curves 1, 2, 3, 4, the abscissa is given at the bottom, and the ordinate, on the left. For 

curves 5, 6, the abscissa is given at the top, and the ordinate, on the right.                                    
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excitation. The degree of excitation of the recirculating zone core in the S +  state is higher as compared to the 
degree of excitation of the recirculating zone in the S −  state  

( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )0,2 0,2 0,20 0 0

1 1 1 1 11 1 1 0p p pS t t S t t t S t t t− = − + ∆ < − ∆ >


                     (9.5) 

Thus, expressions (9.3) describe the instantaneous rearrangement of the flow at the time 1t t= . 

The curve 1 in Figure 10 specifies the time evolution of the ( )
( ) ( )( )0,2 0

0pS t t t∂ − ∂  entropy derivative which is  

calculated within the 0H  layer. The curve 2 in Figure 10 specifies the time evolution of the derivative  

( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )0,2 1,2 1,20 0 0

1 2 3p p pS t t S t t t S t t t ∂ − + − ∂ = ∂ − ∂ 
 

 . The ( )
( ) ( )( )0,2 0

1pS t t t∂ − ∂


 function is calculated in the 

1H  layer. The ( )
( ) ( )( )1,2 0

2pS t t t∂ − ∂


 function is calculated in the 2H  layer. In calculating ( )
( ) ( )( )1,2 0

2pS t t t∂ − ∂


, 

the variable initial time ( )1t  for the movement of a single vortex structure is chosen at each moment of time t  

so that, by the time ( )0t t− , the vortex structure moving in space would reach the position ( )( ) ( )0 0
21 1

ˆ ˆC t t r− = ,  

where ( )0
1r  specifies the inner boundary of the 2H  layer. For each moment of time t , not too close to the 

time of recovery *t , there is a time interval, *0,t t t t∆ > + ∆ < , which ensures the validity of equality (9.3a). 
However, as follows from Figure 10, only at the time of restructuring 1t t= , the validity of Equation (9.3a) en-
tails the validity of Equation (9.3b). Then, in accordance with the criterion (7.2), the system takes the direction 
of evolution set by the flow restructured at the time 1t t= . The state of the restructured flow is characterized by 
the terms on the right-hand side of Equation (9.3). Information required to build the curves in Figure 10 and 
Figure 11 is given in Figures 4-7 in [20]. 

The evolution of the reconstructed flow proceeds as follows. A single vortex structure located at the time 
1t t=  in the 2H  layer, begins to move downstream in strict accordance with the 1Sol  solution. The inner  

boundary ( )1
1 1r r=   of the 2H  layer, which is simultaneously the outer boundary of the 1H  layer, is bound to 

the position of a single vortex structure: ( ) ( )( ) ( )( ) ( ) ( )( )1 0 0 0 1
1 21 21

ˆ ˆr̂ t t C t t C t t t− = − = − −

 ; i.e., this boundary 

moves together with the vortex structure at a fixed ( )1t  corresponding to 1t t= . The time behavior of the 

( )
( ) ( )( )0,2 0

13pS t t t− − ∆


 pair entropy is represented by the curve 3 in Figure 11. The ( )
( ) ( )( )0,2 0

13pS t t t− − ∆


 function 

is calculated from the 0Sol  solution within the 1H  layer with the moving outer boundary ( ) ( )( )1 0
1r t t− . At the 

restructuring time 1t t= , a single vortex structure is positioned at ( ) ( )( ) ( )1 0 0
1 1 1r t t r− = . By the time 3t t= , 

3 12 *t t t= − , the vortex structure reaches the position ( )( )0
21 3Ĉ t t− , in accordance with the 1Sol  solution. De-

fined by the 1Sol  solution, the outer boundary ( ) ( )( )1 0
1 3r t t−  of the 1H  layer at the time 3t t=  sets the val-

ue of ( )0
2r : ( ) ( )( ) ( )1 0 0

1 3 2r t t r− = . Since the time of recovery *t t= , the movement of the system is described by 

the reverse multimoment hydrodynamics equations [6], which enable to calculate the time dependence of the 

reverse pair entropy ( )
( ) ( )( )+ 0,2 0

13pS t t t+ − − ∆


. The reverse equations are solved with regressive timing direction  

along the time axis, from the past to the future. This timing order, *2t t t+ = − + , is shown on the axis beneath 
the abscissa in Figure 11 in the range * *2t t t≤ ≤ . The time 3t t=  for progressive timing corresponds to the 
time 1t t+ =  for the regressive timing. The curves 3 and 2 in Figure 11 are intersected at a time of 3t t= . Then, 

( )
( ) ( )( ) ( )

( ) ( )( )
( )
( ) ( )( ) ( )

( ) ( )( )
1 1

1 1

0,2 0,20 0
1 13 1

0,2 0,20 0
1 13 0

p p
t t t t

p p
t t t t

S t t t S t t t

S t t t S t t t
+ +

= =

+ ++ +

= =

− − ∆ = − − ∆

− − ∆ = − − ∆

 

 

                       (9.6) 

In Figure 11, the functions ( )
( ) ( )( )0,2 0

11pS t t t− − ∆


 and ( )
( ) ( )( )0,2 0

10pS t t t− − ∆


 are represented by curves 1 and 2.  
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Figure 11. Time behavior of the pair entropy, Re = 400. The restructuring time is 

( )0
1

ˆ ˆ ˆ 0.03605t t t= = + ; the time of detachment is ( )0
3

ˆ ˆ ˆ 0.05119t t t= = + , ( )0ˆ 6.947t = , 

1̂ 0.00523t∆ = . The pair entropy ( )
( ) ( )( )0,2 0

1
ˆ

p iS t t t− − ∆


, 0,1,3i = , exist in the range *0 t t≤ ≤ . 

The pair entropy ( )
( ) ( )( )+ 0,2 0

1
ˆ

p iS t t t+ − − ∆


, 0,1,3i = , exist in the range * *2t t t≤ ≤ , *2t t t+ = − + . 

Curve 1 represents the functions ( )
( ) ( )( )0,2 0

11
ˆ

pS t t t− − ∆


 and ( )
( ) ( )( )+ 0,2 0

11
ˆ

pS t t t+ − − ∆


 calculated 

within the layer 1H  at ( )0
1 1ˆ ˆ 1.740r r= = . Curve 2 represents the functions ( )

( ) ( )( )0,2 0
10

ˆ
pS t t t− − ∆


 

and ( )
( ) ( )( )+ 0,2 0

10
ˆ

pS t t t+ − − ∆


 calculated within the layer 0H  at ( )0
2 2ˆ ˆ 2.392r r= = . Curve 3 

represents the functions ( )
( ) ( )( )0,2 0

13
ˆ

pS t t t− − ∆


 and ( )
( ) ( )( )+ 0,2 0

13
ˆ

pS t t t+ − − ∆


 calculated within 

the layer 1H . The movement of the outer boundary ( )1
1 1r r=   of the layer 1H  is given by 

( ) ( )( ) ( )1 0
1 1 1
ˆ ˆ0 1.740r t t t r= − = = , ( ) ( )( ) ( )1 0

1 3 2
ˆ ˆ0 2.392r t t t r= − = = .                          

 
In accordance with Equations (9.4b) and (5.4), and the definition of the pair entropy, at the time 3t t=  (equiv-
alent to 1t t+ = ), we have 

( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )

1 1 1

+ 0,2 0,2 0,20 0 0
1 10 0 0p p p

t t t t t t
S t t t S t t t S t t

+

+

= = =
− − ∆ = − − ∆ = −

 

                (9.7а) 

( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )

1 1 1

+ 0,2 0,2 0,20 0 0
1 10 0 0p p p

+

t t t t t t

S t t t S t t t S t t

t tt
+

+

= = =

∂ − − ∆ ∂ − − ∆ ∂ −
= =

∂ ∂∂

 



            (9.7b) 

Thus, by the time 3t t= , the system reaches conditions identical to those the system had at the time 1t t= ; 
i.e., the single vortex structure leaves the 0H  layer. The 0H  layer is entirely occupied by the recirculating 
zone described by the 0Sol  solution. By the time 3t t= , the single vortex structure crosses the external border 
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of the periphery of the recirculating zone, ( )0
2 2r r= . We assume that the time 3t t=  is the moment of separa-

tion of the single vortex structure from the recirculating zone. 
Further, as previously, the periphery of the recirculating zone located in the 2H  layer is replaced by a single 

vortex structure given by the 1Sol  solution. At the same time, in the 1H  layer, the recirculating zone core 
with the degree of excitation corresponding to the S −  state is replaced by the core with the degree of excitation 
corresponding to the S +  state. At the time 3t t= , if the equality (9.3a) is held, so is equality (9.3b). Then, in 
accordance with the criterion (7.2), the direction taken after the replacement is more preferable for the system. 
As at the time 1t t= , at 3t t= , a single vortex structure, in accordance with the 1Sol  solution, starts to move 
from the outer boundary of the recirculating zone core, ( )0

1 1r r= , to the outer boundary of the recirculating zone 
periphery, ( )0

2 2r r= . The periodic shedding of a single vortex structure occurs with a period of  
3 1 1 1 12 2*T t t t t t t= − − ∆ = − − ∆ . The positions of shedding vortex structures are schematically indicated by ver-

tical lines in the lower branch in Figure 12.  
It turns out that, for equality (9.3b) to be held, the degree of excitation of the recirculating zone core  

( )
( ) ( )( )0,2 0

1 11pS t t t− + ∆  should increase with decreasing a parameter ( ) ( )( )0 0
1 21 1

ˆr̂ C t t= −  that defines the position 

of the vortex structure at the periphery of the recirculating zone at the time of restructuring 1t t= . At 
( )0

1̂ 1.580r = , the degree of excitation ( )
( ) ( )( )0,2 0

1 11pS t t t− + ∆  of the recirculating zone core reaches its maximum,  

since at ( )0
1̂ 1.580r = , the time 1 1t t+ ∆  coincides with the time of recovery *t , 1 1 *t t t+ ∆ = . A further decrease 

in the parameter ( )0
1r  excludes the possibility of flow restructuring, i.e., the possibility of emergence of a vortex 

structure at the periphery of the recirculating zone.  
The time behavior of the pair entropy derivatives ( )

( ) ( )( )0,2 0
0pS t t t∂ − ∂  and 

( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )0,2 1,2 1,20 0 0

1 2 3p p pS t t S t t t S t t t ∂ − + − ∂ = ∂ − ∂ 
 

  is shown in Figure 10. Curve 3 corresponds to the  

state of the system before restructuring, S − , curve 4 corresponds to the state of the restructured system, S + . 
The curve 3 in Figure 10 is positioned slightly below curve 1. However, in the scale of Figure 10, curve 1 and 3 
are indistinguishable. The time of restructuring 1t t=  corresponds to the point of intersection of curves 3 and 4 
in Figure 10. At the time of restructuring 1t t= , equalities (9.3a) and (9.3b) are held simultaneously. In accor-
dance with the criterion (7.2), the system takes the direction of evolution that is predetermined by the flow re-
structured at the time 1t t= .  

 

 
Figure 12. Positions z of periodically shedding vortex structures at the Z 
axis. The leftmost value is the position of the vortex ( )0

1z r=  in the recircu-

lating zone at the restructuring time 1t t= . The lower branch: ( )0
1̂ 1.740r = , 

shedding period is ˆ 0.00991T = , Re = 400; the middle branch: ( )0
1̂ 1.580r = , 

ˆ 0.00613T = , Re = 400; the upper branch: ( )0
1̂ 1.672r = , ˆ 0.01803T = , Re 

= 260, the next vortex structure at the upper branch occupies the position z = 
10.3.                                                             
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The use of the extremely low value ( )0
1̂ 1.580r =  gives extremely low values of the entropy derivatives  

( )
( ) ( )( )0,2 0

0pS t t t∂ − ∂  and ( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )0,2 1,2 1,20 0 0

1 2 3p p pS t t S t t t S t t t ∂ − + − ∂ = ∂ − ∂ 
 

  at the time of restructuring 

1t t= . The values of these derivatives at 1t t=  correspond to the intersection of curves 3 and 4 in Figure 10. 

The values of ( )
( ) ( )( )0,2 0

0pS t t t∂ − ∂  and ( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )0,2 1,2 1,20 0 0

1 2 3p p pS t t S t t t S t t t ∂ − + − ∂ = ∂ − ∂ 
 

  at the point of 

intersection of curves 3 and 4 are lower than the respective values at the point of intersection of curves 1 and 2, 

for which ( )0
1̂ 1.740r = . As a result, the derivative ( )

( ) ( )( ) ( )
( ) ( )( )0,2 1,20 02 2

1 2p pS t t S t t t ∂ − + − ∂ 
 

 at ( )0
1̂ 1.580r =  and  

1t t=  has an extremely low value. Therefore, in accordance with the criterion (7.2), the extremely low value of 
( )0

1r  which defines the position of a single vortex structure in the recirculating zone at the time of restructuring 
1t t=  is preferable.  

The use of extremely low value of ( )0
1r  leads to a situation where the representative point takes a minimum 

time to move from position of break *t t=  to the position of separation 3t t= . The choice of an extremely low 
value of ( )0

1r  leads to an extremely low value of the period of separation of a vortex structure from the recircu-
lating zone, 1*T t t= − . In Figure 12, the vertical lines on the middle branch indicate the spatial position of pe-
riodically shedding vortex structures for an extremely low value of ( )0

1r . Shedding vortex structures are located 
extremely close to each other (middle branch). 

The time behavior of the pair entropy derivatives is shown in Figure 10. Curve 5 corresponds to the 

( )
( ) ( )( )0,2 0

0pS t t t∂ − ∂  function, which is calculated from the 0Sol  solution at Re = 260. The curve 6 corresponds 

to the ( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )0,2 2,2 1,20 0 0

1 2 3p p pS t t S t t t S t t t ∂ − + − ∂ = ∂ − ∂ 
 

  function, in which the ( )
( ) ( )( )2,2 0

2pS t t t∂ − ∂


 de- 

rivative is calculated from the 2Sol  solution at Re = 260. The values of the parameters used in the calculations, 
( ) ( ) ( ) ( )0 0 2 2

1 2 1 2, , ,r r r r , are specified in the Figure captions.  
The curve 5 corresponds to the state of the system before restructuring, S − ,  while the curve 6 corresponds 

to the state of the restructured system, S + . The time of restructuring 1t t=  corresponds to the point of inter-
section of curves 5 and 6 in Figure 10. At the time of restructuring 1t t= , the equalities (9.3a) and (9.3b) are 
fulfilled simultaneously. In accordance with the criterion (7.2), the system takes the direction of evolution that is 
set by the flow restructured at the time 1t t= . 

It is found that, with increasing parameter ( ) ( )( )0 0
1 21 1

ˆr̂ C t t= − , defining the position of the vortex structure in 

the recirculating zone at the time of restructuring 1t t= , the ( )
( ) ( )( )0,2 0

2pS t t−  entropy of the recirculating zone 

periphery grows much faster than the ( )
( ) ( )( )2,2 0

2pS t t−


 entropy of single vortex structure. At an extremely high 

value of the parameter ( )0
1r , the difference ( )

( ) ( )( ) ( )
( ) ( )( )2,2 0,20 0

2 2p pS t t S t t− − −


  is not so great as to make the equali- 

ties (9.3a) and (9.3b) simultaneously valid. The extremely high value of the parameter ( )0
1r  at Re = 260 is given 

in the Figure captions. A further increase in the parameter ( )0
1r  excludes the possibility of flow restructuring, 

i.e., the possibility of emergence of a vortex structure in the recirculating zone. The extremely high value of ( )0
1r  

leads to the extremely low value of the period T  of shedding of single vortex structures from the recirculating 
zone core. The extremely low value of T  provides extremely low values of the entropy derivatives at the time 
of restructuring 1t t= , which are represented by the point of intersection of curves 5 and 6 in Figure 10. 
Therefore, in accordance with criterion (7.2), the extremely high value of the ( )0

1r  parameter is selected from 
the spectrum of its values. The upper branch in Figure 12 shows the spatial positions of periodically shedding 
vortex structures for the extremely high values of ( )0

1r , marked by vertical lines. 
The calculations have revealed the dependence of the domain of existence of the solution 1Sol  on Re. At Re 

= 260, the 1Sol  solution exists at 21
ˆ 2.6C > , here the variable 21Ĉ  highly accurately defines the posi- 

tion of the vortex structure at the Z axis. In this range of 21Ĉ  values, the ( )
( ) ( )( )1,2 0

2pS t t−


 pair entropy is not  

small enough to ensure that the relations (2.3) will be held. So, at Re = 260, the 2Sol  solution is the only solu-
tion allowing the vortex shedding. At Re = 400, each of the solutions 1Sol  and 2Sol  allows the vortex shed-
ding. Each of the solutions 1Sol  and 2Sol  is characterized by its own time of flow restructuring, 1t t= . Cal-



I. V. Lebed 
 

 
195 

culated from the 1Sol  solution, the period T  of shedding of single vortex structures from the recirculating 
zone core is significantly smaller than the corresponding period calculated by the 2Sol  solution. The entropy  

derivatives ( )
( ) ( )( )0,2 0

0pS t t t∂ − ∂ , ( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( )0,2 2,2 2,20 0 0

1 2 3p p pS t t S t t t S t t t ∂ − + − ∂ = ∂ − ∂ 
 

  and  

( )
( ) ( )( ) ( )

( ) ( )( )0,2 2,20 02 2
1 2p pS t t S t t t ∂ − + − ∂ 

 

 at the point of restructuring 1t t=  for the 2Sol  solution are consi- 

derably higher than the respective values represented by curves 3 and 4 in Figure 10 at their point of intersec-
tion. Thus, in accordance with the criterion (7.2), the 1Sol  solution is more preferable than the 2Sol  solution 
at Re = 400. 

10. Comparison with Experiment  
All the experiments with flows past a sphere available at present are divided into two groups in the review [1]. 
The first group includes experiments in which a body sinks freely in a medium under the action of gravitation. 
Besides, the first group includes the experiments in which a hard sphere is fixed rigidly in the air or water tunnel. 
The second group experiments were made by towing a body through a bath filled with a liquid. The reason for 
such a division is as follows. The velocity of a free-stream flow can be considered as strictly uniform in none of 
the first group experiments. A strictly uniform profile of the flow running against a body can only be achieved in 
experiments of the second group [10] [11] by using a rigid support system.  

According to the measurement data reported in [10] [11], the ( )0
expU x  stationary recirculating zone formed 

in the near wake behind a sphere at Re~10 - 20 increases as Re  grows. After the attainment of the first critical 
Reynolds number *

0Re , the periphery of the recirculating zone in the near wake behind a sphere begins to pul-
sate periodically. The recirculating zone remains toroidal during pulsations, and its forefront is firmly fixed on 
the sphere. The ( )0 ,exp tV x  pulsating flow remains axisymmetric.  

The pulsations become increasingly well defined as Re increases, and their amplitude grows. After the pas-
sage of **

0Re , the periphery of the recirculating zone begins to be periodically shed from its core and moves 
downstream. The shed vortex structure has the shape of ring. Separate vortex rings depart from a sphere down-
stream and move along the spiral path ( )0 ,exp tW x  [11]. The attainment of ***

0Re  is accompanied by the 
change in the regime of vortex shedding from sphere. The frequency, which characterizes the vortex shedding, 
monotonically increases as Re grows starting with ***

0Re Re= . The increase in the frequency causes the com-
plete disappearance of intervals between vortex rings. Vortex rings penetrate into each other and form the 

( )0 ,exp tQ x  continuous spiral sheet in the wake behind a sphere [11]. According to the measurement data reported 
in [10], *

0Re 130= . In [11], the *
0Re 200= , the **

0Re 400=  and ***
0Re 800=  values were obtained. The  

( )0 ,exp tQ x  continuous spiral vortex sheet was observed in [11] over the whole range of Reynolds numbers stu-
died, up to Re = 30,000. 

The simplest solution to the multimoment hydrodynamic equations gives the distribution (3.6-3.7). This dis-
tribution coincides with the Stokes solution to the classic hydrodynamics equations in the Re 1  limit. The 

1Sol  stationary axisymmetric solution to the S20 set of the multimoment hydrodynamic equations satisfactorily 
reproduces the ( )0

expU x  stable flow around a sphere. The attainment of the first critical Reynolds number 
*
0Re Re 129.1= =  is accompanied by the 0Sol  solution stability loss. The cause for stability loss is as follows. 

After the passage of *
0Re , the entropy outflow through the surface confining the system begins to exceed the 

entropy production in the system. Such interpretation corresponds to the principle of retention and loss of the 
open system stability (6.11). The 0Sol  unstable axisymmetric solution reproduces satisfactorily the ( )0 ,exp tV x  
first unstable flow regime.  

After the attainment of the second critical Reynolds number value **
0Re Re= , the 0Sol  solution for the pe-

riphery of the recirculating zone and in the far wake is replaced by the 2Sol  solution to the S22 set, which de-
scribes a vortex ring moving downstream. The cause for the replacement is that the combination of the solutions 

0Sol  and 2Sol  becomes more preferable in comparison with the 0Sol  solution. The combination of the solu-
tions 0Sol  and 2Sol  provides a sharper drop in the entropy in the course of evolution than the 0Sol  solution 
does (Figure 10). The criterion (7.2) dictates the choice of the direction of development that is given by combi-
nation of the 0Sol  and 2Sol  solutions. The positions of detached vortices at the Z axis at 1

0Re 260=  given 
by the 2Sol  solution, are shown in the upper branch in Figure 12 ( )** 1 ***

0 0 0Re Re Re< < . According to the 
2Sol  solution, there are significant intervals between neighboring vortex rings. The combination of the solu-

tions 0Sol  and 2Sol  describes the vortex street ( )0 ,exp tW x .  
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After the attainment of the third critical Reynolds number value ***
0Re Re= , the 2Sol  solution at the peri-

phery of the recirculating zone and in the far wake behind the sphere is replaced by the 1Sol  solution to the S22 
set, which also describes a vortex ring moving downstream. The cause for the replacement is that the combina-
tion of the solutions 0Sol  and 1Sol  provides a sharper decrease in the entropy in the course of evolution than 
the combination of the solutions 0Sol  and 2Sol  does (Figure 10). Criterion (7.2) dictates the choice of the di-
rection of development that is given by combination of the 0Sol  and 1Sol  solutions. The positions of detached 
vortices at the Z axis at 2

0Re 400= , given by the 1Sol  solution, are shown in the middle branch of Figure 12 
( )2 ***

0 0Re Re> . The combination of the solutions 0Sol  and 1Sol  describes the vortex sheet ( )0 ,exp tQ x . 
The observed process of formation and separation of the vortex structure from the recirculating zone in the 

wake behind the sphere is shown in photographs 40 and 41 in [21]. A vortex structure arising near the surface of 
the sphere moves inside the core zone of the recirculating zone to its periphery, increasing in size and acquiring 
a definite shape. At the periphery of the recirculating zone, the vortex structure is separated from this zone and 
moves downstream. 

In the calculated flow pattern, a formed vortex structure appears in the recirculating zone instantly at the time 
1t t= . This simplification of the observed complex process of formation and separation of the vortex structure is 

motivated by a lack of computational resources for simulating the process of vortex shedding. 
Eighteen trajectory invariants are used to generate the functions (5.1), (5.2). These invariants give the distri-

butions of the principle hydrodynamic values (4.4)-(4.10) coupled with coefficients ˆ
iС , 1, , 20i =  . Only two 

components coupled with the coefficients 14С̂  and 20С̂  form the distribution of the particle-density flux (4.8). 
Moreover, only one of these components coupled with the 20С̂  coefficient dominates the particle density flux 
(4.8), reproducing recirculating zone in the near wake behind the sphere. The zF  drag coefficient of the sphere 
also depends only on one component coupled with 7С̂ : 7

ˆ24 Re 16 3zF C= − . Moreover, the same 7С̂  coeffi-
cient controls the pressure drop at a surface of the sphere at points 0θ =  and πθ = :  

( ) ( ) ( )2
0 0 7

ˆ, 0 , π 6 Re 4 3p r a p r a mn U Cθ θ= = − = = = − − . 

Further, the dominant component in the distribution (4.8) that is coupled with the 20С̂  coefficient is used to 
reproduce a single downstream-moving vortex structure unrelated to the sphere, expression (8.1). Thus, a de-
tailed description of the observed pattern of nucleation and separation of the vortex structure can be achieved by 
increasing the number of trajectory invariants involved in calculating the particle-density flux distribution. This 
increase is necessary both in the formulation of the set S20 describing the pulsations of the recirculating zone in 
the near wake and in the formulation of the set S22 describing the motion of single vortex structure outside the 
recirculating zone. Moreover, constructing the set of equations suitable for describing the far wake only (system 
S22) is barely an approximation of the calculation procedure. A further improvement necessitates combining 
sets S20 and S22. The solutions to the combined set must describe the movement of the single vortex structure 
not only in the far wake, but also in the recirculating zone. It is these solutions to the combined set of equations 
that must compete with the solutions to the set S20. 

Forming the set of equations S20 and S22 was conducted so that these sets would be able to reproduce the 
time behavior of the recirculating zone and the evolution of the vortex structure separated from it in the wake of 
the sphere. The terms of expansion (4.2) proportional to 19c , 20c , and 21c  enabled us to describe the wake 
behind a sphere. By virtue of the proportional to 19c , 20c , and 21c  terms, however, yet another physically 
improbable vortex configurations arise in front of the sphere at its surface at a sufficiently high Re [8]. The ap-
pearance of physically improbable vortex configurations in the distribution of particle density flux (4.8) gener-
ally does not allow of using this distribution outside the wake. To obtain the distributions of the hydrodynamic 
values outside the wake, it is necessary to formulate a different set of the multimoment hydrodynamics equa-
tions. The boundary separating solutions to different sets should be sought based on the principle (7.3). In other 
words, the boundary separating the solutions should be positioned in space so as to ensure the most rapid de-
crease of the entropy. 

In the Section 6, in calculating the pair entropy, the 0Sol  solution to the set S20 was used both in the wake 
behind the sphere and outside the wake. At Re  close to *

0Re , physically improbable vortex configurations in 
front of the sphere are very weak. That is why, these configurations distort the calculation very little at 

*
0Re Re∼ . Another result of going with the 0Sol  solution trace beyond the wake produced divergent terms in 

the course of spatial integration over the volume V. The mergence of divergent terms forced us to restrict the in-
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tegration limits in the Section 6 to a spherical concentric layer directly adjacent to the surface of the sphere. 
Namely, in deriving Equation (6.6), the integration limit for indefinitely increasing terms is changed by putting 
1 2, π 0,2π 0r θ ϕ≤ ≤ ≤ ≤ ≤ ≤ . As revealed by calculations, the appropriate numerical coefficients in Equation 
(6.6) change under changes in the integration limit, however, characteristic features of variation of  

( ) ( ) ( )0,2 0,2R
p pS S tδ+  and ( ) ( )0,2R

pS t tδ∂ ∂  remains unchanged.  
The approximate calculation of the pair entropy in Section 9 was performed within hemispherical concentric 

layers 0H , 1H , and 2H  (Figure 9). This approximation was used because the dominant contribution to the 
deviation of the entropy from its equilibrium value comes from processes in the near wake behind the sphere. 
These are the processes of excitation of the recirculating zone and of separation of the vortex structure that ap-
peared in this zone. The outer boundary 2r  of the layer 0H  is specified by the position of the separating vor-
tex structure at the time of its detachment, 3t t= , from the recirculating zone. Estimates show that the approxi-
mation of the boundaries of the near wake behind the sphere by the boundaries of the hemispherical layer 0H  
does not lead to a qualitative distortion of the results. 

11. Discussion 
Let us substitute the inequality (6.11a) into Equation (6.1) that is written in ( )1S t  terms. We obtain that the α - 
state of the open system remains stable if 

( ) ( ) ( ) ( )0 for 0p
p

S t
S t

t

α
αδ

δ
∂

≥ ≤
∂

                             (11.1a) 

or, in terms of Boltzmann entropy  
( ) ( ) ( ) ( )1

10 for 0
S t

S t
t

α
αδ

δ
∂

≥ ≤
∂

                            (11.1b) 

The negative definite value ( ) ( )1S tαδ  serves as Lyapunov function, and then, the first of inequalities (11.1b) 
is a sufficient condition for the system stability in re to ( ) ( )1 0S tαδ ≤  fluctuations. According to the Lyapunov 
theorem, the condition (11.1b) is compatible with the fundamental Lyapunov definition of stability. Inequality 
(11.1b) makes up a formal mathematical stability criterion. A formal mathematical criterion, however, gives no 
way of revealing the physical cause of stability or instability of an open system.  

Behind the modern concepts of open system stability is the Glansdorff-Prigogine theory [12]. This theory, in 
turn, is formulated in terms of nonequilibrium thermodynamics and, therefore, allows for the possibility of con-
structing the universal function ( ),Z t x  with non-positive fluctuation at any fluctuations of hydrodynamic val-
ues 

( ) ( )
2

1, ,
2

mnUZ t S t
T

= −x x  

The fluctuation of ( ),Z t x  was used as Lyapunov function. The set of stability conditions derived in [12] in 
terms of this fluctuation involves inequality (1.11b) and  

( ) ( )2 2

d 0 for d 0
2 2

mnU mnU

t T T

δ δ∂
≤ ≥

∂ ∫ ∫x x                         (11.2) 

Based on inequalities (11.1b) and (11.2), P. Glansdorff and I. Prigogine formulated the condition for stability 
of open system state in terms of entropy production and entropy outflow [12]. They argue that the main quality 
controlling the stability and evolution of the system is excess of entropy production ( ) ( )1IN S tαδ∆ . The Glans-
dorff-Prigogine stability condition states that for the system state to be stable, the entropy excess must be gener-
ated in the system rather than being absorbed  

( ) ( ) ( ) ( )1 10 for 0IN S t S tα αδ δ∆ ≥ ≤                              (11.3) 

In accordance with Glansdorff-Prigogine theory [12], for the α -state to be stable, the effect of excess of en-
tropy outflow on the system must be equivalent to the effect of excess of entropy production. In other words, for 
the state to be stable, entropy excess must flow into the system through the confining surface, thus augmenting 
the entropy excess generated in the system 
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( ) ( ) ( ) ( )1 10 for 0EX S t S tα αδ δ∆ ≤ ≤                              (11.4) 

Inequalities (11.3) and (11.4) supplemented with similar inequalities for the fluctuation of the 2 2mnU T  
function (11.2) incorporating the terms of the order responsible for system stability make up the Glansdorff- 
Prigogine stability criterion [12]. Therefore, in [12], the additional constraints (11.2) and (11.4) are imposed on 
stability condition (11.3). 

The methods of kinetic theory and hydrodynamics amplified in this study offer a much more effective means 
of constructing Lyapunov function than nonequilibrium thermodynamics. In particular, there was no need in 
imposing constraint (11.2) on fluctuation of the 2 2mnU T  function. Having made sure that a positive definite 
fluctuation set the system on a very unlike unrealistic path, we bounded the domain of definition of ( ) ( )1S tα  by 
condition ( )0

19 0RCδ ≥ . In the bounded domain of definition, ( ) ( )1S tαδ , as revealed by calculation, is negative 
definite and, therefore, can be used as a Lyapunov function. In the Glansdorff -Prigogine theory, excess of en-
tropy outflow through the surface confining the system ( ) ( )1EX S tαδ∆  is treated as a quantity of secondary im-
portance. The Glansdorff-Prigogine stability criterion was formulated, assuming that excess of entropy outflow 
exerted a strictly limited effect on the system, identical to the effect of excess of entropy production. The central 
idea of novel concept of stability is that the excess of entropy production and excess of entropy outflow are 
equally important. According to principle proposed in this study, the factor controlling the stability of the system 
is a balance of excess of entropy production and excess of entropy outflow rather than one of these quantities 
alone. 

Let us verify that stability condition (6.11) is more general than the Glansdorff-Prigogine criterion. Indeed, if 
inequalities (11.3) and (11.4) are true, condition (11.1b) is surely met. If the reverse is the case (inequalities 
(11.3) and (11.4) fail), the system is not necessarily unstable. The excesses of entropy production ( ) ( )0,2

1 0IN S tδ∆ =  
and ( ) ( )0,2 0IN pS tδ∆ =  calculated with due regard for the terms of the order of 6 2

0 0 0Ma Rekn v τ  responsible 
for the system stability are plotted against Re in Figure 13. The ( ) ( )0,2 0IN pS tδ∆ =  function is given by Equa- 
tion (6.8), the ( ) ( )0,2

1 0IN S tδ∆ =  function is defined in [19]. From Figure 13 follows that ( ) ( )0,2
1 0 0IN S tδ∆ = < ,  

( ) ( )0,2 0 0IN pS tδ∆ = <  at *
0Re Re< . Thus, although the Glansdorff-Prigogine criterion breaks, the system is 

stable by virtue of relationship (6.11a) between entropy production and entropy outflow. Therefore, the Glans-
dorff-Prigogine stability criterion generally is incapable of interpreting hydrodynamic instability. More detailed 
comparison of the criterion (6.11) with the Glansdorff-Prigogine criterion was carried out in [19]. 

To derive the evolution criterion, the authors of [12] set up a balance equation for certain part of the total en-
tropy of the system and differentiated it with respect to time. The equation takes into account variation of the 
entropy production solely under variation of generalized forces with time. The formulation of the evolution cri-
terion was made possible by the neglect of the time differential of the excess of entropy outflow through the 
confining surface. There is generally no reason to disregard the excess of entropy outflow, and therefore, the 
Glansdorff-Prigogine evolution criterion is not universally true. The criterion states that evolution of an open 
system with time independent boundary conditions follows the path along which the entropy production in the 
system has no tendency for an increase with time 

( ) ( )1 0IN S t
t

αδ∂∆
≤

∂
                               (11.5) 

The time history of ( ) ( )0,1R
IN pS tδ∆  of the dominating order of 4 2

0 0 0Ma Rekn v τ  is shown in Figure 14. 

The excess of pair entropy ( ) ( )0,1R
IN pS tδ∆  is given by Equation (6.7). As revealed by calculation, the system  

develops in accord with inequality (11.5) at Re = 129 and *
0Re Re< . At Re = 130 and *

0Re Re>  (the covered 
Re values did not exceed 400) the Glansdorff-Prigogine evolution criterion is invalid. So, the property (11.5) is 
valid when system relaxes to the stable state. However, system evolution after stability loss is not accompanied 
by fulfillment of the property (11.5). The above formulated conclusion remains invariant in going from terms of 
pair entropy to terms of Boltzmann entropy.  

The need to use the Glansdorff-Prigogine criterion of evolution on a search of solutions to the classic hydro-
dynamics equations is missing. The criterion demonstrates the fulfillment (or absence of the fulfillment) of the 
property (11.5) for the found solution to the hydrodynamics equations. The function of the criterion (7.2) is very 
significant. Criterion (7.2) chooses a direction of evolution for the system. i.e., after stability loss, the calculation 
of hydrodynamic values is impossible without the attraction of the criterion (7.2).  
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Figure 13. The excess entropy production component of the order of 

6 2
0 0 0Ma Rekn v τ  responsible for instability as a function of Re. Curve 1 cor- 

responds to the excess of the pair entropy production ( ) ( )0,2 6

0
ˆ 10R

IN p t
S tδ

=
−∆ ⋅ , 

and curve 2, the excess of Boltzmann entropy production                    
( ) ( )0,2 4

1 0
ˆ 10R

IN t
S tδ

=
−∆ ⋅ . Entropy fluctuation at time 0t =  is assumed to 

be independent of Re: ( ) ( )0,2 6

0
ˆ 1.5 10R

p t
S tδ −

=
= − × ;                      

( ) ( )0,2 6
1 0

ˆ 0.75 10R

t
S tδ −

=
= − × .                                          

 

 

Figure 14. Time history of the ( ) ( )0,1 5ˆ 10R
IN pS tδ∆ ⋅ excess entropy production 

component of the dominating order of 4 2
0 0 0Ma Rekn v τ : curve 1 corres-

ponds to a subcritical Re value of Re = 129, and curve 2, to supercritical Re 
value of Re = 130.                                                
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Since the time of Boltzmann, the responsibility for directing the evolution of the system rests with the initial 
conditions realized in the system, namely the set of initial values of the coordinates and velocities of all particles 
[22] [23]. For a given mutual arrangement of the particles, the system evolves in the direction that we see eve-
rywhere and every second. However, there are such arrangements of particles that direct the system in an ex-
tremely unlikely, rarely realized direction. Even weak disturbance lδ  of the configuration of particles ( )l dδ   
can change the direction of evolution ( d  is characteristic size of particles) [24]. 

The local pair entropy corresponding to the direct equations for pair distribution functions (1.12) from [6] and 
the multimoment hydrodynamics equations they yield can only be produced in the system due to binary colli-
sions at any space point x  and at any instant t , ( ), 0IN pS t∆ ≥x . Thus, at any instant binary collisions merely 
rise the pair entropy of the system, ( ) 0IN pS t∆ ≥ . Such behavior of the entropy is in full accordance with the 
second law of thermodynamics [25]. The solutions to the direct multimoment hydrodynamics equations describe 
the direction of evolution of the system that is everywhere and every second is found in nature. 

The local pair entropy corresponding to the reverse equations for the pair distribution functions (1.15) from [6] 
and the reverse multimoment hydrodynamics equations they yield can only be absorbed in the system due to bi-
nary collisions at any space point x  and at any instant t+ , ( ), 0IN pS t+ +∆ ≤x . Thus, at any instant binary colli-
sions absorb the pair entropy of the system, ( ) 0IN pS t+ +∆ ≤ . The solutions to the reverse multimoment hydro-
dynamics equations describe the evolution of the system in the opposite direction, which, as is commonly be-
lieved, is extremely rare in nature. 

The direct multimoment hydrodynamics equations are valid for the progressive direction of timing on the time 
axis pointing from the past to the future. The reverse multimoment hydrodynamics equations are valid for mul-
timoment regressive direction of timing on the same time axis [6]. Processes occurring in nature are objective 
events, while the choice of the direction of timing on the time axis is subjective process. Time is counted by an 
observer, while processes occurring in nature absolutely insensitive to the direction in which the observer counts 
the time. Let two observers, agreeing upon the origin, began to observe some phenomenon. Let the first observer 
counts time in the regressive direction at the time axis, directed from the past to the future and let the first ob-
server managed to describe the phenomenon he observed using the reverse equations. Let now the second ob-
server counts time in the progressive direction at the same time axis. Then, the second observer can claim that 
the reverse equations described phenomena for progressive direction of timing. 

This means the following. On finding the solution to the inverse equations, the first observer obtained the dis-
tribution of all hydrodynamic variables and their spatial and temporal derivatives. The first observer found 
agreement between the calculated and measured values. The second observer used the solution to the reverse 
equations to compare with his observations and, on establishing the appropriate relationship between the two 
time scales, found that the reverse distributions agree with the observed values in their time scale. Changing the 
sign of the time derivatives, the second observer also obtained an agreement with his observations. However, the 
second observer failed to derive direct equations that would satisfy altered distribution. 

This example returns us to the Boltzmann time, when there were heated debates about the correctness of the 
Boltzmann equation and the H-theorem. Boltzmann opponents, E. Zermelo and J. Loschmidt, gave examples of 
processes that are not described by the Boltzmann equation [23] [26]. Basically, L. Boltzmann acknowledged 
the objections of opponents, agreeing with the existence of processes that can not be governed by his theory. 
However, L. Boltzmann argued that such processes was extremely unlikely, i.e., impracticable [22]. Probably, at 
a weak deviation of the system state from the state of thermodynamic equilibrium, as predicted L. Boltzmann, 
conditions guided a system in the unlikely direction are extremely rare. However, as the degree of nonequili-
brium increases the probability of occurrence of such conditions may grow. The penetration into the instability 
field confirmed this assumption. It turned out that the motion of unstable system along the unlikely direction 
becomes an event that repeats periodically. 

12. Conclusions 
The experiment records two stable stationary medium states represented by the ( )0

expU x  and ( )1
expU x  velocity 

distributions, and a stable state of the central type with the ( )2 ,exp tU x  velocity distribution. Each of these three 
stable flows begins to develop in its own direction qualitatively different from other flows when it loses stability. 
The development occurs through a sequence of regular nonstationary periodic states schematically shown in 
Figure 1 from [3]. Each of these three experimentally observed directions inevitably reaches the periodic vortex 
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shedding mode. Vortex shedding along each of three directions is characterized by its own characteristic fea-
tures intrinsic in it. However, irrespective of the direction selected experimentally, periodic vortex shedding is 
obligatory, well defined, and fairly prolonged along Reynolds numbers mode of the development of a turbulent 
process. Experiment records six vortex shedding modes, and one pulsation mode along the three directions of 
instability development. The development of the ( )0

expU x  ground flow occurs through the  
( )0 ,exp tV x  pulsating regime, and further, through the vortex shedding regimes ( )0 ,exp tW x  and ( )0 ,exp tQ x . 

The direct numerical integration of Navier-Stokes equations in the problem on a flow around a solid sphere at 
rest was performed by various numerical methods. Nevertheless, the results of all these numerical experiments 
were absolutely identical (see review [1]). Calculations find two stable stationary solutions, ( )0

calU x  and ( )1
calU x  

and a nonstationary stable solution, ( )2 ,cal tU x . Apart from the ( )0
calU x , ( )1

calU x , and ( )2 ,cal tU x  solutions, 
the Navier-Stokes equations only have a multiperiodic, that is, essentially chaotic, solution ( )3 ,cal tU x . The ( )0

calU x , 
( )1

calU x , and ( )2 ,cal tU x  solutions satisfactorily reproduce ( )0
expU x , ( )1

expU x , and ( )2 ,exp tU x  stable flows.  
According to calculations, the development of instability occurs in strict correspondence to the classic Lan-

dau-Hopf scenario [14]. After first critical Reynolds number value is reached, the ( )0
calU x  solution loses sta-

bility and bifurcates to the ( )1
calU x  solution (regular bifurcation). The ( )1

calU x  solution, after it loses stability, 
bifurcates to the ( )2 ,cal tU x  limiting cycle (the Hopf bifurcation). After next critical Reynolds number value is 
reached, the ( )2 ,cal tU x  limiting cycle loses stability and is substituted by the ( )3 ,cal tU x  chaotic solution. It 
follows that, according to the Landau-Hopf scenario, the system, after it loses stability, inevitably reaches a new 
stable position and exercises either periodic or chaotic motion about it [27]. So, calculations cannot put anything 
in correspondence to seven of ten experimentally observed modes schematically shown in Figure 1 from [3]. In 
particular, to periodic pulsation of the recirculating zone not accompanied by vortex shedding, ( )0 ,exp tV x , and 
two periodic vortex shedding modes, ( )0 ,exp tW x  and ( )0 ,exp tQ x . 

The ideas of experiment on the nature of the phenomenon of vortex shedding fundamentally disagree with the 
concepts of classic hydrodynamics [14]. In accordance with experiment, a system, when loses stability after the 
attainment of a certain critical Reynolds number value, remains further in unstable state. One unstable regime is 
replaced by another unstable regime as Re grows. Experiment interprets the observed phenomenon of vortex 
shedding as the von Karman instability, or as the Kelvin-Helmholtz instability. By definition [28], the instability 
occurs only during the flow transformation, i.e., the time intervals when one solution loses its stability and 
another stable solution is saturated. The process of saturation of new stable state is extremely limited in time and 
non-periodic. i.e., the bulk of time the system is at a stable state. Time-limited non-periodic process of saturation 
can in no way correlate with the strictly periodic vortex shedding phenomenon, which, generally, is not limited 
in time. Thus, the solutions to the classic hydrodynamics equations are incapable of corresponding to ideas of 
experiment on unstable nature of the vortex shedding phenomenon. Classic hydrodynamics can put only stable 
solutions in correspondence with observed vortex shedding modes. In particular, in problem on flow around a 
sphere the ( )2 ,cal tU x  limiting cycle is the only case where it is possible to correlate the observed vortex shed-
ding from a sphere to calculation result. However, numerous attempts to find a vortex street in the ( )2 ,cal tU x  
far wake behind a body failed [1] [2] [21].  

The multimoment hydrodynamics confirms the ideas of experiment on unstable nature of the phenomenon of 
vortex shedding. The crossing of the first critical Reynolds number value *

0Re  is accompanied by the stability 
loss. The system loses its stability when entropy produced in the system can not compensate entropy outflow 
through the surface confining the system. Such interpretation follows directly from the principle of retention and 
loss of the open system stability formulated in Section 6. In accordance with solutions to the multimoment hy-
drodynamics equations, the system, when loses its stability, remains further unstable. One unstable flow is re-
placed by another unstable flow as Re grows. The replacement of one unstable flow regime by another unstable 
regime is governed the tendency of the system to discover the fastest path to depart from the state of statistical 
equilibrium. This striving follows directly from the evolution criterion formulated in Section 7. 

Figure 8 demonstrates the behavior of pair entropy of the system losing its stability. According to the 0Sol  
solution, pair entropy describes periodic pulsations of the recirculating zone in the wake behind a sphere. Start-
ing with 0t = , pair entropy begins to decay monotonously. The monotonous decay is replaced by surge. How-
ever, the sharp decrease of entropy is not unlimited. At *t t= , the decrease of entropy finishes. Starting with 

*t t= , pair entropy begins to increase up to time *2t t= . At *2t t= , the system returns to its original position. 
Pair entropy begins to decay again starting with *2t t= . The process is repeated with the period *2t t=  . 

A similar behavior demonstrates pair entropy, which is associated with periodic vortex shedding, Figure 9. 
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The sharp decrease of entropy is completed at *t t= . Starting with *t t= , pair entropy begins to increase up to 
time 3t t= . At 3t t= , the system reaches the position that it occupied at 1t t= . Pair entropy begins to decay 
again starting with 3t t= . The process is repeated with the period 3 1 1T t t t= − − ∆ . 

The cut-off of the 0Sol  solution is the reason for the completion of the sharp decrease of pair entropy at time 
*t t= . It turned out that at *t t=  the multimoment hydrodynamics equations [5] become unsuitable for model-

ing evolution of the system. However, in the neighborhood of the cut-off point there is a solution to the reverse 
multimoment hydrodynamics equations [6]. The solution to the reverse equations changes the direction of evo-
lution, striving the system to the state of statistical equilibrium. The pair entropy corresponding to the direct 
multimoment hydrodynamics equations can only be produced in the system due to binary collisions at each time 
point. Such behavior of the entropy is in full accordance with the second law of thermodynamics. The pair en-
tropy corresponding to the reverse multimoment hydrodynamics equations can only be absorbed in the system 
due to binary collisions at each time point. The solutions to the reverse multimoment hydrodynamics equations 
describe the evolution of the system in the opposite direction, which, as is commonly believed, is extremely rare 
in nature. 

At his time, Boltzmann, defending his point of view in disputes with opponents, suggested that the exclusive 
conditions that guide the system in a highly unlikely direction arise very rarely. Apparently, Boltzmann’s as-
sumption is correct for a weak deviation of the system from the state of statistical equilibrium. However, after 
crossing the border of the instability field, exclusive conditions arise with periodic regularity. This regularity 
manifests itself in each of three unstable modes that represent the flows ( )0 ,exp tV x , ( )0 ,exp tW x , and ( )0 ,exp tQ x . 

The tendency of an unstable physical system to find the fastest path to recede from the state of statistical equi-
librium does not lead the system to infinity. At time *t t= , the entropy stops decreasing. The multimoment hy-
drodynamics equations are unable to provide solutions that would continue to divert the system from the state of 
statistical equilibrium. Time intervals during which the system moves away from the state of statistical equili-
brium are periodically followed by intervals within which the system tends to equilibrium. It is this periodicity 
that permits to interpret vortex shedding, a graphic example of periodic unstable phenomena. 
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Appendix 
Suppose that ( )app , , ,pf t x G v  and ( )app

1 2, , ,ppf t x ξ ξ  are the pair and paired-particle distribution functions cor-
responding to approaching particles [5]. The correlation between ( )app , , ,pf t x G v  and a one-particle distribution 
function ( )1 1, ,f t x ξ  was established in [5] using ( )app

1 2, , ,ppf t x ξ ξ   

( ) ( )app
1 1 1 2 2, , , , , dppf t f t= ∫x ξ x ξ ξ ξ  

( ) ( )app
1 1, , 2 , , , d dpf t f t= ∫x ξ x G v G v                              (А.1) 

Then from the Gibbs inequality [29] we obtain 

( ) ( )
( ) ( )

app app app app
1 2 1 2

app app
1 2 1 1 1

ln d d ln 2 d d

ln d d ln d

pp pp pp pp

pp pp

f f f f

f f f f Vξ

≥

≥

∫ ∫
∫ ∫

ξ ξ ξ ξ

ξ ξ ξ
                       (А.2) 

Let us set up the ( ),pS t x  and ( ),ppS t x  functions as follows 

( ) ( )
( ) ( )

app app

app app
1 2

, ln d d

, ln d d

p p p

pp pp pp

S t k f f

S t k f f

= −

= −

∫
∫

x G v

x ξ ξ
                           (A.3) 

Integrals with respect to velocity in expressions (А.1, А.2) are taken over a three-dimensional volume Vξ . 

( ) ( )
( ) ( )

, d

, d
p p

pp pp

S t S t

S t S t

=

=

∫
∫

x x

x x
                                  (A.4) 

Spatial integration (А.4) is carried out over the physical volume of the system V .  

( ) ( )
( ) ( )

1 1 1 1

1 1

, ln d

, d

S t k f f

S t S t

= −

=

∫
∫

x ξ

x x
                                (А.5) 

Here, 1S  is the Boltzmann entropy. By virtue of inequalities (А.2) we obtain 

( ) ( )1 lnppS t S t N Vξ≤ +                                   (A.6) 

( ) ( )2 ln 2pp pS t S t N≤ −  

The term lnN Vξ  in inequality (А.6) brings ( )ppS t  and ( )1S t  to the same dimensionality, and  N  is a 
total number of particles in the system. Thus, ( )ppS t  is the lower bound of both ( )1S t  and ( )pS t . It is well 
known that Boltzmann entropy ( )1S t  conveys the meaning of a volume occupied by the system in the Г-space  
[18]. The possibility of comparing ( )ppS t , ( )pS t , and ( )1S t  using relationships (A.6) implies that ( )ppS t   
and ( )pS t  have the same physical meaning as the Boltzmann entropy. The physical meaning of ( )ppS t  and 

( )pS t  can also be elucidated in a conventional way [18]. Functions ( )ppS t , ( )pS t , and ( )1S t  approximate 
the total entropy of the system to different accuracies. If ( )pS t  is termed the pair entropy of the system, ( ),pS t x  is 
its local pair entropy. 

When calculating ( ),pS t x , ( )app , , ,pf t x G v  is expanded in terms of a double set of Hermitian polynomials 
(see Equation (29) in [5]). Furthermore, let ( )app , , ,pf t x G v  be equal to approximations (31, 34) with coeffi-
cients (57) from [5], composed on seven principle hydrodynamic values ( ( ),n t x , ( ),tU x , ( ),vp t x , ( ),Gp t x , 

( ),G
ijp t x , ( ),v tq x , and ( ),G tq x ). The so composed  ( )app , , ,pf t x G v  function is then substituted into Equa-

tion (А.3), and the resulting expression for ( ),pS t x  is truncated to the first few non-vanishing terms  

( )
23 23 2 3, ln

2 2 2 82π 2π

G
ij

p G G

pkn n m m kn knS t
vkT pkT

      = − + −               
x                (А.7) 

Following the Grad’s procedure for calculating ( )1 ,S t x  [30], let us expend ( )1 1, ,f t x ξ  into a series in 
terms of Hermitian polynomials. The hydrodynamic values appearing as coefficients in this expansion are rea-
sonably presented in the form of linear combinations of G- and v-components, as was done in [5]. Substituting 
the so formulated ( )1 1, ,f t x ξ  function into Equation (А.5) yields the expression for ( )1 ,S t x , in which only the 
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first non-vanishing terms are retained  

( )
23 2

1 2

3, ln
2π 2 16 8

G G v
ij ij ijp knp pm kn knS t kn n

kT p p

   = − + − −          
x                   (А.8) 

In analyzing the evolution of the pair entropy ( ),pS t x  with space and time we shall proceed from Equation  
(28b) given in [5]. Multiplying this equation by ( )( )appln , , ,pk k f t− − x G v  and integrating the result with re-
spect to velocities yield  

( ) ( ) ( )
, ,p p

IN p

S t t
S t,

t
∂ ∂

+ = ∆
∂ ∂

x S x
x

x
                      (А.9) 

The expressions for the components of the left-hand side of Equation (A.9) are written in [19]. The expression 
for the pair entropy production in binary collisions ( ),IN pS t∆ x  assumes the form   

( )
( )
( )

( )
( )

2 22

2 2

24
,

5

v Gv
ij i

IN p
v G v

kn p kmn q
S t

p p pτ τ
∆ = +x                            (А.10а) 

( ), 0IN pS t∆ ≥x                                         (А.10b) 

Inequality (А.10b) implies that ( ),IN pS t∆ x  is non-negative at any space point x  and at any instant t . 
Thus, binary collisions merely raise the pair entropy of the system. Since the Boltzmann’s time, this result con-
stitutes the essence of the Н-theorem.  

The space and time evolution of the Boltzmann entropy ( )1 ,S t x  will be inferred from Equation (A.2b) de-
rived in [5]. Integrating Equation (A.2b) from [5] with respect to v  and taking advantage of Equations (18b) 
and (19.b) from [5], we obtain the equation for ( )1 1, ,f t x ξ  with the collision integral unrelated to the Boltz- 
mann hypothesis of molecular chaos. Let us multiply the resulting equation by ( )( )1 1ln , ,k k f t− − x ξ  and inte-
grate it with respect to 1ξ . We obtain  

( ) ( ) ( )1 1
1

, ,
,IN

S t t
+ S t

t
∂ ∂

= ∆
∂ ∂

x S x
x

x
                            (А.11) 

The expressions for the components of the left-hand side of Equation (A.11) are written in [19]. The expres-
sion for the Boltzmann entropy production in binary collisions ( )1 ,IN S t∆ x  assumes the form   

( )
( )22

1 2 3 3

4 24
,

2 5 8

G G v vv Gv
ij kj kj ikij ij i i

IN

n p p p pknp p kmn q q
S t

p p pτ τ τ

+
∆ = + −x                 (А.12) 

The study undertaken in [6] has revealed that in some special cases it is possible to establish linear relations 
between ijp  and v

ijp  and between iq  and Gv
iq . In particular, ij

v
ijp p=  in the limit Re 0→  [6]. In the lim-

it Re 0→ , the second and the third terms of the right-hand side of Equation (А.12) are negligibly small com-
pared to the first term. In this case   

( ) ( )
( )

( )
2

Re 0
1 2, , , 0

2
ij

IN IN B IN B

kn p
S t S t S t

pτ
→∆ →∆ = ∆ ≥x x x                (А.13) 

It does not generally follow from Equation (А.12) that ( )1 ,IN S t∆ x  is non-negative value. The property  
(A.10) of pair entropy is the main reason why the pair entropy ( ),pS t x  should be preferred to Boltzmann en- 
tropy ( )1 ,S t x  when interpreting non-equilibrium phenomena. The tendency of the Boltzmann entropy of a gas 
system to build up in binary collisions was inferred from the Boltzmann equation based on the molecular chaos 
hypothesis [18]. If the molecular chaos hypothesis is abandoned, this tendency generally disappears. From Equ-
ation (А.13) follows that binary particle collisions produce Boltzmann entropy at any space point x  and at any 
instant t , only if gas is close  to statistical equilibrium.  

Integrating Equation (А.9) with respect to x  over the volume of the system V  yields 

( ) ( ) ( ) ( ) ( ), dp
EX p IN p EX p p

S t
S t S t S t t

t
∂

+ ∆ = ∆ ∆ =
∂ ∫S x Φ                 (А.14) 
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The second term of the left-hand side of Equation (А.14) is integrated over surface Φ  confining volume V .  
In virtue of inequality (А.10b), the right-hand side of Equation (А.14) is non-negative. Pair entropy ( ),pS t x  

is defined in terms of pair distribution function labeled by app superscript. In the derivation of Equation (А.9), 
the multimoment hydrodynamics Equations (54)-(56) from [5] supplemented with direct expressions (53) from 
[5], are used. Equation (А.14) is valid only in the direction of increasing time. The positive direction of the time 
axis runs from the past to the future [6]. 

Pair entropy ( ),pS t+ + x  is defined in terms of pair distribution function labeled by div superscript. In analyz-
ing the evolution of the pair entropy ( ),pS t+ + x  with space and time we shall proceed from Equation (28a) giv-
en in [5]. We obtain 

( ) ( ) ( )p
EX p IN p

S t
S t S t

t

+ +
+ + + +

+

∂
+ ∆ = ∆

∂
                           (А.15) 

In the derivation of Equation (А.15), the multimoment hydrodynamics Equations (54)-(56) from [5] supple-
mented with reverse expressions (1.17) from [6], are used. The expression for ( ),pS t+ + x  is given by Equation 
(А.7). The expression for ( ),IN pS t+ +∆ x  differs from its counterpart (the expression (А.10a) for ( ),IN pS t∆ x ) 
by the sign. That is why, at any space point x  and at any instant t+  the ( ) ( )0

IN pS t ,+ +∆ x  function is non-posi- 
tive. i.e., binary particle collisions absorb the pair entropy at any space point x  and at any instant t+ , and 
right-hand side of Equation (А.15) is non-positive. Equation (А.14) is valid only in the direction of decreasing 
time. The positive direction of the time axis runs from the past to the future [6]. 
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