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Abstract 
In this paper we obtain the geodesic equations of motion of a test particle (charged particle and 
photon) in the Kerr-Newman de/anti de Sitter black hole by using the Hamilton-Jacobi equation. 
We determine the positions of the inner, outer and cosmological horizons of the black hole. In 
terms of the effective potentials, the trajectory of the test particle within the inner horizon is stu-
died. It appears that there are stable circular orbits of a charged particle and photon within the in- 
ner horizon and that the combined effect of the charge and rotation of the Kerr-Newman de/anti 
de Sitter black hole and the coupling between the charge of the test particle and the electromag-
netic field of the black hole may account for this. 
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1. Introduction 
The solutions of Einstein-Maxwell equations in the Kerr-Newman de/anti de Sitter space-time in the presence of 
the cosmological constant, Λ , give rise to the geometrical structure of a Kerr-Newman black hole and its singu- 
larity. The geometrical structure is asymptotically de sitter at large times when a repulsive cosmological constant, 

0Λ > , is considered and may contain a cosmological horizon with a dynamic background and for an attractive 
cosmological constant. 0Λ < , the geometrical structure, is asymptotically anti de Sitter and contains black hole 
horizons. The recent serious study of the observational and theoretical aspects of a small positive cosmological 
constant term which may be relevant at the present epoch [1] [2] and the accurate measurements of the aniso-
tropy of the cosmic relic background radiation and the observational analysis of type Ia supernova with high red 
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shift parameter Z ≤ 1 in the framework of the inflationary cosmology [3]-[6], suggests that a repulsive cosmo-
logical constant Λ > 0 has to be taken seriously for understanding the properties of the presently observed un-
iverse. On the other hand, it is recognized that the de/anti de Sitter space-time has an important role in the multi-
dimensional string theory [7]. 

According to Chandrasekhar [8], there exist two general types of particle orbits in the black hole gravitational 
field: orbits of the first kind, which are completely confined outside the black hole event horizon, and orbits of 
the second kind, which penetrate inside the black hole. In the case of rotating or charged black hole, there are 
bound periodic planetary orbits, known as the orbits of the third kind, which neither come out nor terminate at 
the central singularity [9]. The third kind of bound orbits inside the black hole horizon were discussed by [10] 
[11] for charged particle in the vicinity of the rotating charged black holes and by [12] for neutral particle.  

The geometrical properties of the Kerr-Newman de/anti de sitter space-time with non zero cosmological con-
stant are described by the geodesic equations of motion of a test particle. The motion of a test charged particle in 
the gravitational field of a charged black hole is fully described by three integrals of motion namely, E, the total 
particle energy, Lφ, the azimuthal component of the angular momentum and Q, the Carter constant [13]. 

In Section 2, we review general geodesic orbits of test particle in the Kerr Newman de/anti de sitter space- 
time. In Section 3, we discuss the bound stable periodic orbits for a charged particle and photon inside the inner 
horizon. Section 4 is a brief conclusion. We use the units G = c = 1 throughout the paper. 

2. General Geodesic Orbits in the Kerr-Newman De/Anti De Sitter Space-Time 
The equations of motion of a test particle of mass m and charge ε  in the gravitational field of a rotating charg- 
ed black hole in the Kerr-Newman de/anti Sitter space-time may be determined from the principle of least action 
with the action defined as [14], 

( )
2

2

1

di
iS m A xε λ= − +∫                                 (1) 

where 
1d d
m

λ τ= , d d di j
ijg x xτ = − being the proper time of the test charged particle along geodesics;  

( ),iA φ= − A  is the covariant four vector potential and a dot overhead a symbol denotes differentiation with re-
spect to the parameter λ . From the action, the Lagrangian is identified as  

1
2

i j i
ij iL g x x A xε+=                                    (2) 

with the normalizing condition, 
2i j

ijg x x m= −  .                                   (3) 

Effecting the variation of the action, one obtains  

( )
22

1
1

d
d

d
j i j ii

ij i ij
u

S g x A x m F u xδ ε δ ε δ τ
τ

 = + + − +  
∫                     (4) 

where j i
ij i j

A A
F

x x
∂ ∂

= −
∂ ∂

is the electromagnetic field tensor and d
d

j
j xu

τ
= . The integrated term vanishes at both  

limits as the end points are fixed. According to the principle of least action, 0Sδ =  for the correct path of mo-
tion of the particle. This condition leads to the following equations of motion for the test charged particle in the 
given field:  

2

2

d d
dd

i j

ij
x xF

m
ε

ττ
=                                 (5) 

The Hamiltonian corresponding to the Lagrangian (2) is found as   

( )( )1
2

ij
i i j jH g p A p Aε ε= − −                           (6) 

where  
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j
i ij ip g x Aε= +                                    (7) 

are the canonical momenta. Since H does not depend explicitly on λ , the Hamiltonian is a constant of motion. 
As such, by using the normalization condition, one finds 

21
2

H m= − .                                    (8) 

In the standard Boyer-Lindquist coordinates ( ),  ,  ,  t r θ ϕ , the metric describing the Kerr-Newman de/anti de 
Sitter space-time takes the form,  

( )

22
2

2

22 22

2

2 2
2

d sin dd

dsin d

d d

r

r

t as
I I

r aa t
I

r

θ

θ

θ φ
ρ

φθ
ρ ρ

θρ

 ∆
= − − 

 

 +∆  + −
  

 
+ + ∆ ∆ 

                         (9) 

where the functions , ,r θρ ∆ ∆  and I  are defined respectively by 

( )

2 2 2 2

2 2 2 2

2 2

2

cos
11 2
3
11 cos
3

11 .
3

r

r a

r r a Mr e

a

I a

θ

ρ θ

θ

= +

 ∆ = − Λ + − + 
 
 ∆ = + Λ 
 

+ Λ=

                        (10) 

On the other hand, the electromagnetic field for the source is given by the required vector potential: 

2
2 sinterA a

I
φ

µ µ µθ
ρ

δ δ = −                                 (11) 

The corresponding nonzero contravariant components ijg  of the metric are obtained as 

( )

( )

2 22 2 2 2
2

2 22 2
2

2
2

2 2 2

2

2

sin

1
sin

.

tt
r

r

t t
r

r

r

rr r

Ig a r a

Ig g r a

ag I

g

g

θ

φ φ
θ

θ

φφ

θ

θθ θ

θθ
ρ

ρ

θ ρ ρ

ρ

ρ

 = ∆ − +  ∆ ∆

 = = ∆ − ∆ +  ∆ ∆

 
= − ∆ ∆ 
∆

=

∆
=

∆

                      (12) 

The geometrical properties of the metric element given by Equation (9) can be analyzed by taking into ac-
count the limiting conditions: 0, 0, 0M eΛ → → → in the metric. By imposing these limiting conditions, one  

finds ( )
22

2 2 2 2 2 2
2 2

dd d d sin drs t r a
r a

ρ θ θ φ
 

= − + + + + 
+ 

 which is actually the flat space-time in the spheroi- 

dal coordinates under the coordinate transformation: 2 2 sin cosr ax θ φ+= ; 2 2 sin siny r a θ φ= + ;  
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cosz r θ=  in the ranges of 0, 0 π, 0 2πr θ φ≥ ≤ ≤ ≤ ≤  leading to the standard Cartesian form. In the 
π 2θ =  plane, 0r =  represents a ring disk of radius a  with properties different from the usual radial coor-

dinate. If we consider the limit 0a → , the metric recovers the Reissner-Nordstrom de/anti de Sitter metric 
which, in standard spherical coordinates, is expressed as: 

( )
2

2 2 2 2 2 2dd d d sin dr
r

rs t r θ θ φ= −∆ + + +
∆

 

where 
2 2

2

21
3r
r M e

r r
Λ

∆ = − − + . Under the limiting condition. 0, 0, 0M e a→ → → , we see the de/anti de  

sitter space-time with the flipping of the sign of Λ. When 0, 0a e→ →  we recover the Schwarzchild de/anti 
Sitter space-time. 

Since the metric is stationary and axisymmetric, it is clear that there exists two Killing vector fields given by  

( )( )
, , , ,

;t
r t rt φ
θ φ θ

ξ ξ
φ

 ∂ ∂ ≡ ≡   ∂ ∂   
. We find two constants of motion namely, the energy and angular momentum of 

the test particle corresponding to the dot product of the four-momentum with the Killing vector: ( )P t Eξ⋅ = −  

and ( )P Lϕξ⋅ = . By (6), the general form of the Hamilton-Jacobi equation is 

2 1
2 2

ij
i ji j

S m S Sg A A
x x

ε ε
λ
∂ ∂ ∂   = − = − −   ∂ ∂ ∂   

                        (13) 

whose solution takes the form, 

( ) ( )2 V1 d d
2

r

r

R r
S m Et L r θ

θ

θ
λ φ θ= − − + + +

∆ ∆∫ ∫                     (14) 

where ( ) ( ) ( )( )
2

22 2 2 2 2 2
r

erR r I E r a aL Q I aE L m r
I
ε = + − + − ∆ + − +  

               (15) 

and  

( ) ( )( ) ( )
2 222 2 2 2 2
2cos sin .

sin
IV Q I aE L m a aE Lθθ θ θ
θ

= + − − ∆ − −              (16) 

Here Q is the Carter constant. Using the action given in Equation (14), the following differential equations go-
verning the motion of the test particle can be deduced: 

( )2 r R rρ
λ
∂

= ±
∂

                                 (17) 

( )2 Vθρ θ
λ
∂

= ±
∂

                                 (18) 

( ) ( ) ( )
2

2 2 2 2 2 2 2r a sin Lt er I aI a E r a aL E
I θ

ερ θ
λ
∂  = + + − + − − ∂ ∆ 

             (19) 

( ) ( )
2 2

2 2 2 2
2 sin .

sin r

I I a eraE L E r a aL
Iθ

φ ερ θ
λ θ
∂  = − − + + − + ∂ ∆∆  

            (20) 

where  
2 2 2 2cosr aρ θ= +                                 (21) 

( )2 2 2 211 2
3r r r a Mr e ∆ = − Λ + − + 

 
                         (22) 

2 211 cos
3

aθ θ ∆ = + Λ 
 

                              (23) 
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211
3

I a+ Λ= .                                  (24) 

The functions ( )R r  and ( )V θ  serve as the effective potentials defining the motion of the test particle in 
-r  and θ -directions [15]. Thus, the study of a test particle in the gravitational field of the Kerr-Newman de/anti 

de Sitter space-time is reduced to the study of motion of the test particle in the effective potentials ( )R r  and 
( )V θ . For a circular orbit for which 0r = , the following conditions are satisfied at some radius r: 

( ) 0,R r =                                    (25) 

( ) ( )d
0.

d
R r

R r
r

′ ≡ =                                (26) 

It may also be verified that the condition ( ) 0R r′′ <  is satisfied showing that the circular orbit is stable.  

2.1. Discussion on Singularities and Event Horizons 
The Kerr-Newman de/anti de Sitter metric (9) have singularities at 0ρ =  and at 0r∆ = . The physically rea-
sonable singularity is located at 0ρ =  which is satisfied with π 2θ =  and r 0= . The condition 0r∆ =  
implies that the Kerr-Newman de/anti de Sitter metric (9) exhibits four radial horizons. These radial horizons 
may be found as the roots of the equation 0r∆ =  which may be put in the form, 

2
4 2 2 21 2 0.

3 3
ar r Mr a e

 Λ Λ
− + − − + + = 

 
                       (27) 

The four roots are:  

( )

( )( )
( )( )

1
1 2
31 2

3

1 1
3 32

421 4
2 2

3 23 4

Y Y ZZX Mr A B
L XLL Y Y Z

±

 
 + −
 = ± − + + −
 
 + −
 

             (28) 

( )

( )( )
( )( )

1
1 2
31 2

3

1 1
3 32

421 4
2 2

3 23 4
c

Y Y ZZX Mr A B
L XLL Y Y Z

 
 + −
 = − − − + + +
 
 + −
 

            (29) 

( )

( )( )
( )( )

1
1 2
31 2

3

1 1
3 32

421 4
2 2

3 23 4
n

Y Y ZZX Mr A B
L XLL Y Y Z

 
 + −
 = − + − + + +
 
 + −
 

            (30) 

in which 

3
L Λ
= , 

( )21

3

a L
A

L

−
= , 

( )21 a L
B

L

− +
= , ( )32 2 4 21 14 12Z a L e L a L= − − + , 

( )( ) ( )32 2 2 2 272 1 2 1 108Y L a e a L a L LM= + − + − − ,  

( )

( )( )
( )( )

1
31 2

3

1 1
3 32

42
.

3 23 4

Y Y ZZ
X A B

LL Y Y Z

+ −
= − − − −

+ −
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Three out of the four roots of Equation (27), have physical interpretations as follows: r+  and r−  are the 
outer and inner event horizons of the black hole; cr  is the cosmological horizon for an observer between r+  
and cr . Using the L. Ferrari’s method [16], it may be shown that the real solutions for the horizon Equation (27) 
are controlled by a factor h, called the horizon parameter, defined as 

( )

( )

322
2 2

3

222 2
2 2 2

4

1 14 1
316

1 11 1 12 18 .
3 316

ah a e

a a a e M

  Λ ≡ + − − ΛΛ    

     Λ Λ  + − − + + −    ΛΛ        

                (31) 

For the negative cosmological constant 0Λ < , some particular cases arise: 
1) 0h > : two real solutions, r+  and r−  are expected; 
2) 0h < : no real solution exists, thus providing a naked singularity; 
3) 0h = : r+  and r−  coincide forming a single event horizon.  
For the positive cosmological constant 0Λ > , depending on the value of h, there arise several physical inter-

pretations:  
1) 0h < : the roots r− , r+  and cr  are all real and positive showing that the black hole has well-defined ho-

rizons. 
2) 0h = : the event horizons, r−  and r+  become degenerate. 
3) 0h > , there exists only one horizon. 

2.2. Geometrical Surfaces of Kerr-Newman De/Anti De Sitter Space-Time 
In the Boyer-Lindquist coordinates, the stationary limit surfaces (SLS) of Kerr-Newman de/anti de Sitter black  

hole are obtainable by setting the roots 
2 2

2 2

sin
0r

tt
a

g
I

θ θ
ρ

 ∆ − ∆
≡ = 
 

. In the light of Equation (10), these condi-

tions give rise to a fourth order equation, 

( )
2 2 2

4 2 2 2 2 23 cos1 2 1 sin 0.
3 3

a ar r Mr a a eθ θ
   Λ Λ

− + − − + + + + =   Λ   
                (32) 

By taking ( )2 2 2 2 2 21 sin ,C La cos a a eθ θ= + + +
 

the four roots of (32) are found as  

( )

( )( )
( )( )

1
1 2
31 2

3

/ 1 1
3 32

421 4
2 2

3 23 4
SE I

Y Y ZZX Mr A B
L XLL Y Y Z

 
 + −
 = ± − + + −
 
 + −
 

            (33) 

( )

( )( )
( )( )

1
1 2
31 2

3

1 1
3 32

421 4
2 2

3 23 4
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Y Y ZZX Mr A B
L XLL Y Y Z

 
 + −
 = − − − + + +
 
 + −
 

           (34) 

( )

( )( )
( )( )

1
1 2
31 2

3

1 1
3 32

421 4
2 2

3 23 4
S

Y Y ZZX Mr A B
L XLL Y Y Z

 
 + −
 = − + − + + +
 
 + −
 

            (35) 

in which 
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3
L Λ
= , 

( )21

3

a L
A

L

−
= , 

( )21 a L
B

L

− +
= , ( )32 4 21 2 12Z a L CL a L= − − + , 

( ) ( )32 2 272 1 2 1 108Y LC a L a L LM= − + − − , 

( )

( )( )
( )( )

1
31 2

3

1 1
3 32

42
.

3 23 4

Y Y ZZ
X A B

LL Y Y Z

+ −
= − − − −

+ −

 

For each radial horizon defined by (27) there is an associated stationary limit surface (SLS) defined by (32). 
Both the hyper surfaces given by Equations (27) and (32) coincide at 0, πθ = . The conditions for the existence 
of two distinct interior and exterior horizons for 0Λ < and three real horizons , interior, exterior and cosmolog-
ical horizons for 0Λ >  roots are respectively given by 0ergX >  (for 0Λ < ) and 0ergX <  (for 0Λ > ) 
where  

( )

( )

322 2 2
2 2 2 2

3

222 2 2 2
2 2 2 2 2

4

1 1 cos4 1 4 sin 1
3 316

1 1 cos1 1 12 12 sin 1 18 .
3 3 316

erg
a aX a e a

a a aa e a M

θθ

θθ

    Λ Λ ≡ + − − − +   ΛΛ      

       Λ Λ Λ  + − − + + − + −      ΛΛ          

   (36) 

3.1. Circular Orbit of a Test Charged Particle inside the Inner Horizon  
We discuss the non rotating charged black hole: 0,  1,  0a m Q= = = . With the help of Equations (25) and (26), 
we obtain a pair of coupled equations for the energy E and angular momentum L of the test charged particle:  

( ) ( )22 2 4 2 2 21 2 0
3

Er er r r r e L rε  + − − Λ − + + = 
 

                   (37) 

and 

( )( ) ( )
3

2 2 2

4
2 2

42 2 2 2
3

2 2 0.
3

rEr er Er e L r r

rr r r e

ε ε
 Λ

+ + − + − + − 
 

 Λ
− − + + − = 

 

                  (38) 

As the roots of the Equations (37) and (38) we obtain the following the pairs of values for E and L: 

( )

4
2 2

1

1,2 2 2

4 3
3

2 3 2

rD e r r e
E

r r r e

ε
 Λ

∆ − − + + + 
 = ±
− + +

                       (39) 

( )
( )

( )
2 4

12 2
1,2 2 2 2 233 2 2 3 2

e e Dr rL r e
r r e r r e

ε ε ∆ ± Λ = − − + 
 − + − +  

                  (40) 

where  
4

2 22
3
re r r Λ

∆ = − + −  

and ( )2 2 2 2 2
1 8 12 4D e e r rε= + − + . The stability condition ( ) 0R r′′ <  for the non rotating circular orbit in the 

region of 0 r r−< <  is satisfied for ( )1 1,E L  for all mε > . The interaction between the charge of the particle 
and the electromagnetic field of the black hole may account for the existence of stable circular orbit of the 
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charged particle inside the inner horizon [7]. 

3.2. Photon Orbit inside the Inner Horizon 
The photon orbit is obtained in the case of the ultra relativistic limit for very massive particle energy E →∞ . 
This limiting situation is equivalent to the situation when m = 0. Such photon orbits mainly depend on two pa-
rameters: the azimuthal impact parameter b = L/E and the latitudinal impact parameter given by 2q Q E= . For 
photon orbit, we have  

2

0, 0, 1
3
am Iε Λ

= = = + ( )2 2 2 211 2
3r r r a Mr e ∆ = − Λ + − + 

 
 

From (25) and (26), we find: 

( ) ( )

( ) ( )

22 2 2

22 2 2 2 211 2 0
3

R r I E r a aL

r r a r e Q I aE L

 = + − 
    − − Λ + − + + − =      

                (41) 

and 

( ) ( )

( )

2 2 2

2
23 2

2

21 0.
3 3

R r I E r a aL Er

rar r Q I aE L

 ′ = + − 
 Λ  − − − Λ − + + − =    

                  (42) 

On solving for b=L/E, we get the following expression as roots of (41) and (42): 

( )
2

2 2
1 2

3

1 3 2 1
321

3 3

rab r r r e a r
raa r r

  Λ
= − + + + +  

 Λ    + Λ + − 
 

             (43) 

( )2 2

2

r a
b

a

+
=                                     (44) 

Using these values of b1 and b2 given by (43) and (44) back into (41) and (42) we get a pair of values for q: 

( )

2 2

1 22
2 2

2 2 2 4 2 22 2 3 2 2 2 2

21
3 3

24 3 2
6 9 3

I rq
a ra r r

a r a ra r e r r e r r e

=
 Λ
− + Λ + 

 
  Λ Λ

− + − − Λ + Λ − − + +  
   

             (44) 

2 4

2 2

I rq
a

−
=                                    (45) 

The condition for stability ( ) 0R r′′ <  is satisfied for ( )1 2,b q  in the region of 0 r r−< < . The stable circu-
lar orbit may exist within the inner horizon which appears to be the result of combined effects of both rotation 
and charge of the black hole. Such an interesting feature was observed initially by Balek et al. 1989 [7]. 

4. Conclusion 
We have shown that charged particles and photons may have stable periodic orbits inside the inner horizon of 
Kerr-Newman de/anti de Sitter black hole. The interaction between the charge of the particle and the electro-
magnetic field of the black hole may account for existence of stable circular orbits in the case of a charged parti- 
cle inside the inner horizon. However, in the case of a photon inside the inner horizon, its stable circular orbit 
may be due to the combined effect of the rotation and the charge of the black hole. 
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