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Abstract 

This paper is devoted to the study of second-order Duffing equation ( ) ( )′′x g x p t+ =  with 
singularity at the origin, where ( )g x  tends to positive infinity as x → +∞ , and the 

primitive function ( ) ( )( )∫
x

G x g s s
1

d= → +∞  as x 0+→ . By applying the phase-plane 

analysis methods and Poincaré-Bohl theorem, we obtain the existence of harmonic 
solutions of the given equation under a kind of nonresonance condition for the time map. 
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1. Introduction 
We deal with the second-order Duffing equation  

 ( ) ( ) ,x g x p t′′ + =  (1) 

where :g + →   is locally Lipschitzian and has singularity at the origin, :p →   is continuous and 2π
periodic. Our purpose is to establish existence result for harmonic solution of Equation (1). Arising from 
physical applications (see [1] for a discussion of the Brillouin electron beam focusing problem), the periodic 
solution for equations with singularity has been widely investigated, referring the readers to [2]-[6] and their 
extensive references. 

As is well known, time map is the right tool to build an approach to the study of periodic solution of Equation 
(1) (see [7]-[9]). However, the work mainly focused on the equations without singularity. Our goal in this paper 
is to study the periodic solution of Equation (1) with singularity via time map. There is a little difference 
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between our time map and the time map in [7] [9]. We now introduce the time map. 
Consider the auxiliary autonomous system  

 ( ), ,x y y g x′ ′= = −  (2) 

and suppose that  

( )
0

lim ,
x

g x
+→

= −∞
 

                   ( )0g  

( )lim .
x

g x
→+∞

= +∞                                     ( )1g  

( ) ( ) ( )
10

lim , d .
x

x
G x G x g s s

+→
= +∞ = ∫                            ( )0G  

Obviously, the orbits of system (2) are curves cΓ  determined by the equation  

( )21: ,
2c y G x cΓ + =  

where c  is an arbitrary constant. 
In view of the assumptions (g0), (g1) and (G0), there exists a 0 0c > , such that for 0c c≥ , cΓ  is a closed 

curve. Let ( ) ( )( ),x t y t  be a solution of (2) whose orbit is cΓ . Then this solution is periodic, denoting by 
( )cτ  the least positive period of this solution. It is easy to see that  

 ( ) ( )
( )

( )
d2 ,

d c

h c

xc
c G x

τ =
−

∫  (3) 

where ( ) ( )0 h c d c< < , ( )( ) ( )( )G h c G d c c= = , ( )lim 0c h c→+∞ = , ( )limc d c→+∞ = +∞ . 

We recall an interesting result in [7]. Ding and Zanolin [7] proved that Equation (1) without singularity 
possesses at least one T-periodic solution provided that  

( ) ( )lim sgn ,
x

x g x
→+∞

= +∞  

and a kind of nonresonance condition for the time map  

 , : ,T n
n

τ τ τ τ− +
− +

  + + ∈ = ∅    
   (4) 

where  

( ) ( ) ( ) ( )

( )0

dliminf , limsup , 2 .
d c

c c

sc c c
c G s

τ τ τ τ τ±
± →±∞ →±∞
= = =

−
∫  

 

Now naturally, we consider the question whether Equation (1) has harmonic solution when we permit 
( )g x
x

  

cross resonance points and use a kind of nonresonance condition for time map. In the following we will give a 
positive answer. In order to state the main result of this paper, set  

 ( )

( )
( )

( )1 1

d dˆ ˆliminf 2 ; limsup 2 ,
d c d c

c c

x x
c G x c G x

τ τ +
+ →+∞ →+∞
= =

− −
∫ ∫  (5) 

and assume that  

2π 2πˆ ˆ , .
1

n
n n

τ τ +
+< ≤ < ∈

+
                                ( )τ  

Our main result is following.  
Theorem 1.1 Assume that ( )0g , ( )1g  ( )0G  and ( )τ  hold, then Equation (1) has at least one 2π- 

periodic solution.  
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In this case, we generalize the result in [7] to Equations (1) with singularity. 
The remainer of the paper is organized as follows. In Section 2, we introduce some technical tools and present 

all the auxiliary results. In Section 3, we will give the proof of Theorem 1.1 by applying the phase-plane 
analysis methods and Poincaré-Bohl fixed point theorem.  

2. Some Lemmas 

we assume throughout the paper that ( )g x  is locally Lipschitz continuous. In order to apply the phase-plane 
analysis methods conveniently, we study the equation  

 ( ) ( ) ,x g x p t′′ + =  (6) 

where ( ): 1,g − +∞ →   is continuous and has a singularity at 1x = − . In fact, we can take a parallel 
translation 1x u= +  to achieve the aim. Then the conditions ( )0g  and ( )0G  become  

( ) ( )
1 1

ˆˆlim , lim .
u u

g u G u
+ +→− →−

= −∞ = +∞  

Dropping the hats for simplification of notations, we assume that  

( )
1

lim ,
x

g x
+→−

= −∞                                  ( )0g ′  

and  

( ) ( ) ( )
01

lim , d .
x

x
G x G x g s s

+→−
= +∞ = ∫                          ( )0G′  

Thus,  

 ( )

( )
( )

( )0 0

d dˆ ˆliminf 2 ; 2 ,limsup
d c d c

c c

x x
c G x c G x

τ τ +
+ →+∞ →+∞
= =

− −
∫ ∫  (7) 

and ( )h c  and ( )d c  in (3) satisfy  

( ) ( )lim 1, lim .
c c

h c d c
→+∞ →+∞

= − = +∞  

We will prove Theorem 1.1 under conditions ( )0g ′ , ( )1g  ( )0G′  and )(τ  instead of conditions ( )0g , 
( )1g  ( )0G  and ( )τ . 

Consider the equivalent system of (6):  

 ( ) ( ), .x y y g x p t′ ′= = − +  (8) 

Let ( ) ( )( ) ( ) ( )( )0 0 0 0, ; , , ; ,x t y t x t x y y t x y=  be the solution of (8) satisfying the initial condition  

( ) ( )0 0 0 0 0 00; , , 0; , .x x y x y x y y= =  

We now follow a method which was used by [4] [6] and shall need the following result.  
Lemma 2.1 Assume that conditions ( )0G′  and ( )1g  hold. They every solution of system (8) exists uniquely 

on the whole t-axis.  
By Lemma 2.1, we can define Poincaré map ( ) 2: 1,P − +∞ × →   as follows  

( ) ( ) ( ) ( )( )0 0 1 1 0 0 0 0: , , 2π; , , 2π; , .P x y x y x x y y x y=  

It is obvious that the fixed points of the Poincaré map P  correspond to 2π -periodic solutions of system (8). 
We will try to find a fixed point of P . To this end, we introduce a function ( ): 1,l +− +∞ × →  ,  

( )
( )

2 2
2

1, .
1

l x y x y
x

= + +
+

 

Lemma 2.2 Assume that ( )0G′  and ( )1g  hold. Then, for any 0r > , there exists 0ρ >  sufficiently large 
that, for ( ) 2

0 0,l x y ρ≥ ,  

( ) ( )( ) [ ]2, , 0, 2π ,l x t y t r t≥ ∈  
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where ( ) ( )( ),x t y t  is the solution of system (8) through the initial point ( )0 0,x y .  
This result has been proved in [6] and we omit it. 
Using Lemma 2.2, we see that ( ) ( )2 2 0x t y t+ >  for [ ]0,2πt∈  if ( )0 0,l x y  is large enough. Therefore, 

transforming to polar coordinates cosx r θ= , siny r θ= , system (8) becomes  

 
( ) ( )

( ) ( )2

d sin cos cos sin sin ,
d
d 1 1cos cos cos .sin
d

r r g r p t
t

g r p t
t r r

θ θ θ θ θ

θ θ θ θ θ

 = − +

 = − − +


 (9) 

Denote by ( ) ( )( ) ( ) ( )( )0 0 0 0, ; , , ; ,r t t r t r t rθ θ θ θ=  the solution of (9) with  

( ) ( ) 00 0, 0 .r θ θ= =  

Thus, we can rewrite the Poincaré map in the form  

( ) ( ) ( ) ( )( )0 0 1 1 0 0 0 0: , , 2π; , , 2π; , ,P r r x r rθ θ θ θ θ=  

where 0 0 0 0 0 0cos 1, sinr x r yθ θ= > − = . 
For the convenience, two lemmas in [6] will be written and the proof can be found in [6].  
Lemma 2.3 Assume that ( )0g ′  and ( )1g  hold. Then there exists a 0 0l >  such that, for ( ) 0,l x y l≥ , 
( ) [ ]0, 0,2πt tθ ′ < ∈ .  
Lemma 2.4 Assume that ( )0g ′ , ( )0G′  and ( )1g  hold. Then there exists a 0 0c >  such that, for 0c c≥ , 

( )21:
2c y G x cΓ + =  is a star-shaped closed curve about the origin O .  

Lemma 2.5 Assume that ( )0g ′ , ( )1g  and ( )0G′  hold. Denote by ( )0 0,r θ∆  the time for the solution 
( ) ( )( ),r t tθ  to make one turn around the origin. Then ( ) ( ) ( )0 0ˆ ˆ1 , 1o r oτ θ τ +

+ + ≤ ∆ ≤ +  as ( )0 0,l x y → +∞ , 
where τ̂ +  and τ̂ +  are given in (7).  

Proof. Without loss of generality, we may assume that 0 0x = . From Lemma 2.3, we have d 0
dt
θ
<  for  

sufficiently large ( )0 0,l x y  and [ ]0,2πt∈ . Hence, there exist 0 1 2 3 40 t t t t t= < < < <  such that  
( ) ( ) ( ) ( )1 2 3 4 0y t x t y t x t= = = = , and  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 1 1 2

2 3 3 4

0, 0, , ; 0, 0, , ;

0, 0, , ; 0, 0, , .

x t y t t t t x t y t t t t

x t y t t t t x t y t t t t

> > ∈ > < ∈

< < ∈ < > ∈
 

Throughout the lemma, we always assume that ( )0 0,l x y  is large enough. 
(1) We shall first estimate 3 2t t−  and 4 3t t− . We can refer to Lemma 2.6 in [6] and obtain ( )3 2 1t t o− = , 

( )4 3 1t t o− =  as ( )0 0,l x y → +∞ . 
(2) We now estimate 1 0t t−  and 2 1t t− . According to conditions ( )0G′  and ( )1g , we can choose a constant 

0M >  such that ( )2 > 0G x M+  for ( )1,x∈ − +∞ . Set  

 ( ) ( ) ( )( )2 2 .u t y t G x t M= + +  (10) 

Then,  

( )
( ) ( ) ( )( ) ( )

( ) ( )( )
( ) ( )

( ) ( )( )
( )

2 2
.

2 2

y t y t g x t x t y t p t
u t p t

y t G x t M y t G x t M

′ ′+
′ = = ≤

+ + + +
 

Therefore, for 4π, 0,t s
n

 ∈   
,  

( ) ( ) ( )
4π

0
, d .nu t u s e e p t t− ≤ = ∫  

Note that ( )0 2u c M= + , we get  

( ) 4π2 2 , 0, .c M e u t c M e t
n

 + − ≤ ≤ + + ∈   
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Since ( )( )G d c c= , we have  

( ) ( ) ( )2 2 ,G d M e u t G d M e+ − ≤ ≤ + +  

where ( )d d c= . By condition ( )1g , we know that ( )2G x M+  increases for x sufficiently large, and tends 

to +∞  as x → +∞ . Therefore, there exist constants 0a d b> > >  such that  

 ( ) ( ) ( ) ( )2 2 , 2 2 .G a M G d M e G b M G d M e+ = + + + = + −  (11) 

By (10) and (11), we have  

 ( ) ( )( )( ) ( ) ( ) ( )( )( )22 2 .G b G x t y t G a G x t− ≤ ≤ −  (12) 

Let ( )0 1,bt t t∈  be such that ( )bx t b= , and ( ) [ ]0 , 0, bx t b t t≤ ≤ ∈ . Following (12), we derive  

 ( ) ( )( )( ) ( ) ( ) ( )( )( )2 2 ,G b G x t y t G a G x t− ≤ ≤ −  (13) 

that is,  

( ) ( )( )( ) ( ) ( ) ( )( )( )2 2 .G b G x t x t G a G x t′− ≤ ≤ −  

Consequently,  

( )
( ) ( )( )( )

( )
( ) ( )( )( )

1 .
2 2

x t x t

G a G x t G b G x t

′ ′
≤ ≤

− −
 

Integrating both sides of the above inequality from 0t  to bt , we obtain  

 
( ) ( )( ) ( ) ( )( )00 0

d d .
2 2

b b
b

x xt t
G a G x G b G x

≤ − ≤
− −

∫ ∫  (14) 

Recalling the conditions ( )1g  and (11), we know that there is 0ς > , such that a b ς− ≤ . Applying 
Lemma 2.8 in [6], we can derive  

 
( ) ( )( ) ( ) ( )( )

( )
0 0

d d 1
2 2

a bx x o
G a G x G a G x

= +
− −

∫ ∫  (15) 

for c → +∞ . Combining (14) and (15), we have  

( ) ( )( )
( )

( ) ( )( )00 0

d d1 .
2 2

a b
b

x xo t t
G a G x G b G x

+ ≤ − ≤
− −

∫ ∫  

From [10], we know that  

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( )
( )

0 0 0

d d d1 1
2 2 2

b a dx x xo o
G b G x G a G x G d G x

= + = +
− − −

∫ ∫ ∫  

for c → +∞ . Hence,  

( ) ( )( )
( )0 0

d 1 .
2

d
b

xt t o
G d G x

− = +
−

∫  

In the following, we deal with 1 bt t− . Integrating ( ) ( )( ) ( )y t g x t p t′ = − +  from bt  to 1t , we get  

 ( ) ( ) ( ) ( )( ) ( )1 1
1 d d .

b b

t t
b b t t

y t y t y t g x t t p t t− = − = − +∫ ∫  (16) 

By (13), we derive  

 ( ) ( ) ( )( )2 .by t G a G b≤ −  (17) 
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On the other hand, from (11) we have  

( ) ( )2 2 2 .G a M G b M e+ − + =  

As a result,  

( ) ( )( ) ( ) ( )( )
( ) ( )

.
2 2

G a G b G a G b
e

G a M G b M

− +
=

+ + +
 

Accordingly,  

 ( ) ( ) 2 .G a G b e− <  (18) 

Meanwhile, following ( )1g , for any given 0A >  sufficiently large, there exist N b≥  large enough, such 
that  

 ( ) , for .g x A x N> >  (19) 

Combining (16)-(19), we get  

( ) ( )( )
( )1

2
1b

G a G b
t t o

A E

−
− ≤ =

−
 

for b → +∞ , where ( )maxtE p t∈=


. Thus,  

 ( )

( )( )
( )1 0 0

d 1 .
2

d c xt t o
c G x

− = +
−

∫  (20) 

Using the same arguments as above, we can get  

 ( )

( )( )
( )2 1 0

d 1 .
2

d c xt t o
c G x

− = +
−

∫  (21) 

By the conditions (20), (21), we have  

( ) ( )1 0
ˆ ˆ

1 1 ,
2 2

o t t oτ τ +
+ + ≤ − ≤ +  

( ) ( )2 1
ˆ ˆ

1 1 .
2 2

o t t oτ τ +
+ + ≤ − ≤ +  

Recalling ( )3 2 1t t o− = , ( )4 3 1t t o− = , we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 0 2 1 3 2 4 3ˆ ˆ1 , 1 .o r t t t t t t t t oτ θ τ +
− + ≤ ∆ = − + − + − + − ≤ +  

The proof is complete.  

3. Proof of Theorem 1.1 
In this section, we establish the existence of harmonic solutions for Equation (1) by appealing to Poincaré-Bohl 
theorem [11]. We consider the Poincaré map  

( ) ( ) ( ) ( )( )0 0 1 1 0 0 0 0 0 0: , , 2π; , , 2π; , , cos 1.P r r r r r rθ θ θ θ θ θ= > −  

From Lemma 2.5 and condition ( )τ , we obtain  

( ) ( ) ( ) ( ) ( )0 0 1 0 2 1 3 2 4 3
2π 2π, ,

1
r t t t t t t t t

n n
θ< ∆ = − + − + − + − <

+
 

which implies  

( ) ( )0 0 02 1 π 2π; , 2 π.n r nθ θ θ− + < − < −  
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Thus, the image ( ) ( )1 1 0 0, ,r P rθ θ=  cannot lie on the line 0θ θ= . Therefore, the Poincaré-Bohl theorem 
guarantees that the map P  has at least one fixed point, i.e. Equation (6) has at least one 2π -periodic solution. 
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