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Abstract 
In this note we study the optimal dividend problem for a company whose surplus process, in the 
absence of dividend payments, evolves as a generalized compound Poisson model in which the 
counting process is a generalized Poisson process. This model includes the classical risk model 
and the Pólya-Aeppli risk model as special cases. The objective is to find a dividend policy so as to 
maximize the expected discounted value of dividends which are paid to the shareholders until the 
company is ruined. We show that under some conditions the optimal dividend strategy is formed 
by a barrier strategy. Moreover, two conjectures are proposed. 
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1. Introduction 
In recent decades, the optimization problem of dividend has received remarkable attention in the financial 
mathematics and insurance mathematics. This problem goes back to Finetti [1], who considered a discrete time 
random walk with step size ±1 and found that the optimal dividend strategy is a barrier strategy, that is, any 
surplus above a certain level would be paid as dividend. Since then, many researchers have studied the dividends 
problems for various risk models under a barrier strategy. For the compound Poisson model, this problem was 
solved by Gerber [2], identifying so-called band strategies as the optimal ones. For exponentially distributed 
claim sizes this strategy simplifies to a barrier strategy. Azcue and Nuler [3] follows a viscosity approach to 
investigate optimal reinsurance and dividend strategies in the Cramér-Lundberg model. Albrecher and Thon- 
hauser [4] showed that the optimality of barrier strategies in the classical model with exponential claims still 
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holds if there is a constant force of interest. Avram et al. [5] considered the case where the risk process is given 
by a general spectrally negative Lévy process and gave a sufficient condition involving the generator of the 
Lévy process for optimality of the barrier strategy. Loeffen [6] showed that barrier strategy is optimal among all 
admissible strategies for general spectrally negative Lévy risk processes with completely monotone jump 
density, and Kyprianou et al. [7] relaxed this condition on the jump density to log-convex. An alternative proof 
is given in Yin and Wang [8]. Loeffen and Renaud [9] pushed this result further by assuming the weaker 
condition that the Lévy measure has a density which is log-convex. Azcue and Muler [10] examine the analogous 
questions in the compound Poisson risk model with investment. 

The Poisson processes are the most basic and widely used stochastic model for modeling discrete data, it may 
provide a poor fit in the presence of over-dispersion. For example, the use of the Poisson distribution as a model 
describing the number of claims caused by individual policyholders (e.g. in automobile insurance) during to that 
certain period is usually rejected, since in practice the behavior of policyholders is heterogeneous. In such a case 
the standard Poisson model is inappropriate. For example, in collective risk theory, it is assumed that claims 
occur in bulk, where the number of bulks tM  occurring in ( ]0, t  follows a Poisson process with parameter 
λ . Each bulk consists of a random number of claims so that the total number of claims is of the form  

1 ,tM
t iiN X

=
= ∑  where { }, 1iX i ≥  denotes the number of claims in the i -th bulk. The aggregate claim pay- 

ments made up to time t , called the generalized Poisson process, is given by 1 ,tN
ii Y

=∑  where { }, 1iY i ≥   
representing the individual claim amounts. In this paper, we formulate and solve an optimal dividends problem 
for a generalized Poisson risk model in which the aggregate claim payments are defined by a generalized 
Poisson process. 

The rest of the paper is organized as follows. In Section 2, we give a rigorous mathematical formulation of the 
problem. Section 3 gives notion of log-convexity and complete monotonicity. We present our main results in 
Section 4 and prove them in Section 5. 

2. Problem Setting 

Consider the risk model ( ){ }, 0X t t ≥ , defined on the filtered probability space { }( ), , : 0 ,t t PΩ = ≥    

and,  

( )
1

,
tN

t i
i

X t x ct W Yσ
=

= + + −∑                                (2.1) 

where { }; 0tW t ≥  is a standard Brownian motion with 0 0W = , the claim sizes { }; 1iY i ≥  are positive inde- 
pendent and identically distributed random variables whose probability distribution function is given by ( )P y ,  
{ }; 0tN t ≥  is a generalized Poisson process defined as 1 ,tM

t iiN X
=

= ∑  where { }, 1iX i ≥  are discrete inde- 
pendent and identically distributed random variables whose probability distribution is given by  
( ) , 1, 2, ,i kP X k p k= = =   and { }, 0tM ≥  is a homogeneous Poisson process with intensity > 0λ .  

Moreover, it is assumed that { } { },t tW M , { }iX  and { }iY  are mutually independent. In particular, when  

( )1 1iP X = = , the process { }tN  reduces to the homogeneous Poisson process with intensity > 0λ , and hence  
the risk model (2.1) reduces to the classical risk model perturbed by Brownian motion (see Chiu and Yin [11]). 

The probability mass function of tN  is given by  

( ) ( ) *

0
e , 0,1, 2 ,

!

k
t n

t k
k

t
P N n p n

k
λ λ∞

−

=

= = =∑                           (2.2) 

where *n
kp  is the n -fold convolution of { }kp . In a few special cases it is possible to determine the proba- 

bilities ( )tP N n= ’s explicitly. 
Example 2.1. Suppose that 1 2, ,X X   are geometrically distributed with parameter 1 ρ− , where ( )0,1ρ ∈ , 

i.e.  

( ) ( ) 11 , 1, 2, .k
iP X k kρ ρ −= = − =   
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Then the compound Poisson process by geometric compounding leads to the Pólya-Aeppli process  
{ }, 0tN t ≥  with parameters λ  and ρ  (cf. Minkova [12]). That is for all 0t ≥ ,  

( ) ( )
1

e , if  0,

11
e , if  1, 2, .

1 !

t

i
nt t n i

i

n

P N n tn
n

i i

λ

λ λ ρ
ρ

−

− −

=

 =
= =  − −    =  −  

∑ 

                  (2.3) 

Note that the Pólya-Aeppli process is a time-homogeneous process, it is also called Poisson-geometric process 
in Chinese literature, for example see Mao and Liu [13], where the ruin probability was studied for compound 
Poisson-geometric process. In the case of 0ρ = , the Pólya-Aeppli process becomes a homogeneous Poisson 
process. 

Example 2.2. (Quenouille [14]) Let { }, 1iX i ≥  denote a sequence of independent and identically distributed 
random variables, each one having the logarithmic distribution (also known as the logarithmic series distribution) 
( )ln θ , with probability mass function  

( ) ( )
, 1, 2, ,0 1.

ln 1

n

iP X n n
n

θ θ
θ

= = = < <
− −

  

Suppose that tM  has a Poisson process with parameter ( )ln 1rλ θ= − − . Then the random sum  

1
,

tM

t i
i

N X
=

= ∑  

has the negative binomial distribution ( ),NB rt θ :  

( ) ( )
1

1 , 0,1, 2, .rt n
t

n rt
P N n n

n
θ θ

+ − 
= = − = 

 
                     (2.4) 

In this way, the negative binomial distribution is seen to be a compound Poisson distribution. 
We now consider the classical optimal dividend control problem. Let π  be a dividend strategy consisting of  

a non-decreasing left-continuous  -adapted process { }, 0tL tππ = ≥  with 0 0Lπ = , where tLπ  represents the  

cumulative dividends paid out by the company till time t  under the control π . We define the controlled risk  
process { }, 0tU U tπ π= ≥  by ( )t tU X t Lπ π= − . Let { }inf 0 : 0tt Uπ πτ = > <  be the ruin time and define the  

value function of a dividend strategy π  by  

( ) ( ) 00
e d ,qtV x E L s U xπτ π π

π
− = =  ∫  

where > 0q  is an interest force for the calculation of the present value. Let Ξ  be the set of all admissible  
dividend strategies, that is all strategies π  such that t t tL L Uπ π π

+ − ≤  for <t πτ . The objective is to solve the  
following stochastic control problem:  

( ) ( ) ,supV x V xπ
π∈Ξ

=                                    (2.5) 

and to find an optimal policy *π ∈Ξ  that satisfies ( ) ( )*V x V x
π

=  for all 0x ≥ . 

3. Log-Convexity and Complete Monotonicity 
Before starting our main results, we introduce the definitions of log-convexity and complete monotonicity. 

Definition 3.1. (Willmot and Lin [15]). (1) A distribution { }nP  on the non-negative integers is said to be  
log-convex if 2

1 1, 1, 2, ,n n nP P P n+ −≤ =   and { }nP  is said to be strictly log-convex if 2
1 1, 1, 2, .n n nP P P n+ −< =    

A counting distribution { }, 0nr n ≥  is discrete completely monotone iff it is a mixture of geometric distribu- 
tions, i.e.  
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( ) ( )1

0
1 d ,n

nr Uθ θ θ= −∫  

where U  is a probability distribution on ( )0,1 . 
(2) A function :f R R+→  is log-convex if ( )log f x  is a convex function. Let ( )0,f C∞∈ ∞  with  

0f ≥ . We say f  is completely monotone if ( ) ( )1 0n nf− ≥  for all n N∈ . 
(3) The distribution function ( )G x  is said to be decreasing (increasing) failure rate or DFR (IFR) if  
( ) ( )G x y G y+  is nondecreasing (nonincreasing) in y  for fixed 0x ≥ , i.e. if ( )G y  is log-convex  

(log-concave). 
Note that the completely monotone class is a subclass of the log-convex. For examples of continuous 

log-convex or completely monotone functions can be found in Yin and Wang [8]. Now, we give a discrete 
example. 

Example 3.1. Let N  be a logarithmic random variable with  

( ) ( ) ( )
1

, 0,1, 2, ,0 1.
1 log 1

n

np P N n n
n

θ θ
θ

+

= = = = < <
− + −

  

Then { }np  is completely monotone (see Van Harn ([16], p. 58)). The generalized logarithmic series distri- 
bution is defined by  

( )
( ) ( ) ( ) ( )( )11 1 log 1 , 1,2, ,

1 1
n nn

n
n

r n
n n n n

ββ
θ θ θ

β β
−Γ +

= − − − =
Γ − + Γ +

  

with 1β ≥  and 10 < <θ β − . Then { }, 1nr n ≥  is strictly log-convex (see Hansen and Willekens [17]). 

4. Main Results 

Denote by { }, 0b
b tL tπ = ≥  the constant barrier strategy at level b  which is defined by 0 0bL =  and  

( )
0

0supb
t

s t
L X s b

≤ <

 = − ∨ 
 

 

for all > 0t . That is, for a level > 0b  whenever surplus goes above b , the excess is paid as dividends to the 
shareholders of the company and, if the surplus is less than b , no dividends are paid out. We will now present 
the main results of this note which give sufficient conditions for optimality of a barrier strategy *b

π . It is 
important to note that various dividend strategies can be employed by an insurance company. However, we will 
only focus on the conditions for the optimality of a dividend strategy. 

After some tedious calculations, we get  

( ) ( ) ( ) ( ) ( )1 2 2
0

1: ln e e 1 d , 0,
2

sX szs E cs s F z sψ σ λ
∞ −= = + + − ℜ ≥∫  

where  

( ) ( )*

1
.k

k
k

F z p P z
∞

=

= ∑                                     (4.1) 

Here *kP  is the k -fold convolution of P  with itself. So that X  is a special spectrally negative Lévy 
process with the Laplace exponent ( )sψ . Therefore, all the known results for spectrally negative Lévy process 
models can be applied to the model (2.1). However, since the distribution function F  is not explicit (depends 
on the distribution of iY  and iX ), it can be of interest to study which assumptions on the probability 
distributions of iY  and tN  ensure that the optimal dividend strategy is barrier one. 

We now recall the definition of the q -scale function ( )qW  and some properties of this function. For each 
0q ≥  there exists a continuous and increasing function ( ) [ ): 0,qW R → ∞ , called the q -scale function defined 

in such a way that ( ) ( ) 0qW x =  for all < 0x  and on [ )0,∞  its Laplace transform is given by  

( ) ( ) ( ) ( )
0

1e d , > .qsxW x x s q
s q

ρ
ψ

∞ − =
−∫  
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Here, ( )qρ  is the unique root of equation ( ) 0s qψ − =  in the half-plane ( ) 0sℜ ≥ . 
From Avram et al. [5] we get the expected discounted value of dividend payments of the barrier strategy at 

level 0b ≥  is given by  

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

, if  0 ,

, if  > .

q

q

b q

q

W x
x b

W b
V x

W b
x b x b

W b


≤ ≤

′= 


− + ′

                             (4.2) 

Define  

( ) ( ) ( ) ( ){ }* 0 : , 0 .q qb b W b W x x′ ′= ≥ ≤ ≥  

Theorem 4.1. For model (2.1), if P  has a completely monotone probability density function on ( )0,∞  and  
{ }, 0np n ≥  is discrete completely monotone, then the barrier strategy with level *b  is the optimal dividend  

strategy. Moreover, the V  defined by (2.5) is given by ( ) ( )*b
V x V x= .  

Theorem 4.2. For model (2.1), if { }, 1np n ≥  is discrete completely monotone and P  is DFR, then the  
barrier strategy with level *b  is the optimal dividend strategy. Moreover, the V  defined by (2.5) is given by  
( ) ( )*b

V x V x= . 

Corollary 4.1. For model (2.1) with tN  given by (2.3) or (2.4), if P  is DFR, then the barrier strategy with  
level *b  is the optimal dividend strategy. Moreover, the V  defined by (2.5) is given by ( ) ( )*b

V x V x= .  

Theorem 4.3. For model (2.1), if { }, 1np n ≥  is a log-convex probability mass function and P  is the expo- 
nential distribution function with mean 1 β , then the barrier strategy with level *b  is the optimal divi- 
dend strategy. Moreover, the V  defined by (2.5) is given by ( ) ( )*b

V x V x= .  

5. Proof of Main Results 
Before proving the main results, we give several lemmas.  

Lemma 5.1. (Loeffen [13]) Suppose that the Lévy measure of a spectrally negative Lévy process X  has a 
completely monotone density on ( )0,∞ , then the barrier strategy at *b  is an optimal strategy.  

Kyprianou, Rivero and Song [7] providing weaker conditions on the Lévy measure for the optimality of a 
barrier strategy. An alternative approach can be found in Yin and Wang [8].  

Lemma 5.2. Suppose that a spectrally negative Lévy process X  has a Lévy density π  on ( )0,∞  that is 
log-convex, then the barrier strategy at *b  is an optimal strategy.  

Note that for the Cramér-Lundberg model with or without a Brownian component, the requirement of 
log-convexity of the Lévy density π  on ( )0,∞  is equivalent to the log-convexity of the probability density 
function of the individual claim amount on ( )0,∞ . Since the Lévy measure having a log-convex (or completely 
monotone) density implies that tail of the Lévy measure is log-convex and the converse is not true (cf. Loeffen 
and Renaud [9]), the following result improves the results in Lemmas 3.1 and 3.2.  

Lemma 5.3. (Loeffen and Renaud [9]) Suppose that the tail of the Lévy measure of a spectrally negative 
Lévy process X  is log-convex, then the barrier strategy at *b  is an optimal strategy.  

Proof of Theorem 4.1. If { }, 1np n ≥  is discrete completely monotone and P  has a completely monotone 
density on ( )0,∞ , then  

( ) ( )*

1

k
k

k
F z p P z

∞

=

= ∑  

has a completely monotone density on ( )0,∞  (cf. Chiu and Yin [18]). The result follows from Lemma 5.1. 
Proof of Theorem 4.2. It is well known that the property of DFR is preserved under the geometric sum (see 

Shanthikumar [19], Corollary (3.6)), and since the sum of two log-convex functions is log-convex and the limit 
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of a pointwise convergent sequence of log-convex functions is log-convex, it follows that  

( ) ( )*

1

k
k

k
F z p P z

∞

=

= ∑  

is also DFR. The result of Theorem 4.2 follows from Lemma 5.3. 
Proof of Theorem 4.3. If P  is the exponential distribution function with mean 1 β , then by (4.1) we have  

( ) ( )1

1 0
1 e .

!

jk
z

k
k j

z
F z p

j
β β∞ −

−

= =

 
 = −
 
 

∑ ∑  

Therefore,  

( ) ( )1

1 0
e .

!

jk
z

k
k j

z
F z p

j
β β∞ −

−

= =

 
 =
 
 

∑ ∑  

Interchanging the order of summation yields  

( ) ( )
0

e ,
!

j
z

j
j

z
F z P

j
β β∞

−

=

= ∑  

where  

1
.j i

i j
P p

∞

= +

= ∑  

Note that 0 1 21 P P P= ≥ ≥ ≥  and 1k kp p+  is increasing in k , it follows from Theorem 3.2 in Esary 
and Marshall [20] that F  has a density which is logarithmically convex on ( )0,∞ . The result follows from 
Lemmas 5.2.  

Remark 5.1. At the end of this paper, we give two conjectures. The first conjecture can be viewed as an 
extension of Theorem 4.3; The second conjecture can be viewed as an extension of Conjecture 1 and Theorem 
4.2. 

Conjecture 1. For model (2.1), if { }, 1np n ≥  is a log-convex and P  has a density π  on ( )0,∞  that is  
log-convex, then the barrier strategy at *b  is an optimal strategy for stochastic control problem (2.5). 

Conjecture 2. For model (2.1), if { }, 1np n ≥  is DFR and P  is DFR, then the barrier strategy at *b  is an  
optimal strategy for stochastic control problem (2.5).  
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