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Abstract 
In order to get the traveling wave solutions of the Zakharov-Kuznetsov-Benjamin-Bona-Mahony 
(ZK-BBM) equation, it is reduced to an ordinary differential equation (ODE) under the travelling 
wave transformation first. Then complete discrimination system for polynomial is applied to the 
ZK-BBM equation. The traveling wave solutions of the equation can be obtained. 
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1. Introduction 
The nonlinear partial differential equation (PDE) is widely used to describe physical phenomena in various 
fields of sciences, especially in fluid mechanics, solid state physics, plasma physics, plasma waves, biology and 
so on. During the past few decades, various methods have been developed by researchers to find the solutions 
for the NLEEs. 

In this article, we will use complete discrimination system for polynomial proposed by Liu [1]-[4] to study the 
traveling wave solutions of the ZK-BBM equation. The generalised form of the (2 + 1) dimensional ZK-BBM 
equation is given as:  
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( ) ( )2 0.t x xt yt xx
u u u u uα β γ+ − − + =                              (1) 

where ,α β  and γ  are arbitrary constants. 
Equation (1) arises as a description of gravity water waves in the long-wave regime [5] [6]. The solutions of 

Equation (1) have been studied in various aspects. For example, Sadaf Bibi [7] used the Sine-cosine method to  

obtain the travelling wave solutions of Equation (1). Rajesh Kumar Gupta [8] used the 
G
G
′ 

 
 

-expansion method  

to find some hyperbolic, trigonometric and rational solutions, and so on. It is worth mentioning that Wazwaz [9] 
[10] made a detailed study for compact and noncompact physical structures and calculated the exact solutions of 
compact and noncompact structures by the extended tanh method for the ZK-BBM equation.  

2. Classification 
Taking the traveling wave transformation ( )1u u ξ=  and 1 1 2k x k y tξ ω= + + , we can obtain the corresponding  
reduced ODE of Equation (1).  

( ) ( )2
1 1 1 1 22 0.k u k uu k k k uω α β ω γ ω′ ′ ′′′+ − − + =                        (2) 

Integrating Equation (2) with respect to 1ξ  once, we yield  

( ) ( )2 2
1 1 1 1 2 1.k u k u k k k u cω α β ω γ ω ′′+ − − + =                         (3) 

where 1c  is an integral constant.  
Equation (3) can be written as  

2
0 1 2 .u a a u a u′′ = + +                                    (4) 

where 1 1 1
0 1 22 2 2

1 1 2 1 1 2 1 1 2

, ,
c k ka a a

k k k k k k k k k
ω α

β ω γ ω β ω γ ω β ω γ ω
+

= − = = −
+ + +

.  

From Equation (4) we have  

( )2 3 2
2 1 0 0

2 2 .
3

u a u a u a u c′ = + + +                              (5) 

where 0c  is an integral constant.  
We use the complete discrimination system for the third order polynomial and have the following solving 

process.  
Let  

1 1 2 1
3 3 3 3

2 2 1 2 1 2 1 0 2 0 0
2 2 2 2, , , 2 , .
3 3 3 3

v a u a d a a d a a d cξ ξ
− −

       = = = = =       
       

             (6) 

Then Equation (5) becomes  

( )2 3 2
2 1 0 .v v d v d v d′ = + + +                               (7) 

where v  is a function of ξ . The integral form of Equation (7) is  

( )0 3 2
2 1 0

d .v

v d v d v d
ξ ξ± − =

+ + +
∫                            (8) 

Denote  

( ) 3 2
2 1 0 .F v v d v d v d= + + +                                 (9) 

( )
23 2321 32 2

0 1 2 1 1
2

27 4 , .
27 3 3

d dd dd d d D d
 

∆ = − + − − − = − 
 

                      (10) 



L. Yang 
 

 
1434 

According to the complete discrimination system, we give the corresponding single traveling wave solutions 
to Equation (1). 

Case 1. ( )10, 0. 0D F v∆ = < =  has a double real root and a simple real root. Then we have  

( ) ( ) ( )2
1 2 1 2, .F v v vλ λ λ λ= − − ≠                              (11) 

when 2>v λ , the corresponding solutions are  

( ) ( ) ( )
1 1
3 31 22

1 2 1 2 2 1 2 0 2 1 2
2 2 , ;tanh
3 2 3

u a a k x k y t
λ λ

λ λ ω ξ λ λ λ
−   −     = − + + − + >           

       (12) 

( ) ( ) ( )
1 1
3 31 22

2 2 1 2 2 1 2 0 2 1 2
2 2 , ;coth
3 2 3

u a a k x k y t
λ λ

λ λ ω ξ λ λ λ
−   −     = − + + − + >           

       (13) 

( ) ( ) ( )
1 1
3 31 22

3 2 1 2 2 1 2 0 1 1 2
2 2 , .sec
3 2 3

u a a k x k y t
λ λ

λ λ ω ξ λ λ λ
−   − +     = − + + + − + <           

        (14) 

Case 2. ( )10, 0. 0D F v∆ = = =  has a triple root. Then we have  

( ) ( )3 .F v v λ= −                                     (15) 

The corresponding solution is  

( )
2
3 2

4 2 1 2 0
24 .
3

u a k x k y tω ξ λ
−

− = + + − + 
 

                          (16) 

Case 3. ( )10, 0. 0D F v∆ > < =  has three different real roots. Then we have  

( ) ( )( )( )1 2 3 1 2 3, .F v v v vλ λ λ λ λ λ= − − − < <                           (17) 

when 1 2< <vλ λ , we take the transformation as follows  

( ) 2
1 2 1 sin .v λ λ λ ϕ= + −                                  (18) 

According to the Equation (8), we have  

( )
( )0 2 2

3 1

d 2 d .
1 sin

v
F v m

ϕξ ξ
λ λ ϕ

± − = =
− −

∫ ∫                         (19) 

where 2 2 1

3 1

m λ λ
λ λ

−
=

−
.  

On the basis of Equation (19) and the definition of the Jacobi elliptic sine function, we have  

( ) ( )3 12
1 2 1 1 0sn , .

2
v m

λ λ
λ λ λ ξ ξ

 −
= + − −  

 
                        (20) 

The corresponding solution is  

( ) ( )
1 1
3 33 12

5 2 1 2 1 2 1 2 0
2 2sn , .
3 2 3

u a a k x k y t m
λ λ

λ λ λ ω ξ
−   −     = + − + + −           

            (21) 

when 3>v λ  we take the transformation as follows  
2

2 3
2

sin .
cos

v
λ ϕ λ

ϕ
− +

=                                     (22) 
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The corresponding solutions is  

( )

( )

1
33 12

3 2 2 1 2 01
3

6 2 1
33 12

2 1 2 0

2sn ,
2 32 .

3 2cn ,
2 3

a k x k y t m

u a

a k x k y t m

λ λ
λ λ ω ξ

λ λ
ω ξ

−

  −    − + + −        =       −   + + −       

               (23) 

where 2 2 1

3 1

m λ λ
λ λ

−
=

−
. 

Case 4. ( )0. 0F v∆ < =  has only a real root. Then we have  

( ) ( )( )2 2, 4 0.F v v v pv q p qλ= − + + − <                        (24) 

when 1>v λ , we take the transformation as follows  

2 2 .tan
2

v p q ϕλ λ λ= + + +                              (25) 

According to the Equation (8), we have  

( )( ) ( )
0 1 2 22 2 4

d 1 d .
1 sin

v

mv v pv q p q

ϕξ ξ
ϕλ λ λ

− = =
−− + + + +

∫ ∫               (26) 

where 2

2

1 21
2

p

m
p q

λ

λ λ

 + 
= − 

+ +  
 

.  

On the basis of Equation (26) and the definition of the Jacobi elliptic cosine function, we have  

( ) ( )

2
2

1
2 4

1 0

2
.

1 cn ,

p q
v p q

p q m

λ λ
λ λ λ

λ λ ξ ξ

+ +
= + − + +

 
+ + + − 

 

               (27) 

The corresponding solutions is  

( ) ( )

1
23 2

7 2 1
1 32 4

2 1 2 0

22 .
3 21 cn ,

3

p q
u a p q

p q a k x k y t m

λ λ
λ λ λ

λ λ ω ξ

−

 
 
 

+ +   = + − + +         + + + + + −       

    (28) 

In Equations (12), (13), (14), (16), (21), (23) and (28), the integration constant 0ξ  has been rewritten, but we 
still use it. The solutions ( )1, ,7iu i =   are all possible exact traveling wave solutions to Equation (1). We can 
see it is easy to write the corresponding solutions to the ZK-BBM equation.  

3. Conclusion 
In this article, the traveling wave solutions to ZK-BBM equation were obtained by the complete discrimination 
system for polynomial and direct integral method. This method has the characteristics of simple steps and clear 
effectivity. In this way we can solve a lot of other equations. 
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