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Abstract 
 
This paper surveys the field of adaptation in stochastic systems as it has developed over the last four decades. 
The author’s research in this field is summarized and a novel solution for fitting an adaptive model in state 
space (instead of response space) is given. 
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1. Introduction 

The history of adaptive control and identification is full 
of ups and downs, breakthroughs and setbacks [1-3] and 
[4]. In Ljung’s opinion [1], the number of papers on 
identification-related problems published over the years 
must be close to 105. Combined with publications on 
adaptive control problems, this number is at least twice 
as large. This realm of research is clearly flourishing and 
attracting continuous attention. 

At the same time, one can state that essentially dif- 
ferent, landmark-size ideas or frameworks are not so many. 
The abundance of publications in this field signaled the 
need for some serious cleanup work in order to single out 
the truly independent concepts. According to Ljung, in 
system identification, the only two independent key con- 
cepts are the choice of a parametric model structure and 
the choice of identification criterion [5]. Indeed, these 
concepts are universal. 

However, in the system identification community, 
understanding thereof is usually reduced to the impressive 
Prediction Error Framework (PEF) [6], as it can be found 
in literature: “All existing parameter identification me- 
thods could then be seen as particular cases of this pre- 
diction error framework” [2]. 

Time has shown that the importance of the Ljungian 
concepts is greater. Thus each of the five generalized 
principles of stochastic system adaptation [7] worked out 
in correlation with Mehra’s ideas on adaptive filtering [8], 
can also be perceived from this point of view. Among 
these is the Performance Index-based Adaptive Model 

Principle of Adaptation. This name unites two of Ljung’s 
principal concepts, i. e. Model Structure and Proximity 
Criterion (PC), which indicates erroneousness of a model. 

It would be fortunate if someone managed to measure 
adequacy of a model in state space, considering that, as 
defined by Kalman [9], state space is a set of inner states 
of a system, which is rich enough to house all infor- 
mation about the system’s prehistory necessary and suf- 
ficient to predict the effects of past history of the system 
on its future. For a dynamic data source, which in reality 
exists as a “black box,” we have only its input and output, 
i. e. its state is beyond the reach of any practical methods. 
Impossibility to directly fit the adaptive model state to 
the Data Source state makes the block-diagram of Figure 
1 unrealistic. The question of how to overcome this 
barrier stimulates a search for novel approaches. 
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Figure 1. Unrealistic framework. Legend: X —experimental 
condition; OPI—Original Performance Index; PAA—Para- 
meter Adaptation Algorithm. 
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Not putting the barrier on the agenda, existing PEF 
methods are used to fit the adaptive model to a data source 
in the response space instead of state space (Figure 2). 

This position fits naturally into the presently accepted 
understanding of PE identification as an approximation 
[2], and can be expressed by the following maxima by G. 
E. P. Box: “All models are erroneous, but some of them 
can be useful.” This leads to the assumption that a model 
set does not contain a “true” system, and so the concept 
of parameter error is meaningless since there are no “true 
parameters.” 

Overcoming the aforementioned barrier was perceived 
as a challenge in 1957 by Prouza [10] and then Šefl [11] 
and Gorsky [12]. The first solution to the problem was 
given by Semushin in 1968—70 [13-15]. The key was to 
exploit the complete observability property of Data Source 
under consideration in such a way that a finite batch of 
DS responses ty  to t sy   would give access to the un- 
reachable DS state (the dashed arrow in Figure 3) 
against the background of independent noise. In that 
event Auxiliary Performance Index (API) a  equimodal  
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Figure 2. Minimum PE framework. Legend: 1sPEC— One- 
step Prediction Error Criterion. 
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Figure 3. The API framework Legend: API—Auxiliary Per- 
formance Index. 

to Original Performance Index o  could be formed to 
suite the principal requirement a o= const   as it 
was formulated in [7], and by doing so, to fit an adaptive 
model in state space. 

System identification and adaptive control are deeply 
intertwined areas. Further still, the latter is unthinkable 
without the former being the central part of the triune 
“Classifier--Identifier--Modifier” whose presence in a 
system makes it adaptive, see Figure 4 reproduced be- 
low from [7] where, keeping in mind adaptive nature of 
Identifier and the modern identification for control para- 
digm [2], the name Adaptor is used. 

After this brief introduction (Section 1), which ex- 
plains the essence of the author’s approach, the paper (1) 
describes the adaptive control system structure in its two 
forms, i.e. Physical Data Model and Standard Observable 
Data Model (Section 2); (2) characterizes the innovation 
set of DMs (Section 3) and its levels of uncertainty 
(Section 4); (3) defines the ancillary matrix transforma- 
tions, which are important for the approach (Section 5); 
(4) introduces a set of adaptive models and identifies five 
tasks at hand (Section 6). Then the paper solves four of 
the five tasks and gives an engineering example and 
simulation results. The author also offers a roadmap for 
further research to be reported in forthcoming papers. 

2. Parameterized Data Models ( )  

As assumed earlier [7], all data models    forming 
a set   are parameterized by an l-component vector θ. 
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Figure 4. Adaptive stochastic control system structure. 
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Each particular value of   (which does not depend on 
time) specifies a   . Within  , a model switching 
mechanism exists. It is viewed as deterministic, and yet it 
is unknown to the observer (like controlled by an in- 
dependent actor). Due to this mechanism,   can switch 
over the compact subset   of l  not frequently but 
rather abruptly with reference to the system dynamics; 
hence  

  = | .l               (1) 

We write the time argument of signals as a lower 
index and omit the subscript   for all the matrices 
describing a given physical data model (PhDM)  

  1

1

= ,
:

= ,
t t t t

t t t

x x u w t

y x v t
    

 



H

  
      (2) 

where   denotes nonnegative integers, 1  strictly 
positive integers (and   all integers). Every model 

   (2) is assumed to be acting between adjacent 
switches as long as it is sufficient for accepting as correct 
the basic theoretical statement (BTS) that all processes 
related to the    are wide-sense stationary. This sta- 
tement amounts to the following assumptions. The random 

0x  with  2

0 <x E  is orthogonal [16] to tw  and 

tv , the zero-mean mutually orthogonal wide-sense 
stationary orthogonal sequences with  T = 0t tw w E Q   

and  T = > 0t tv vE R  for all t ; t

t

w

v

 
 
 

 is orthogonal  

to jx  and ju  for all j t ; tu  is a given signal; it is 
an “external input” when considering the open-loop case 
or a control strategy function 

 1
1= , ,t t

tu u t y u 
X                 (3) 

when considering the closed-loop setup (as in Figure 4). 

Remark 1 In Figure 4, we use the following nomen- 
clatures: Signal Nomenclature: w —plant disturbance 
noise; v —sensor (observation) noise; x —(unknown) 
plant state (useful signal); x —suboptimally estimated 
plant state; u —(available) control signal; y —(availa- 
ble, measured) sensor output. Parameter Nomenclature: 
 —generic name of the uncertainty parameter; † —true 
value of   in Data Source   ;  —suboptimally 
estimated (preliminary designed) value of   on which 
current Control Strategy    is based; ̂ —current 
estimated value of  ; 


—final estimated value of   

resulting from the identification process in Adaptor 
 ̂ . Component Nomenclature:   —Plant; 
  —Sensor;  M —Model—based State Estimator 

(Kalman--like Filter);   —Deterministic Controller; 
  —Adaptor (Adaptive Parameter Identifier);  — 

System Mode Classifier (abrupt change detector). 
Stackable vectors of previous values 

1 1 1
1

1 2 0

= ( , , , )
:

= ( , , , )

t
t t

t
t t

y y y y

u u u u



 




X           (4) 

constitute the experimental condition X  (cf. Ljung [5]) 
on which both Adaptor and Classifier are based. 

By assumption, m
ty   is generated by the com- 

pletely observable PhDM (2), so it is possible to move 
from the physical state variables nx  in (2) to another 
x  through the following similarity transformation 

= x
x W . It is known [6] that matrices  

1

1

= , =

= , =


    


   

W W W

W H HW

   
 

       (5) 

uniquely determine a new state representation  

  1

1

= ,
:

= ,
t t t t

t t t

x x u w t

y x v t


 
     




  
 





H

  
    (6) 

of the standard observable data model (SODM) with  

1 2

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
=

0 0 0 0 0 0 1 0 0
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 (8) 

if some numbers jr  are chosen by the user so that  

0 1 1

1

0 = < < < < =

= , = 1,

m m

j j j

r r r r n

p r r j m






      (9) 

and the invertible n n  matrix W  is determined by 
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1 1 2 2
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Numbers  1 2, , , mp p p  are known as the partial 
observability indices, and so W  will be called the ob- 
servability matrix. Benefits of this transformation will be 
seen later (at the end of Section 5). 

Remark 2 Since the eigenvalues of    (2) 
remain unchanged in    (6), the transformation (5) 
does not alter the dynamics of Data Source; it also has no 
effect on its inputs and outputs and so can be made at 
will. 

3. Parameterized Innovations 

The above data model of a time-invariant data source 
will be referred to as the conventional model, no matter 
whether it is PhDM (2) or SODM (6)-(8). Another 
commonly used representation is the time-invariant (due 
to BTS) innovation model 

  1 1 1

1 1

=
:

=

tt t t t t t

t t t t t

x x u

y x





  

 

 


M

  G

H
    (11) 

with 1t , the initial 0 010 =x x u  , and  0 0=x E x , 
which is the well-known steady-state Kalman filter with 
the innovation process 1t t  , the optimal state predictor 

1t tx  , the gain   1T T=


K H H H R  , = G K , and 

  satisfying the algebraic Riccati equation (ARE) [17]  

  1T T T T= .
     

H H H R H Q           (12) 

Concurrently, another form 
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     (13) 

with the initial 00 0 =x x , which is equivalent to (11), can 
be used where t tx  is the optimal “filtered” estimator for 

tx  based on experimental condition X  (4). When   
ranges (or switches) over   as in (1), we obtain the set 
of Kalman filters  

  = .l   M M           (14) 

Theorem 1 (Steady-state Kalman filter uniqueness 
[18]). 

Assume that in wide-sense stationary circumstances 
the following conditions hold: 

1) R  is positive definite  0R ;  
2) Matrix pair  , H  is detectable;  

3) Matrix pair   1 2T, Q    is stabilizable.  
Then the following assertions are true: 
a) Every solution 1t tP  to the matrix discrete-time 

Riccati equation 




T T
1

T T
1 1 1

1

11

= ,

   =

        ,

t t t t

t t t t t t t t

t t

t

t



  





 



 





P P Q

P P P H HP H
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       (15) 

with the initial condition 0 0 0P  has the limit  

1 =lim t t
t




P P              (16) 

and this limit coincides with  

   | 1 | 1= lim
T

t t t t t t
t

E x x x x  


 Σ P  

which is the unique non-negative definite solution to 
ARE (12) and defines the covariance of one-step 
prediction error  

| 1 | 1t t t t tx x x              (17) 

in the Wiener-Kolmogorov filter (as t  ).  
b) The Kalman gain  

  1T T
| 1 | 1=t t t t t



  K P H HP H R      (18) 

in the Kalman filter (KF) 

1| |

| | 1 | 1

| 1 | 1
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=

=
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t t t t t
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K

H

           (19) 

has the limit  

  1T T= =lim
t




tK K H H H R      (20) 

such that the estimate transition matrix  

 = A I KH           (21) 

for  M  (13) is a stable limit.  
c) Weighting function WK

t kh   of the Wiener-Kolmo- 
gorov filter operating as the l.s. optimal one-step 
predictor  

1
WK WK

| 1
= =1

= =
t

t t t k k k t k
k k

x h y h y
 

  

   

coincides (asymptotically as t   and uniformly in 
k ) with the weighting function  KF 1= k

kh  ΦA K  of 
the Kalman filter-predictor (15)-(21) computing  

 KF 1
| 1

=1 =1

= = k
t t k t k t k

k k

x h y y
 


   A K  

Remark 3 Theorem 1 is well-known, however this 
formulation is close to that given and completely proved 
in Fomin [18]. The basic notions used here (detectability, 
stabilizability and others) are known from literature, for 
example Wohnam [19]. Derivation of Kalman filter equa- 
tions (15)-(21) can be found in Maybeck [20] or Anderson 
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& Moore [21] or in other known books. 
Varied criteria applicable for KF derivation are dis- 

cussed in Meditch [22] based on the original work by 
Sherman [23]. Among them is the mean-square criterion  

 o T
1| 1|

1

2t t t t t  E e e             (22) 

defined for a one-step predictor 1|ˆt tg   through its error 

1| 1 1|ˆ=t t t t te x g   , which has the form of 1|t tx   (17) in 
the Kalman filter. Thus in the basis forming the state- 
space,  M  (13) is the unique steady-state model mi- 
nimizing the Original Performance Index (OPI) o

t  (22) 
at any t , which is large enough for BTS to hold, so that 
writing t  or 1t   or any other finitely shifted time in 
(22) makes no difference. 

Remark 4 The set of SODM    (6)-(8) when 
used for Theorem 1 leads to the isomorphic set M  

  = l    M  of Kalman filters  M  in 
the form of Equations (11)-(13) (steady-state version) or 
(15)-(21) (temporal version) where matrices = H H  
and =    are (7) and (8). When there is no need to 
distinguish between  M  and  M , as well as 
between    and   , as in Figure 4, we omit the 
asterisk mark thus implying that symbols   and/or M  
may be taken to mean   and/or M , as it is the case 
in the following two Remarks. 

Remark 5 It might be well to point out that   in (1) 
and M  in (14) are two different and yet equivalent 
representations of one and the same Set of Data Sources. 
When   takes the true value †  , one can choose 
either the true Data Model  †  or the optimal in- 
novation model  †M  to be sought as a hidden object 
within the set. As we need Adaptor  ̂  for control 
(cf. Figure 4) able to serve the purpose of feedback filter 
optimization, our priority now is the seeking of  M  
instead of   . (However we do not rule out the seek- 
ing of    instead of  M  as another possibility 
(see Section 9) for further research.) This suggests that 
we need to have developed the unbiased  †M  iden- 
tification methods. Had OPI (22) been accessible, mini- 
mizing the OPI by a numerical optimization method 
would produce the desired result. However, this is not 
the case, and this creates the problem as stated in [7]. 

Remark 6 One more point needs to be made: Packing 
the   with elements in models (11) and (13) will differ 
from that in model (2) because some   elements of 
model    (2) appear in K  (or G) of  M  not 
directly but through the solution   of equation (12). 

Remark 6 leads to the four levels of uncertainty to be 
included into the subsequent consideration. 

4. Uncertainty Parameterization 

Let symbol   read: “enters as a parameter into the ele- 

ments of”. By reference to this binary relation, the levels 
of uncertainty inherent in    and as a consequence 
in  M , are as follows: 

Level 1 The  -dependent in    are matrices  , 
Q , and R , only. In  M , it can be treated as 

   K .  
Level 2 The  -dependent in    are matrices  , 

 , Q , and R , only. For  M , it can be visualized 
as  ,  K . 

Level 3 The  -dependent in    are matrices  , 
 ,  , Q , and R , only. In  M , it can be 
conceived as  , ,  K  . 

Level 4 The  -dependent in    are matrices 
H ,  ,  ,  , Q , and R , only. For  M , it can 
be thought of as  , , ,  H K  . 

Remark 7 Level 4 takes place for PhDM and not for 
SODM because matrix H in the latter case is equal to 

H  (7). Following inclusions are valid: 1 2 3L L L   
4.L  

5. Ancillary Matrix Transformations 

Several system related transformations will be needed in 
the sequel. Let the observability index s  of Data Sources 
be defined as the greatest of partial indices (9): 

1 1= max( , , ) = .m ms p p p p n       (23) 

Introduce the following matrices  

     
TTTT 1, = s 

  
W H H H H      (24) 

 0
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0 0 0

0 0
, , =

0

0s s 

 
 
 
 
 
 




  


H
F H

H H


 

   

  (25) 
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1 2

0 0

0
, , =

0
s s 
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H H
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H H H


 

 

    

 (26) 

 0

2 3

0 0

0
, , =

0
s s 

 
 
 
 
 
 




  


I

HG I
S H G

H G H G I



 

  (27) 

 1

1 2

0 0

0
, , =

0
s s 

 
 
 
 
 
 




  


I

H D I
S H D

H D H D I




 

  (28) 

with n m  matrix D . Consider an arbitrary r q  
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matrix A with =r sm  as composed of s  submatrices 

iA , each iA  of m  rows and some 1q  columns: 

1
1

= ; = ; = 1,
i

i
m

s i

a

i s

a

  
  
  
     

 
A

A A

A

       (29) 

where j
ia  is the j -th row of the i -th submatrix iA .  

Definition 1 Rearrangement of matrix A  (29) to the 
following s mq  matrix TA  is called the T -transform 
of A , i. e. (Figure 5)  

1
1 1

1

= .

m

T
m

s s

a a

a a

 
 
 
 
 


  


A           (30) 

Definition 2 S -transform of matrix A  (29) is the 
n q  matrix S (A) whose n  rows are obtained by tak- 
ing the elements j

ia  from TA  (30) and placing them 
into S (A) as rows in the following order (cf. Figure 5):  

 1 1 1 2 2 2
1 2 1 2 1 21 2
, , , , , , , , , , , , .m m m

p p pm
a a a a a a a a a     

Definition 3 F -, B -, P -, and N -transforms of ma- 
trices  ,  , B , and (correspondingly) D  are the 
following matrices  
 

A 

A 

A1 

A2 

A3 

A4 

AT 
T 

1

1a  

2

1a  

3

1a  

1

2a  

2

2a  

3

2a  

1

3a  

2

3a  

3

3a  

1

4a  

2

4a  

3

4a  

1

1a

1

2a

1

3a

2

1a

2

2a

3

1a

3

2a

3

3a

3

4a

1

1a 2

1a  3

1a

3

2a2

2a1

2a

1

3a

1

4a 2

4a  

2

3a 3

3a

3

4a

S (A)

Example of

S (A) for 

n = 9 

m = 3 

p1 =3 

p2 = 2 

p3 = 4 = s

 

Figure 5. An illustration for Definitions 1 and 2. 
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F H

F H

B S H B

D S H D

  

  





F S

B S

P S

N S

       (31) 

where  0 , ,  F ,  1 , ,  F ,  0 , ,  S , and  1 , ,  S  are 
matrices whose structure is defined by (25) to (28); H  
and   are matrices whose structure is defined by (7) 
and (8);   is an arbitrary n q  matrix; B  and D  
are arbitrary n m  matrices, so that matrices (31) are of 
dimensions  n sq ,  n sq ,  n sm ,  n sm  
correspondingly. 

It is clear from Definition 2 that   = ,W W H S  
where W  and  ,W H   are given by relations (10) 
and (24). Also, it is straightforward to check the identity  

  * *, W H IS           (32) 

and derive the following rule for computing matrices (31). 
Algorithm 1 Cycle through the following nested items: 
for = 1,2, ,k m  do 

for = 1, 2, , kj p  do 
begin 

 

   

   

   

1 1

1 1

1

1 1

=

,                             = 1,
=

,       1,

,                    = 1,
=

,         1,

,                            = 1,
=

,        1,

k

i
i i

i

i
i i

k

i
i i

i p p j

j

j

j

j

j

j



 



 

  


 

 

 











O

O

I
B

B B


 




 

F
F

B
B

P
P

   1

,                            = 1,
=

,         1,
k

i
i i

j

j


  

I
D

D D
N

N

 

end 
end  

end  
where 

O   is a row of zeros of an appropriate length, 

kI   is the k -th row of the identity matrix, 
 i
   is the i -th row of any matrix ( ) , 
   denotes the concatenation of two rows into one 

row whose length is limited on the right to the required 
number of elements, viz. sq  for  i F  and  i B , 
and sm  for  i BP  and  i DN . 

Thus matrices (31) do not depend on the state tran- 
sition matrix   when   is represented in the block- 
companion form (8) and observation matrix H  in the 
form of (7), i. e. in the context of SODM. This is the 
heart of our approach to constructing the auxiliary per- 
formance indices (APIs, a

t ) as was announced in [7] 
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and is considered below. 
Remark 8 The above matrix transformations as stated 

here were first introduced and used in [24]. 

6. The Set   of Adaptive Models  ̂M  

Let us define the set of adaptive models  

  ˆ ˆ= l    M         (33) 

By this notation, we emphasize the fact that we construct 
adaptive models in the same class as M  belongs to 
with the only difference that the unknown parameter   
in  M  is replaced by ̂  to obtain  ̂M . In so 
doing, each particular value of ̂ , an estimate of  , 
leads to a fixed model  ̂M . In accordance with The 
Active Principle of Adaptation (APA) [7], only when ̂  
ranges over   in search of †  for the goal  †M  
or  †M  as governed by a smart, unsupervised 
helmsman equipped by a vision of the goal in state space 
(cf. Figure 3) and able to pursue it, we obtain an ada- 
ptive model  ̂M  of active type within the set   
(33). In this case, ̂  will act as a self-tuned model 
parameter and so should be labeled by  , the time ins- 
tant of model’s inner clock, in order to get thereby the 
emphasized notations ̂  and  ̂M  in describing 
parameter adaptation algorithms (PAAs) to be developed. 
From this point on  ̂M  becomes an adaptive 
estimator. 

Remark 9 Note in passing that pace of   may differ 
from that of t : e.g. = kt  for > 0k . In general, there 
exist three time scales in adaptive systems, as stated by 
Anderson [3]: time scale for underlying plant dynamics, 
time scale for identifying plant, and time scale of plant 
parameters variation. We shall need discriminate be- 
tween   and t  later when developing a PAA. 

Remark 10 If we work in the context of SODM, the set  

  ˆ ˆ= l     M         (34) 

instead of (33) should be used. 
At this junction, we identify the following tasks as 

pending: 
1) Express  ̂M  or  ̂M  in explicit form. 
2) Build up APIs that could offer vision of the goal. 
3) Examine APIs’ capacity to visualize the goal. 
4) Put forward feasible schemata for APIs compu- 

tation. 
5) Develop a PAA that could help pursueing the goal. 
Consider here the first four points consecutively. 

6.1. Parameterized Adaptive Models 

Reasoning from (11), (13), we set the adaptive model 

  1| | 1 | 1

| 1 | 1

ˆ ˆ=ˆ :
ˆ=

t t t t t t t

t t t t t

g g u

y g





  

 

 


M
A F B

C
   (35) 

or equivalently (due to =B AD ) the model  

 
1| |

| | 1 | 1

| 1 | 1

ˆ ˆ=

ˆ ˆ: =

ˆ=

t t t t t

t t t t t t

t t t t t

g g u

g g

y g

 




 

 





M

A F

D

C

       (36) 

as a member of   (33). Here  ˆ , , , ,  A B C D F  is 
the self-tuned parameter intended to estimate (in one-to- 
one correspondence) parameter  , , , ,  G H K  . In 
parallel, reasoning from  M  (cf. Remark 4), we 
build the adaptive model 

  1| | 1 | 1

| 1 | 1

ˆ ˆ=ˆ :
ˆ=

t t t t t t t

t t t t t

g g u

y g





  

  

 


M
A F B

H
  (37) 

or equivalently (due to =B AD ) the model  

 
1| |

| | 1 | 1

| 1 | 1

ˆ ˆ=
ˆ ˆ ˆ: =

ˆ=

t t t t t

t t t t t t

t t t t t

g g u

g g

y g

 





 

  





M

A F

D

H

     (38) 

with H  and = A A  taken in the form of (7) and (8). 
Adaptor  ̂  using (35)-(36) (or alternatively, 
 ̂  using (37)-(38)) is supposed to contain a PAA 

to offer the prospect of convergence. As viewed in Fig- 
ures 1 to 3, convergence can take place in three spaces: 
 in response space; this is model response conver-

gence, 
 in state space; this is model state convergence, and  
 in parameter space; this is model parameter con-

vergence. 
For convergence of the last-named type, we anticipate 

almost surely (a.s.) convergence, as it is the case for 
MPE identification methods [16]. It actuates either or 
both of the two other types of convergence. The type of 
convergence in state space, as well as in response space, 
is induced by the type of Proximity Criterion, PC (cf. 
Figures 1-3). As seen from (22), we are oriented to the 
PC, which is quadratic in error; this being so, it would 
appear reasonable that these covergences would be in 
mean square (m.s.). Thus we anticipate the following 
properties of our estimators:  

   
   

a.s.
†

m.s.
†

m.s.

1| 1|m.s.
† m.s.

| |

ˆ
ˆ

ˆ:
ˆ

ˆ

t t t t

t t t t
t

g x

g x







 
 

 
 

 











M M

M M

    (39) 

With the understanding that errors for PC  

1| 1 1| | |

1| 1| 1| | | |

ˆ ˆ,

ˆ ˆ,
t t t t t t t t t t

t t t t t t t t t t t t

e x g e x g

r x g r x g
  

  

 
 

 
 

   (40) 
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are fundamentally unmeasurable, we search for a 
function  

 |
1 1|

ˆ ˆ( ) = t s t s t n
t t t tf y y   

         (41) 

of the difference in two terms: outputs 1
t s
ty 
  generated 

by Data Source described in any appropriate form (2), 
(6), (11), or (13), and their estimates |

1|ˆ t s t
t ty 
  generated by 

the adaptive model  ̂M  (or  ̂M ). For  ˆt   in 

(41), we will also use notations 1|t t   or |t t , thus bring- 
ing them into correlation with 1|t te   or |t te  (corre- 
spondingly, with 1|t tr   or |t tr ) from (40). Then  

      T
a a 1ˆ ˆ ˆ=

2t t t tE          (42) 

will be taken as the PC and determined with the key aim: 

True (Unbiased) System Identifiability 

 

Here, the equivalence symbol   needs clarification. 
Its sense correlates with the above concept of conver- 
gence (39). Necessary refinements will be done (in 
Theorem 2). 

6.2. API Generalized Residual 

Since (41) requires many-step-predicted value |
1|ˆ t s t

t ty 
  as 

a stackable vector  
T| T T T

1| 1| 2| |ˆ ˆ ˆ ˆ= | | |t s t
t t t t t t t s ty y y y
              (43) 

we supplement our model (35), (36) with the k -step 
ahead predictors  

| 1| 1

| |

ˆ ˆ=
= 1,

ˆ ˆ=
t k t t k t t k

t k t t k t

g g u
k s

y g
    

 

A F

C
      (44) 

and call the residual in (41) by Generalized Residual  

| |
1| 1 1|ˆGR : =t s t t s t s t

t t t t ty y   
             (45) 

Recursively using (2) with notations (23)-(28) yields  

   
 

   
 

1 1 0 1

0 1 1

1
1 1

1
1 1

= , , ,

, ,

= , , ,

, ,

t s t s
t t t

t s t s
t t

t s t s
t t t

t s t s
t t

y x u

w v

y x u

w v

 
  

 
 

  


  



 


 

W H F H

F H

W H F H

F H

Φ Φ Ψ

Ψ

 

  
 

   (46) 

From (11)--(13) by the same technique, we obtain  

   
 

   
 

1 1| 0 1
| 1

0 1|

1
1 | 1

| 1
0 1|

= , , ,

, ,

= , , ,

, ,

t s t s
t t t t

t s t s
t t

t s t s
t t t t

t s t s
t t

y x u

y x u





 
  

  


  


  








W H F H

S H G

W H F H

S H G

  


   


   (47) 

Applying the same technique to (35), (36) together 
with (44) yields  

   
   

|
1| 1| 0 1

| 1
1| | 1

ˆ ˆ= , , ,

ˆ ˆ= , , ,

t s t t s
t t t t t
t s t t s
t t t t t

y g u

y g u

 
  
  





W C A F C A F

W C A A F C A F
  (48) 

and 

 | | 1
1 1| 0 1|ˆ= , ,t s t s t t s t s

t t t t ty y     
   S C A B       (49) 

Remark 11 The following diagram (Figure 6) shows 
that so far we have obtained formulae (46) to (49) only 
for the PhDM. We now turn to the case of SODM (by 
application of (5)). 

In this case, substituting H  from (7) for H  and  
C  into (46)-(48) as well as taking there =    and  

= A A  in the form of (8) and using transformations 
(31), we obtain: 

a) for the conventional form —  

   
   

   
   

1 1 1

1 1

1
1

1
1

=

=

t s t s
t t t

t s t s
t t

t s t s
t t t

t s t s
t t

y x u

w v

y x u

w v

 
  

 
 

  


  




 



 

Ψ

Ψ







S F

F S

S B

B S

      (50) 

b) for the innovation form —  
 

PhDM SODM 

(6)-(8) (2) 

(46) (50) 

(11)-(13) (35)-(36) (11)-(13) (35)-(36)

(51) 

(52) 

(53) (49) 

(48) 

(47) 

C = Conventional form I = Innovation form

I

M

C



 M

 

 ̂M  * M   * ̂M

(5) 

 *   

 

Figure 6. Taxonomy of models. The arrows indicate the 
consequtive order in which the numbered formulae are 
obtained. 
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1 1| 1

| 1
1|

1
1 |

| 1
1|

=

=

t s t s
t t t t

t s t s
t t

t s t s
t t t t

t s t s
t t

y x u

y x u





 
  

  


  


  










G

G



 

S F

P

S B

P

       (51) 

c) for the predicted values —  

   

   

|
1| 1| 1

| 1
1| |

ˆ ˆ=

ˆ ˆ=

t s t t s
t t t t t

t s t t s
t t t t t

y g u

y g u

 
  

  






S F

S B

F

A F
       (52) 

and using S -transform in (49) yields  

     | | 1
1 1| 1|ˆ=t s t s t t s t s

t t t t ty y     
   BS S P     (53) 

Now that we have written formulae (46) to (53), many 
of them arranged in pairs, we find all possible representa- 
tions for the GR by substituting these equations into (45): 

1) for the PhDM with the predicted output 1|ˆt tg   —  

the 1st of (46) minus  the 1st of (48) gives  (54)  

   
   
 

|
1| 1 1|

0 0 1

0 1 1

ˆ= , ,

, , , ,

, ,

t s t
t t t t t

t s
t

t s t s
t t

x g

u

w v

 
  




 
 

  
   
   

W H W C A

F H F C A F

F H



 

 

   (54) 

the 1st of (47) minus  the 1st of (48) gives  (55)  

   
   

 

|
1| 1| 1|

0 0 1

| 1
0 1|

ˆ= , ,

, , , ,

, ,

t s t
t t t t t t

t s
t

t s t s
t t

x g

u






  




  


  
   


W H W C A

F H F C A F

S H



 

 

 (55) 

2) for the PhDM with the filtered output |ˆt tg  —  
the 2nd of (46) minus  the 2nd of (48) gives  (56) 

   
   
 

|
1| |

1
1 1

1
1 1

ˆ= , ,

, , , ,

, ,

t s t
t t t t t

t s
t

t s t s
t t

x g

u

w v

 


 

  


  
   
   

W H W C A A

F H F C A F

F H

 

 

 

  (56) 

the 2nd of (47) minus  the 2nd of (48) gives  (57)  

   
   
 

|
1| |

1
1 1

| 1
0 1|

ˆ= , ,

, , , ,

, ,

t s t
t t t t t

t s
t

t s t s
t t

x g

u








 

  


  
   


W H W C A A

F H F C A F

S H G

 

 



  (57) 

and from (49) (taking into account (27)-(28) and relation 
=B AD ), we have  

 
 

| | 1
1| 0 1|

| 1
1 1|

= , ,

= , ,

t s t t s t s
t t t t

t s t s
t t

 


   
 

  


S C A B

S C A D
      (58) 

3) for the SODM with the predicted output 1|ˆt tg   —  
the 1st of (50) minus  the 1st of (52) gives  (59)  

   
   
   

|
1| 1 1|

1

1 1

=t s t
t t t t t

t s
t

t s t s
t t

x g

u

w v

 
  




 
 



   
   

F



S

F F

F S

    (59) 

the 1st of (51) minus  the 1st of (52) gives  (60)  

   
   

 

|
1| 1| 1|

1

| 1
1|

ˆ=t s t
t t t t t t

t s
t

t s t s
t t

x g

u






  




  




   


Ψ F

G

S

F F

P

     (60) 

4) for the SODM with the filtered output |ˆ t tg  —  
the 2nd of (50) minus  the 2nd of (52) gives  (61)  

   
   
   

|
1| |

1

1
1

ˆ=t s t
t t t t t

t s
t

t s t s
t t

x g

u

w v

 


 

  




   
   

A

F







S

B B

B S

    (61) 

the 2nd of (51) minus  the 2nd of (52) gives  (62)  

   
   

 

|
1| | |

1

| 1
1|

ˆ=t s t
t t t t t t

t s
t

t s t s
t t

x g

u








 

  




   


A

F

G





S

B B

P

    (62) 

and from (58) (taking into account (31)), we have 

     | | 1 | 1
1| 1| 1|= =t s t t s t s t s t s

t t t t t t        
  B DS P N   (63) 

Generalized Residual, as introduced in (45), is impor- 
tant in allowing the user to extract all possible amount of 
information from experimental condition X  (4) con- 
cerning the unmeasurable errors (40). The foregoing equa- 
tions (54) to (63) reveal the features of GR from the 
practical standpoint as a possible tool for system identifi- 
cation under different levels of uncertainty and with dif- 
ferent data models used: PhDM or SODM. 

6.3. API Identifiability of  †M  

Let the auxiliary process (41) for the API (42) be built as  

   
 

1| 1 1| 1

| 1
1|

ˆ=

=

t s t s
t t t t t t

t s t s
t t

y g u



 
   

  


  F

B

S F

P
     (64) 

(Figures 7 and 8) or, equivalently, as  

   
 

1
| 1 |

| 1
1|

ˆ=

=

t s t s
t t t t t t

t s t s
t t

y g u



  


  


 A F

D

S  B

N
    (65) 

(Figures 9 and 10). 
Theorem 2 Let  ˆt   (41) be a vector-valued n - 

component function of (45). If  ˆt   is defined by (64) 
or (equivalently) (65) in order to form the API (42), then 
minimum in ̂  of the API fixed out at any instant t  is  
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t sy   *H  

tytu  

  

  

  

F    A  
D  

*
K  

min

, ,A D F
 

a
t  

 T   T  

1t t 
 

t su   
t sy 

*H  

 

Figure 7. Adaptor based on 1|t t  , the first equality in (64). 
  denotes the unitary delay operator. 
 

1t t
 

  

    

F    

A  
B  

*
G
 

min

, ,A D F
 

a

t  

 P  1t t
   

t su   
t sy

*H

 
1t s t s

   
 

 

Figure 8. Adaptor based on 1|t t  , the second equality in (64). 

 

1t t
   



  

F    

A
B  

*
G  

min

, ,A B F
 

a

t  

 B  
t t
  

1t su    t sy 

*H

  

  

 S  

tu  ty1
ˆ

t t
g   

 

Figure 9. Adaptor based on |t t , the first equality in (65). 
 

1t s t s
   

    

F   A  D  *  
min

, ,A D F
 

a

t  

 N  t t
  

t su   
*H    1

ˆ
t s t s

g     

K

t sy 

1t t
   

 

Figure 10. Adaptor based on |t t , the second equality in 
(65). 

the necessary and sufficient condition for adaptive model 
 ̂M  to be consistent estimator of  †M  in mean  

square,    
m.s.

†ˆ:t   
   M M , that is 

True (Unbiased) m.s. System Identifiability 

   2a
1| 1|

ˆ

ˆ ˆ = 0min t t t t tx g


  ⇔ E  

in the following three setups: 
Setup 1 (Random Control Input)   u t  is a preas- 

signed zero-mean orthogonal wide-sence stationary pro- 
cess orthogonal to     ,w t v t  but in contrast to { ( )}w t  
and   v t , known and serving as a testing signal;  

Setup 2 (Pure Filtering)  : = 0t u t  , and  
Setup 3 (Close-loop Control) with known =F  . 
Proof: See the Appendix. 
Corollary 1 Under the assumptions of Theorem 2, mi- 

nimum in ̂  of the API fixed out at any t   is the 
necessary and sufficient condition for adaptive model 

 ̂M  to be consistent estimator of  †M  in mean 

square,    
m.s.

†ˆ:t   
   M M , up to the equality 

   1| 1 1| 1ˆ=  t s t s
t t t t t tx u g u 
    F F F     (66) 

or, what is equivalent, equality  

   1 1
| |ˆ=  t s t s

t t t t t tx u g u    B BA F     (67) 

Corollary 2 Under the assumptions of Theorem 2, if 
upper s  rows of  and F  are zero, then in Corollary 
1 equalities (66)-(67) are replaced by equalities 

       
1| 1| | |ˆ ˆ: =  ; =  j j i i

t t t t t t t tt x g x g    A      (68) 

where  = 1, 1j s   and = 1,i s  are numbers of vector 
components. If additionally 0tu   or if { }tu  is ortho- 
gonal to { }tw  and { }tv  for models (11), (13), (35) and 
(36), then equalities (68) hold for all vector components, 
and the following equalities  

= , = , = , =A B G D K F       (69) 

are added to (68) thus assuring that    
m.s.

†ˆ   M M . 

Proof of (68) and = F  leans upon Algorithm 1 for 
computing matrix F  (see Section 5). After that, equali- 
ties =A  , =B G  and =D K  follow from unique- 
ness of Kalman filter equations. 

Corollary 3 If  ,  , Q , and R  are unknown and 
H  (7) and   known, thereby allowing for situation 
when  ˆ ,  A,B D , then in Corollary 1 equalities (66)- 
(67) are replaced by equalities 

1| 1| | |ˆ ˆ: = , =

= , = , =
t t t t t t t tt x g x g   

A B G D K
    (70) 

thus assuring that    
m.s.

†̂  M M . 
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6.4. API Identifiability of  †M  

When transformation of PhDM,  M  to SODM, 
 M  is troublesome or objectionable, we have to 

work with the given PhDM. In this case, we take, as 
 ˆt   for (42), either of the two processes: 

| 1 |
1| 1 1| | 1 1 1|= ; = ,t s t t s t

t t t t t t t t       
  W W      (71) 

where relation (58) can be used. In (71), we denote: 1  
to be an ( n n )-matrix; 1H  an ( )m n -matrix, and 

 1 1 1= ,W W H   with  , W  defined by (24). We 
assign matrices 1H , 1  rather arbitrarily choosing 
them as substitutes for unknown matrices H  and   
from the conditions: 1 0  and 1 =r nank W . By the 
latter condition, the pseudo-inverse matrix 1

W  is found 
as   1T T

1 1 1


W W W , and the following ( )n n -matrices  

   1 1

1 1
0 1 0

ˆ, ; ,

ˆ ˆ;

 

 

T W W H T W W C A

T T T TA



  

 

 
   (72) 

are non-singular if the addional conditions 

 
 

0; rank , =  

0; rank , =

n

n




W H

A W C A

 
       (73) 

hold. 
The last-added term in (55), as well as in (57), does 

not depend on the model parameter  ˆ ,  A,B,C, D F  
and is formed by the innovation process 1|t t  , which is 
an orthogonal process. In addition, the set M  of models 
(35), or equivalently (36) contains the optimal model (11), 
(13). On this grounds, we come to the following result. 

Theorem 3 Let  ˆt   (41) be a vector-valued n - 
component function of (45). If  ˆ  t   is taken from (71) 
in order to form the API (42), then minimum in 

 ˆ ,  A,B,C, D F  of the API fixed out at any instant t  
is the necessary and sufficient condition for adaptive 
model  ̂M  to be consistent estimator of  †M  in 

mean square,    
m.s.

†ˆ:t     M M  up to the 

equations  

   
1| 1|

1 0 0 1

ˆ ˆ

= , , , ,
t t t t

t s
t

x g

u
 

 



  

T

W F C A F F H  
  (74) 

in case of the first process of (71), and  

   
0 | 0 |

1 1
1 1 1 1

ˆ ˆ 

= , , , ,
t t t t

t s
t

x g

u   


  

T T

W F C A F F H  
  (75) 

in case of the second process of (71) taken to form the 
API. 

Proof: Given in [25]. 
Corollary 4 On the assumption that  , Q  and R  

are unknown, but  ,   and H  known, i. e. allowing 
for situation when  ˆ ,  B D  and 1 =H H , 1 =   

in (71), equalities (74) and (75) in Theorem 3 are replaced 
by equalities 

1| 1| | |ˆ ˆ: = ; =

= , =
t t t t t t t tt x g x g   

B G D K
      (76) 

This follows from the right sides of (74)-(75) being 
zero and from 0 0

ˆ ˆ= = = =T T T T I  under the assumption 
of this corollary. 

Remark 12 The similar result however relating to the 
second process of (71) only and in the following form of 
Learning Criterion (LC)  

  1 T
1 | 1 | 1 | 1

:

ˆ = 0t s
t t t t t t t

t

y g  



  
   

 

   


E W W D 

 

with  = ,W W H  , and matrix D  being the only 
adjustable parameter of filter (36) in the event that 

=A  , C H , and 0tu  , was also obtained [26] and 
restated in a different way [27] by Hampton where the 
problem of minimizing LC in the form of  

  2
1

1 | 1 | 1ˆt s
t t t t ty g   
    W W D  

was formulated. The convergence properties of Hamp- 
ton’s solution were studied by Perriot-Mathonna [28]. 

Corollary 5 On the assumption that  ,  , Q  and 
R  are unknown and 0tu  , i. e. allowing for situation 
when  ̂  A,B,C, D , equalities (74) and (75) in 
Theorem 3 are replaced by equalities 

1| 1| | |
1 1

ˆ ˆ: = ; =

= ; = ; = ; =
t t t t t t t tt g x g x  

 

 
G

 S S

A S S B S C HS D SK
   (77) 

where S  is an arbitrary non-singular ( )n n -matrix. 
The proof is obtained by setting the right sides of 

(74)-(75) to zero if definitions (72) are accounted for. In 
so doing, we consider 1ˆ= S T T  (or 1

0̂= S T T ) an 
unknown matrix of similarity transformation. A pure 
algebraic proof of the result is also available due to 
[25,29]. Analyzing conditions of Corollary 5 in more 
detail, state the following results.  

Corollary 6 On the assumption that  ,  , Q  and 
R are unknown and H known and 0tu  , i. e. allow- 
ing for situation when  ˆ ,  A,B D  and C H , 
equalities (74)-(75) in Theorem 3 are replaced by equa- 
lities 

1| 1| | |
1

ˆ ˆ: = ; =

= ; = ; =
t t t t t t t tt g x g x  



  S S

A S S B SG D SK
    (78) 

where S  is a non-singular ( )n n -matrix subject to 
relation =H HS . 

Corollary 7 On the assumption that  , Q , H  and 
R  are unknown and   known and 0tu  , i. e. allow- 
ing for situation when  ̂  B,C,D  and =A  , equa- 
lities (74)-(75) in Theorem 3 are replaced by equalities 
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1| 1| | |
1

ˆ ˆ: = ; =

= ; = ; =
t t t t t t t tt g x g x  



  S S

B SG C HS D SK
  (79) 

where S  is a non-singular ( )n n -matrix subject to 
relation =S S  . 

Corollary 8 On the assumption that  , Q , and R  
are unknown and   H  known and 0tu  , i. e. allow- 
ing for situation when  ˆ ,  B D , =A   and C H , 
equalities (74)-(75) in Theorem 3 are replaced by equa- 
lities 

1| 1| | |ˆ ˆ: = ; =

= , =
t t t t t t t tt g x g x   

B G D K
      (80) 

This is a special case of Corollary 4 at 0tu  . 
Corollary 9 If under the assumptions of Corollary 6 

=r nank H , then =S I  (cf. theorems of [30]). 
Corollary 10 If under the assumptions of Corollary 6 

matrix H  is given by (7) and A  is sought in the form 
of (8), then = S W  when W  is matrix (10). If in ad- 
dition   has the form of (8), then =S I . 

This establishes the association of this case with the 
identifiability of matrices  , G  and K  for SODM 
— cf. Corollary 3. 

Corollary 11 For the adaptive model (35)-(36), which 
is optimal in structure, ( )n n -matrix H  cannot be 
identified with the APIs under consideration, i. e. it must 
be known. As this takes place, the whole amount of 
identifiable entries of matrix   is ( )m n . 

This follows from Corollary 7 where we have the Fro- 
benius Problem of finding matrices S  commutative 
with the given matrix  . It is known that the total 
number of linear independent solutions to the problem is 
not less than n . The second part of Corollary 11 is ob- 
tained from similarity (isomorphism) of any system (2) 
to its standard observable form (6)-(8). 

6.5. Main Conceptual Novelty 

The goal of an identification method is to find a model, 
whose “behavior” best approximates that of the system 
under consideration. However, what meaning may be at- 
tributed to the term “behavior”? In the context of APA, 
the inner state of a dynamical system is emphasized, 
whereas classical MPE methods imply the output behavior. 
Theorems 2-3 and corollaries solve the task by an in- 
direct minimization of either the errors (40) in prediction 
or mean square estimation of the inner state, whereas 
classical MPE methods do so by a direct minimization of 
a “prediction error criterion,” which expresses the one- 
step “prediction performance” of the model on the given 
input-output experimental condition (4). The difference 
is illustrated graphically in Figures 2 and 3. At the same 
time, both approaches share a common trait of having a 

proximity criterion to be numerically minimized. Sub- 
space-based identification methods [31] also put em- 
phasis on state of a dynamical system, but by doing the 
following: combining the past input-output data and fu- 
ture inputs linearly to predict future outputs; minimizing 
the error of prediction measured in the Frobenius norm; 
obtaining the KF state sequence by using the robust 
Singular Value Decomposition; and finally, estimating 
system matrices with Least Squares techniques. 

Theorem 2 and its corollaries establish the point that 
generally, the API approach is rather useful as it helps us 
identify unknown parameters of optimal discrete time 
filters used either independently or as a part of a control 
strategy. It also indicates the levels of uncertainty (see 
Section 4), within which the approach still remains 
practicable. General characteristic values of these levels 
are defined by three setups stated in the theorem (and 
realistically reproduced in Proof). Corollary 1 is an ac- 
curate generalization of Theorem 2 for the case where 
there is no point in specifying Setups 1, 2 or 3. A few 
details of the levels are stated by Corollaries 2 and 3. 
Feasible schemata for APIs computation visually support 
these identification results associated with the standard 
observable data model, SODM (Figures 7-10), and the 
physical data model, PhDM (see below Figures 11-14). 
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Figure 11. Adaptor based on process 1|t t   from (71) and 
relation (48) under assumptions of Corollary 4. Here 
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Figure 12. Adaptor based on process |t t  from (71) and rela- 
tion (58) under assumptions of Corollary 4. Here  ˆ  D . 
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Figure 13. Adaptor based on process 1|t t   from (71) and rela- 
tion (58) under assumptions of Corollary 4. Here  ̂ B . 
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Figure 14. Identification of   and K  as parameters of 

optimal steady-state filter. Here  ˆ , A D  and 0tu  . 

6.6. API Adaptor Forms 

We have stated the uniqueness of identification under 
conditions of corollaries 2 to 4 and 8 to 10. This is 
expressed by equalities (69), (70), (76), and (80). Iden- 
tification is accomplished non-uniquely—up to arbitrary 
similarity transformation if conditions for corollaries 5 to 
7 hold. This situation is expressed by equalities (77)-(79). 
Uniquely accomplished identification is possible in some 
particular cases, as stated in corollary 6 and shown in 
Figure 14. In this figure, PhDM is used where 1W  

 1 1= ,W H  . Matrices   and K  are identifiable when 
H  is known and if equations =HS H  and =S S   
imply =S I  where   is a matrix differing from   
only in that unknown parameters are denoted differently  

(cf. Corollary 8). On this condition, 
. .

1| 1|ˆ
m s

t t t tg x   and 
. .

| |ˆ
m s

t t t tg x . 

When Figures 7-10 are compared with Figures 11-14, 
it is apparent that Adaptor for SODM is much simpler than 
Adaptor for PhDM. These benefits can be realized only 
if the transition from (2) to (6) has been preliminary per- 
formed. If it is the case, the estimates in terms of PhDM 
can be obtained according to the following statement. 



I. V. SEMUSHIN 
 

Copyright © 2011 SciRes.                                                                                IJCNS 

279

Corollary 12 Let W  (10) be defined analytically as 
a known function  0=  W W  of the unknown para- 
meters  0 0

0 1 1
= , , N    entering  0=    of (2) 

and to be identified by minimization of criterion (42), 
and 1N mn  as stated by Corollary 11. Let matrix 

1= 
  W W   be found in the companion form (8) as a 

known function of 0 , namely  =      where 
vector  1 2

= , , N   
   is composed of 2N  non- 

trivial ( i.e. non-zero ot non-unit) unknown entries of   
( 1 20 < N N mn  ), and in so doing the type of function 

 0= f   be determined as continuous function hav- 
ing its inversion  1

0 = f 
  (the last-named hypothesis 

can be true as 1 2N N ). 
Then minimization of (42) under conditions of Co- 

rollary 3 ensures, as necessary and sufficient condition, 
attaining the following limits:  

  
  
     
  

m.s.
1 1

1| 1|
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W AW

W D K


    (81) 

where a  are the adjustable parameters of matrix A , A  

taken in the form (8), if 
a.s.

a   by a PAA. 

Proof: Done by inverting equalities (78), see Corol- 
laries 6 and 10. 

Thus the corresponding block-diagram (Figure 15) dif- 
fers from the preceding block-diagram (Figure 14) by in- 
cluding the operations turning back from SODM to PhDM 
by relations (81). However, some questions remain open: 
“Must of necessity the transition from PhDM to SODM 
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Figure 15. Using  ˆ M  (34) for  D   (2) with the pro- 
perty 1

* *
A W W  and * D W K . Legend: 1—operation 

 1
* 0
W ; 2---operation  1f a . 

and back be performed? What benefits are harboured by 
the transition if not performed ?” 

7. Engineering Illustration & a Rule 

Consider a simplified version of the application problem 
from aeronautical equipment engineering [32] whose com- 
plete statement is given in [33]. 

The simplified version is the instrument error model 
for one channel of the Inertial Navigation System (INS) 
of semi-analytical type, which looks as follows:  

 

1
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       (82) 

where subscripts x , y , A , and G  stand for “axis Ox ”, 
“axis Oy ”, “Accelerometer”, and “Gyro”, correspond- 
ingly.1 State vector 

T
= , , ,x Ax Gyv m n  x  consists of: 

xv , random error in reading velocity along axis Ox  of 
a gyro-stabled platform (GSP);  , angular error in deter- 
mining the local vertical; Axm , the accelerometer read- 
ing random error; and Gyn , the gyro constant drift rate.  

Parameters 
2

1 1 1 1 1= 1 2a H b H     and  

 1 1 1= exp 1b       are obtained from the correla- 
tion function 

   2
1 1= exp | |mAx

R t H t          (83) 

describing Axm  after transition from continuous time t  
in (83) to the discrete—time index t  in (82) with the 
sampling period  . 

Let parameters 1H  and 1  be unknown. Rewriting 
(82) in terms of 1=Ax Axp m a  results in that parameters 

1a  and 1b  move into   of equations (2) with  

1

1

1 0 0

1 0 0
= , =

0 0 0 1

0 0 0 1 0

g a

a

b

 
 

   
   
   
   
   
   

        (84) 

and  = 1 0 0 0H . Using (10) in (5) gives (6) with 

* =H H  and 

1These subscripts are a tribute to the engineering tradition: x must not 
be confused with x denoting the state vector. 
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      (85) 

As seen from (85), parameter 1a  vanishes in * . This 
is quite reasonable, because it belongs, by its nature, to 
  of (82) (and *  of (85)), that is 1a  has entered   of 
(84) artificially. However it is very difficult to reveal the 
presence of such non-identifiable parameters in   by 

s  visual appearance. Transition to SODM reveals such 
problem parameters, as it is the case for (85), and this is its 
benefit although this may prove to be a difficult algebra. 

The question, that ended Section 6.6, can be refor- 
mulated: “Is it always necessary to move from PhDM to 
SODM in order to reveal non-identifiable parameters in 
matrix  ?” The answer is: “No,” and it is given by Co- 
rollary 6 (Section 6.4) from where we obtain the following 

General Rule: (Algebraic Identifability Criterion) 
1) Take   as it is up to the unknown parameters. 
2) Take   in the same form as  , but using other 

designations for the unknown parameters. 
3) Take an arbitrary n n  matrix S, det 0S  sat-

isfying equation =HS H  (matrix H  must be 
known). 

4) Write =S S   in the component-wise form. 
5) If =S I  is the only solution, the unknown para- 

meters of   are identifiable; you need not do the 
transition to SODM. 

6) If =S I  is not the only solution, find the constraints 
needed to have the solution =S I  as unique. 

7) Those parameters that require to maintain the found 
constraints may be non-identifiable; they become 
identifiable only if the constrains are fulfilled. 

Following this Rule in the example yields 

1

1

1 0 1 0

1 0 1 0
, and

0 0 0 0 0 0

0 0 0 1 0 0 0 1

x x

y y
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where the following known constants are non-zero:  , 
 , and  ; the following entries are unknown: 0x  , 

1 0x  , 1y  , 1 1y  ; and | | 0S . Comparing left and 
right sides of =S S   (this is much more simpler 
than the transition to SDOM) yields the unique solution 

1 =y y  and 33= [1,1, ,1]diag sS  where 33 1=s x x . 
Element y  (that equals 1b  in (84)) is thus seen to be 
identifiable even if x  (that equals 1a  in (84)) is in 
error. However x  is not identifiable, that is it should be 
estimated by some other methods. Notice that in active 
type identification, there is no need to identify 1=x a  
because optimal gain K  and matrix   are being esti- 
mated directly—avoiding estimation of  , Q  and R  
(this is the general result).  

8. Simulation Example 

E1 Second order system with unknown covariances 
Q  and R  of the noises tw  and tv  is given by  

 

1
1 2

0 1 0 0
=

= 1 0

t t t t

t t t

x x u w
f f

y x v

 

     
      
    



 

= 0.4 , = 1.0 , 1 = 0.8f   and 2 = 0.1f . Kalman 
gain T

1 2= [ | ]k kK  should be estimated by adaptive 
model gain T

1 2= [ | ]d dD , 1 2
ˆ = ( , )d d . 

E2 The same system as in E1. Unknowns are Q , R , 
and  1 2,f f  of matrix  . Adaptive model parameter 
is the four-component vector:  1 2 1 2

ˆ ˆˆ = , , ,f f d d .  
We analyze the adaptive model behavior with the 

Integral Percent Error (IPE) defined by  

IPE OPT OPT
ˆ ˆ ˆ= ( ) / 100%             (86) 

with respect to OPT̂ , the optimal value of ̂  for dif- 
ferent levels of signal-to-noise ratio, =SNR Q R . 

Results of Figures 16-17 are obtained in conext of 
Figure 10 using the simulation toolbox developed by 
Gorokhov [34]. The results of this and other simulation 
experiments confirm applicability of the presented me- 
thod. 

9. Conclusions 

This paper develops The Active Principle of Adaptation 
for linear time-invariant state-space stochastic MIMO 
filter systems included into the feedback or considered  
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Figure 16. Integral percent error, IPE  Equation (86), 
versus number of signal samples. Example E1: (1) for 

= 0.10SNR , (2) for = 1.00SNR , and (3) for = 10.0SNR . 
 

 

Figure 17. Integral percent error, IPE  Equation (86), 
versus number of signal samples. Example E2: (1) for 

= 0.01SNR , (2) for = 0.10SNR , (3) for = 1.00SNR , and (4) 
for = 10.0SNR . 
 
independently. The Principle, as well as its defining term 
“active” is conceptually different from that which is used 
in the collective monograph [35] where the authors 
associate this term with the problem of optimal input 
design for system identification and where they follow 
the solutions of Mehra [36]. 

Our approach is addressed to filters as the state estima- 
tors, whose original performance index is fundamentally 
inaccessible, in actual practice of a priori parameter un- 
certainty and unpredictable abrupt changeability. The pro- 
blem lies in constructing an auxiliary performance index 
(API), which would have the following two properties: 

• Accessibility for direct use in adaptation algorithms; 
• Equimodality with the original performance index. 
The present paper gives a comprehensive solution to 

the problem. We have solved the following tasks: 
1) Clearly conveyed the adaptive model. Just as 

 ̂M , a replica of the standard observable data 
model, has been specified,  ̂M  has been pat- 
terned after the physical data model.  

2) Introduced the notion of Generalized Residual as 
the multi-step ( s -step) prediction error. In so doing, 
we exploited the system’s complete observability 
as its key property, and used s , the system obser- 
vability index.  

3) Constructed the API that could offer ways of gain- 
ing indirect access to the data source state or to the 
Kalman filter state. 

4) Examined API’s capacity to “visualize” the state 
with respect to different levels of uncertainty. 

5) Put forward feasible schemata for API computation. 
6) Illustrated the theoretical identifiability by a real 

life example from inertial navigation.  
7) Verified the theory by a numerical experimental 

testing of the approach. 
Our further research is aimed at obtaining solutions to 

the following issues: 
• Using the modern computational techniques in 

Kalman filtering for computer implementation of 
the approach.  

• Seeking minimum of  a ˆ
tJ   in parameters ̂  

of  ̂  or  ̂  instead of  ̂M  or 

 ̂M .  

• Economic feasibility, numeric stability and con-
vergence reliability of each proposed parameter 
adaptation algorithm. 

• Numerical testing of the approach and determining 
the scope of its appropriate use in real life problems. 
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Appendix 

Proof of Theorem 2. Processes 1|  t t   and |t t  defined 
by (64) and (65) are equal to each other and also to 

 |
1|

t s t
t t 
S  in equations (59)-(60) and (61)-(62) corres- 

pondingly. Let a , b , and c  denote pro-tem the first, 
the second and the third summands in (59) so that  
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      (87) 

Hence for Euclidean vector norms, it follows that  

 2 2 2 2 T T T= 2    d a b c a b a c b c   (88) 

We examine the conditions under which all cross- 
terms in (88) (under sign E  of expectation) could 
vanish. For such a consequence to ensue, we should 
provide orthogonality of a , b  and c  of (87) to each 
other. To do this, we restrict our consideration to three 
setups as follows. 

Setup 1 (Random Control Input). This is an open--loop 
mode of operation in which  ( )u t  is a preassigned 
external zero-mean (and say, unit covariance) orthogonal 
wide- sence stationary process orthogonal to both 
 ( )w t  and  ( )v t  but in contrast to the last-named 
noises, such  ( )u t  is applied intentionally and meant 
to serve as an independent testing signal.  

Setup 2 (Pure Filtering). This is the control-free (and 
hence open-loop) mode of operation, in which 

 : = 0t u t .  
Setup 3 (Close-loop Control). For this mode, recall 

that we assume model based certainty equivalence 
optimal con- trol design [7]. Hence Control Strategy 
 S   (cf. Figure 4) is linear in the experimental 

condition X  (4). 
Remark 13 As in [16], denote  Sp   to be the 

space 2L  of square integrable linear combinations of a 
process { }  with all limits in quadratic mean of all such 
combinations adjoined. Then  , 1Sp , ,p

t t tp p H   is 
the subspace of a Hilbert space H  spanned by a 
process  tp  from infinitely remote past up to t . 

Consider the above setups consecutively. 
Setup 1 Control Input. 
Taking three external inputs , ,u w v  as one composite 

process p  in the above notation ,
p

tH  yields  

1
, ,
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For (87), we have , ,
,
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ta H , 1,

u
t t sb  H , and 
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t t sc  H . By virtue of the fact that  
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are two separate portions of the wide-sense stationary 
orthogonal process  = , ,p u w v , the following asser- 
ons (three orthogonalities) are true: 
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     (89) 

Remark 14 The assertions are true for discrete-time 
systems only because only they have a finite sampling 
interval. This fact is crucial for our development. 

Hence  
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Define  

     2a ˆ 1 2t  E d           (90) 

to be the API, as it was made in (42), and denote  

     2o ˆ 1 2t  E a          (91) 

to be the Original Performance Index, OPI in line with 
(22). Use 1 , 2 , 3  and 4  to stand for the 
following statements: 

 
 
 
 

a
1
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ˆ ˆ"  attains its minimum in  ."

ˆ"  attains its minimum in  ."

ˆ"  attains its minimum in  , that is

         = 0."
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E a + b

E b

E b

 
 o

4
ˆ ˆ ˆ"  attains its minimum in   at  =t     † ， 

i.e. 


 o oˆ =min t tJ


      † 1 2 ."tr    

Our argument is as follows:  

1 2 2 3 4 4 3 1 4, , ,                 

The argument is valid because one can verify that  

        1 2 2 3 4 4 3 1 4      ∧          
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is a tautology. Three premises (they are in brackets) are 
always TRUE. The first premise, 1 2   is TRUE because 

 2
cE  is constant in ̂ . The second premise, 

2 3 4     follows from the properties of norms, and 
the third premise, 4 3   is TRUE due to uniqueness 
of Kalman filter parameters when optimized in terms of 
criterion (22). 

Since the conclusion 1 4   is TRUE, this com- 
pletes the proof for Setup 1: criteria (90) and (91) are 
equimodal (have the same minimizing arguments). 

Setup 2 Pure Filtering. 
This mode eliminates b  from (87). For terms of (87), 

we have ,
,

w v
ta H , = 0b , and ,

1,
w v
t t s c H . By virtue  

of the fact that , ,
, 1,

w v w v
t t t s  H H , we obtain  T = 0E a c  

and      2 2 2 E d E a E c . It means, together 

with definitions (40), (90) and (91) that  

   
   

a o

2

ˆ ˆ= const

const = 1 2

t t  

c

 

E
          (92) 

and again, we are done. 
Setup 3 Close-loop Control. 
Consider Level 2 of uncertainty as acting in this setup. 

This is tantamount to stating that identification of   is 
not needed. As in Setup 2, we observe that ,

,
w v

ta H , 
= 0b , and ,

1,
w v
t t s c H . The orthogonality  

, ,
, 1,

w v w v
t t t s  H H  (and as a result,  T = 0E a c ) is true 

since  
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are two separate portions of the zero-mean orthogonal 
wide-sence stationaly process ( , )w v . 

In order to get a deeper insight into the basic relation 
(92) and the conclusion “ 1 4   is TRUE”, let us look 
at them from some other point of view. Let a , b , and 
c  denote pro-tem the first, the second and the third 

summands in (60) so that  
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        (93) 

We are interested in b  to vanish and in eliminating 
all cross-terms of (88) and its innovation analogue  

 2 2 2 2 T T T= 2         d a b c a b a c b c  (94) 

Innovation form (93) reinforces the fact that innovation 
version of the system (only if not in Setup 1) has the only 
“external” (better to say a hidden external) input. This is 

the innovation process  | 1t t  , which is linear, or- 
thogonal and wide-sense stationary with the  

 1| 2 | 1Sp , ,t t t t     forming ,t

H . The above outlined 

additional input { }tu  appears in Setup 1. 
Starting from (93), we revisit the same setups: 
• Setup 1 Random Control Input. We observe that 
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following assertions are true: 
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Hence 
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Denote 

     2o ˆ 1 2t E  a         (96) 

to be another Original Performance Index, OPI '  and 
add 2

  and 4
  to stand for the following statements:  

 2
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Consider them together with the above statements  
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The following argument  

1 2 2 3 4 4 3 1 4, , ,                   

is valid because  
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is a tautology. All premises (placed in brackets) are 
always TRUE. The premise 1 2

   is TRUE because 



I. V. SEMUSHIN 
 

Copyright © 2011 SciRes.                                                                                IJCNS 

285

 2E c  is constant in ̂ . The premise 2 3 4
      

follows from the properties of norms. The third premise, 

4 3   is TRUE due to uniqueness of Kalman filter 
parameters when optimized in terms of criterion (22). 

By the conclusion 1 4   being TRUE, the proof for 
Setup 1 is completed: criteria (90) and (96) have the 
same minimizing argument: †ˆ =  . 

• Setup 2 Pure Filtering. In this case, ,t

a H , 

= 0b , 1,t t s

 c H . By virtue of the fact that  

, 1,t t t s
 
  H H , we obtain  T = 0 E a c  and 

 2 E d      2 2 2  E d E a E c . It means, 

together with definitions (40), (90) and (96) that 

   
   

a

2

ˆ ˆ= const

const = 1 2

o
t t  

 

 

E c
        (97) 

Again, the conclusion 1 4   is TRUE for Setup 2. 
• Setup 3 Closed-loop Control. In this case we are in 

the same situation: ,t

a H , = 0b ,  

1,t t s

 c H . The conclusion 1 4   is TRUE for 

Setup 3, as well. 
Thus Theorem 2 is true.   

 
 
 
 
 
 
 
 
 
 
 


